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Abstract

We will present a novel incremental algorithm for the
task of online least-squares estimation. Our approach aims
at combining the accuracy of least-squares estimation and
the fast computation of recursive estimation techniques like
the Kalman filter.

Analyzing the structure of least-squares estimation we
devise a novel incremental algorithm, which is able to in-
troduce new unknown parameters and observations into an
estimation simultaneously and is equivalent to the optimal
overall estimation in case of linear models. It constitutes
a direct generalization of the well-known Kalman filter al-
lowing to augment the state vector inside the update step. In
contrast to classical recursive estimation techniques no ar-
tificial initial covariance for the new unknown parameters
is required here. We will show, how this new algorithm al-
lows more flexible parameter estimation schemes especially
in the case of scene and motion reconstruction from image
sequences.

Since optimality is not guaranteed in the non-linear case
we will also compare our incremental estimation scheme to
the optimal bundle adjustment on a real image sequence. It
will be shown that competitive results are achievable using
the proposed technique.

1. Introduction
Least-squares parameter estimation is a well-known

technique in computer vision, which has been widely ac-

cepted as post-processing step for all structure-from-motion

algorithms aiming at highly accurate results. An extensive

overview on the current state of the art of bundle adjustment

is given in [21].

Many previous works show the versatile applicability of

least-squares estimation methods for instance in the areas of

3D reconstruction from image sequences (e.g. [13]), cam-

era calibration (e.g. [4]), vehicle navigation (e.g. [17]) or

image mosaicing (e.g. [10]).

Because bundle adjustment is very expensive in compu-

tation time, especially in case of large image sequences, a

lot of faster solutions to solve the normal equation system

were proposed over the last decades. Those solutions use

fast algorithms for solving the equation systems by factor-

ization (cf. [20],[12],[3]) or use the special design of the

structure-from-motion equations by dividing the parameters

into a structure and a motion part (cf. [21],[5]). However,

while this techniques are vital for solving large problems,

they are not the scope of this paper, as our approach is not

intended to be specific for a certain estimation problem.

Other solutions are based on choosing optimal

keyframes (cf. [1]) and compute a local adjustment

for a subset of parameters. In contrast to our approach,

those do not consider all observations and loose sight of

some correlations to old parameters (cf. [18], [16] [15],

[23]).

Another way of exploiting the special design of the

structure-from-motion problem for image sequences is the

so-called Variable State-Dimension Filter (cf. [9], [11]),

which is closely related to our approach, as it also includes

novel parameters incrementally. The first key difference is,

that we only need to invert a small sub-matrix of the nor-

mal equation matrix corresponding to the newly introduced

parameters and update the existing parameters recursively.

In contrast to [11] we are able to deal with arbitrary corre-

lations within the parameter vector. The second difference

is, that we only retain the parameter vector and its covari-

ance matrix between the steps, so that a Kalman filter like

prediction step between the updates is straightforward. For

instance removing obsolete parameters from the estimation

is a simple matter of canceling out rows and columns of the

respective matrices instead of having to compute the Schur

complement.

It has also been proposed in the literature to efficiently

solve the structure-from-motion task by formulating it as a

recursive estimation problem and using Kalman filter based

approaches to compute a solution. This approaches (e.g.
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[8], [6],[19] and [2]) are very fast in computation time com-

pared to bundle adjustment but their accuracy is lower due

to a built up of linearization errors for previous states. Our

goal in this work is to combine the accuracy of the bundle

adjustment with the fast computation times of those recur-

sive estimation algorithms. We will compare our approach

to [2] in section 4.

Another recursive Kalman filter based approach for the

incremental structure-from-motion problem has been pre-

sented in [14], where the motion parameters are estimated

using a particle filter and the structure parameters are esti-

mated using a Kalman filter enabling it to handle large maps

efficiently.

Our approach is based on least-squares adjustment, but

extends it in several ways:

• It is possible to include new parameters into the es-

timation incrementally without having to specify an

artificial a priori covariance matrix for them. This is

in contrast to the classical recursive estimation tech-

niques.

• It is possible to estimate the newly introduced parame-

ters and their covariances as well as update the old pa-

rameters and their covariances separately, taking into

account all mutual correlations. The whole normal

equation matrix has not to be inverted again in order

to compute this updates.

• No history of observations has to be maintained. In-

stead the parameter vector and its covariance matrix is

built up incrementally using only newly acquired ob-

servations. The parameter vector and its covariance

is the only information required from previous steps,

which in contrast to [9] allows to easily implement a

prediction step between the updates like for instance

eliminate parameters from the estimation by simply

canceling out rows and columns.

The paper is organized as follows: In section 2 the

generic least-squares adjustment is analyzed and our novel

incremental technique will be derived. We will then briefly

show in section 3, how the structure-from-motion prob-

lem for image sequences can be easily integrated into the

generic framework presented in section 2. Results on a real

image sequence will be show in section 4, where we will

compare the proposed method with the optimal gold stan-

dard method of overall bundle adjustment and the Kalman

filter based method of [2]. Finally we will conclude and

give an outlook on some possible future work.

2. Incremental least-squares estimation
We will first show, how classical least-squares adjust-

ment works. Given a set of observations l1 together with

their covariance matrix C11 that depend on a set of un-

known parameters p1 according to the known linear model

function

l̃1 = A11p̃1 (1)

the best linear unbiased estimate of the parameters is ob-

tained as (cf. [7])

p̂
(−)
1 = C(−)AT

11C−1
11 l1 (2)

with its covariance being the inverse of the normal equation

matrix

C(−) = (AT
11C−1

11 A11)−1 (3)

If the model function is not linear, its Taylor expansion has

to be used and the estimation process must be iterated.

Now we want to add new uncorrelated observations l2
having the covariance C22 and new additional unknown pa-

rameters p2 in a later stage. Hence, the previous model

equation (1) must be augmented and reads then as

(
l̃1
l̃2

)
=

(
A11 0
A21 A22

) (
p̃1

p̃2

)
(4)

Observe that the new observations l2 may depend on the

newly introduced parameters p2 via A22 as well as on the

old parameters p1 via A21.

Using again equations (2) and (3) for this augmented

model equation the best linear unbiased estimate of the old

as well as the newly introduced parameters is now given by

(
p̂

(+)
1

p̂2

)
= C(+)

(
AT

11C−1
11 l1 + AT

21C−1
22 l2

AT
22C−1

22 l2

)
(5)

The covariance of this augmented parameter vector is the in-

verse of a symmetric matrix with the following block struc-

ture

C(+) =
(

P Q
QT R

)−1

(6)

using the substitutions

P = AT
11C−1

11 A11 + AT
21C−1

22 A21 (7)

Q = AT
21C−1

22 A22 (8)

R = AT
22C−1

22 A22 (9)

Observe that the new parameter vector p2 has been intro-

duced without having to specify an artificial initial covari-

ance matrix for it.

Now we will further analyze this expression. First note

that P is the sum of an invertible matrix (cf. equation (3))

and a dyadic product, so that its inverse may be computed

as (cf. [7] and equation (3))

P−1 = FC(−)
(10)



with the substitution

F = Id − C(−)AT
21(C22 + A21C(−)AT

21)
−1A21 (11)

It is therefore possible to invert the blockmatrix as follows

(cf. [7])

C(+) =
(

K L
LT M

)
=

(
P Q

QT R

)−1

(12)

with the substitutions

K = P−1 + P−1Q(R − QT P−1Q)−1QT P−1
(13)

= (Id + FC(−)QMQT )FC(−)
(14)

LT = −(R − QT P−1Q)−1QT P−1
(15)

= −MQT FC(−)
(16)

M = (R − QT P−1Q)−1 (17)

= (R − QT FC(−)Q)−1 (18)

Observe, that a matrix inversion is only needed for the com-

putation of the covariance matrix of the novel parameters

M , which is usually small. Obviously, M has to have full

rank, which implies that the observations l2 are sufficient to

estimate the novel parameters p2.

Putting everything together and evaluating equation (5)

the old parameters update according to

p̂
(+)
1 = (Id + FC(−)QMQT )F (p̂(−)

1 + C(−)AT
21C−1

22 l2)

−FC(−)QMAT
22C−1

22 l2 (19)

having the new covariance matrix K given in equation (14).

The new parameters are given by

p̂2 = −MQT F p̂
(−)
1 − MQT FC(−)AT

21C−1
22 l2

+MAT
22C−1

22 l2 (20)

having the covariance M given in equation (18). The mutual

covariance between the updated old parameters and the new

parameters is given by L in equation (16).

Observe that none of the update equations (19), (20),

(14), (18) and (16) contains any reference to past observa-

tions (i.e. C11 and l1) or constraints (i.e. A11). Instead

all information is encoded in the parameter vector p̂
(−)
1 and

its covariance matrix C(−)
, so that the past observations do

not need to be retained. After the estimation of the new aug-

mented parameter vector and its covariance matrix is com-

pleted it may be modified or truncated for further processing

like in the prediction step of the Kalman filter enabling the

introduction of a motion model.

Also note, that if A22 and p2 have size zero, then every-

thing boils down to the update step of the classical Kalman-

filter (cf. [22]). Hence, the presented method is a direct

generalization of the Kalman filter update equations.

3. Structure from motion
Although the incremental estimation technique pre-

sented in the previous section is applicable to all estimation

problems with online acquirement of new observations and

parameters, it is especially well suited for the joint struc-

ture and motion recovery from image sequences, where new

camera positions and new scene points appear at each new

frame.

If the jth scene point is seen by the ith camera, its ho-

mogeneous coordinates are given by

x(ij) = K(i)R(i)(I3| − Z(i))X(j) (21)

We will assume the calibration matrices K(i)
of the cam-

eras to be known. Furthermore we will assume the rotation

matrices R(i)
to depend on the quaternion (1, q(i)) and the

scene points X(j) = (X(j), 1) to be not at infinity and nor-

malized. The coordinates of the image points are measured

in an Euclidean frame, i.e. x(ij) = x(ij)
1:2 /x(ij)

3 . Hence,

equation (21) is phrased in an Euclidean frame as a func-

tion f : IR3 × IR3 × IR3 �→ IR2 like this

x(ij) = f(q(i), Z(i), X(j)) (22)

A Taylor expansion of this at appropriate initial values(
q̄(i), Z̄

(i)
, X̄

(j)
)

yields

x(ij) − f(q̄(i), Z̄
(i)

, X̄
(j))︸ ︷︷ ︸

l(ij)

(23)

≈
(

∂f
∂q(i)

∂f
∂Z(i)

∂f
∂X(j)

)
︸ ︷︷ ︸

A(ij)




q(i) − q̄(i)

Z(i) − Z̄
(i)

X(j) − X̄
(j)




︸ ︷︷ ︸
p(ij)

which is the linear form needed to construct the components

l1, p1 and A11 of the model equation (1) and estimated the

improved parameters as shown above. This process can be

iterated using the improved parameters as new initial values

and is commonly referred to as bundle adjustment. We will

not focus on how to obtain good initial values here.

Now at each new frame an additional camera position

and rotation vector has to be introduced. Furthermore, novel

points become visible in the new frame. Those new un-

knowns constitute the entries of the parameter vector p2 in

the augmented model equation (4).

Some of the old points remain visible in the new frame.

Furthermore, the scene points introduced in the new frame

should have been visible in previous frames to be included

stably into the estimation (cf. [1]). Their image coordinates

appear in the observation vector l2. For each such entry

in the observation vectors rows of A21 and A22 have to be



filled in. The entries going into A21 are those concerning

the functional dependence with previous frames or previous

scene points. The entries going into A22 are those concern-

ing the functional dependence with the new frame and the

newly introduced scene points.

Having filled in the vectors l2 and the matrices A21 and

A22 one can estimate the parameter updates as depicted in

the previous section and obtains improved estimates for the

parameters that can be used as new initial values for the

Taylor expansions. This process is then iterated until con-

vergence.

4. Results
The incremental technique presented in the previous sec-

tions is only equivalent to the overall adjustment in the lin-

ear case. This is because the incremental method is unable

to re-linearize the functional dependence for past frames

and retains only the parameter vector and its covariance

matrix, which is a problem also known from the extended

Kalman filter.

In order to assess the performance of the presented tech-

nique for the non-linear structure-from-motion problem, we

used the well-known rotating dinosaur sequence depicted in

figure 1, where ground-truth camera calibration and orien-

tation data were available. We extracted point features and

tracked them across the sequence. For reference we com-

puted an overall bundle adjustment, which is the optimal

solution in terms of reprojection error of the tracked fea-

tures. We also compared our approach to the iterative ex-

tended Kalman filter based solution proposed in [2].

To initialize the extended Kalman filter and the incre-

mental method, we computed a bundle adjustment only for

the first five frames of the sequence. Both methods initial-

ized new object points at the centroid of the point cloud

and were iterated until convergence. While the extended

Kalman filter method is able to predict its novel camera

pose, the novel camera poses for the incremental method

were initialized using a simple linear extrapolation from the

previous two frames to generate the initial values. Further-

more, we used large isotropic initial covariance matrices for

novel parameters in the extended Kalman filter, which need

not to be specified for our incremental method.

We then added the remaining frames one by one using an

overall bundle adjustment, the iterated extended Kalman fil-

ter approach of [2] and our incremental technique proposed

in the previous sections. The resulting camera positions and

scene points for the overall bundle adjustment are shown in

figure 2. The camera positions and scene points for the iter-

ated extended Kalman filter approach are shown in figure 3

and finally the results from our approach are depicted in fig-

ure 4. As expected, the best result is achieved by the overall

bundle adjustment, while the quality of the incremental ad-

justment does not achieve this quality due to its inability

Figure 1. A single frame of the well-known rotating dinosaur se-

quence. The sequence consists of 36 images rotated in 10◦ steps

around the dinosaur. Ground-truth for the camera calibration, po-

sition and rotation is available and will be used to quantify the

performance of the presented methods.
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Figure 2. Bundle adjustment solution for the camera poses and

scene points.

to re-linearize at previous camera positions. This is also a

problem for the extended Kalman filter, which performed

even a bit worse in this scenario.

To quantify the quality of the results, we compared the

computed camera positions and orientations with the avail-

able ground-truth. The angular errors of the camera orienta-

tions as well as the position errors of the camera projection

centers are depicted in figure 5 for each frame. As expected

the overall bundle adjustment performed best. The average

errors of the sequential method are a little worse with an

angular error of up to approximately 3◦ and a position er-

ror of up to approximately 0.1m. Comparing the proposed

incremental method with the iterated extended Kalman fil-
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Figure 3. Iterated extended Kalman filter based solution for the

camera poses and scene points.
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Figure 4. Our incremental method solution for the camera poses

and scene points.

ter approach of [2] we can see that the angular error goes

up to approximately 10◦ and the position error goes up to

approximately 0.3m along the sequence.

5. Conclusion

We have presented an algorithm that combines the ac-

curacy of bundle adjustment and the fast computation of

recursive estimation techniques. The presented technique

is a direct generalization of the well-known Kalman filter

allowing to introduce novel observations as well as novel

parameters inside the update step. Thereby no artificial a-

priori covariance matrix has to be specified for such novel

parameters.

Our approach is closely related to [9] and [11], but we

only need to invert a very small sub-matrix of the normal
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Figure 5. Comparison of bundle adjustment, incremental estima-

tion and iterated extended Kalman filter based estimation on the

dino sequence. Top: Angular distance of the camera pose to the

ground truth plotted against frame number. Bottom: Distance of

the camera center to the ground truth plotted against frame num-

ber.

equation matrix corresponding to the newly introduced pa-

rameters and update the old parameters in a recursive man-

ner taking all correlations into account.

In contrast to classical recursive adjustment schemes for

image sequences (e.g. [2]), the proposed method does not

require any artificial a priori covariance matrix for newly

introduced parameters and the results do not depend on a

motion model. However, a motion model can be easily

included. Specifically this means, that only uncertainties

of observations have to be supplied, which is conceptually

much clearer than having to introduce a-priori uncertainties

of the parameters to be estimated. This enables more trans-

parent estimation schemes, that do not rely on such prior

information on the uncertainty of the parameters.

Because the parameter vector and its covariance is the

only information needed to be maintained after the estima-

tion, we can easily process it between the update steps using

error propagation like it is common practice with Kalman

filter methods. Specifically it is a simple matter of cancel-

ing out rows and columns from the covariance matrix and

the parameter vector in order to remove obsolete parameters

from the estimation. In contrast to [9] no Schur complement

is needed for this elimination step.

We evaluated the proposed incremental technique on

a real image sequence and compared the performance in

terms of achieved accuracy to the gold standard method

of overall bundle adjustment and the Kalman filter based



method of [2]. In case of linear problems the incremen-

tal estimation and the overall least-squares adjustment are

equivalent and the results suggested a competitive perfor-

mance for the non-linear problem of structure-from-motion.

Our future work will focus on analyzing the internal

structure of the design matrices in order to be able to ex-

ploit their sparsity resulting from the structure-from-motion

problem for image sequences. Thereby we expect to speed

up the computation times again and become competitive

with current optimized state of the art bundle adjustment

implementations.
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