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Abstract. Algorithms for metric 3d reconstruction of scenes from cali-
brated image sequences always require an initialization phase for fixing
the scale of the reconstruction. Usually this is done by selecting two
frames from the sequence and fixing the length of their base-line. In this
paper a quality measure, that is based on the uncertainty of the recon-
structed scene points, for the selection of such a stable image pair is
proposed. Based on this quality measure a fully automatic initialization
phase for simultaneous localization and mapping algorithms is derived.
The proposed algorithm runs in real-time and some results for synthetic
as well as real image sequences are shown.

1 Introduction

In recent years the fully automatic 3d reconstruction of scenes and camera tra-
jectories from monocular image sequences has received a lot of attention. In the
early work of [7] and [6], the extraction of feature points together with their
uncertainty represented by covariance matrices was developed. More recently,
feature extraction and tracking of features across image sequences was improved
by [24], [14] and [13]. This reliable feature extraction methods enabled the 3d
reconstruction from image sequences (e.g. [1], [29],[18]) using robust estimation
of the epipolar geometry. The use of self-calibration techniques (cf. [20],[19]) or
prior knowledge of the internal camera calibration leads to a metric 3d recon-
struction, that is defined up to a similarity transformation. In the calibrated
case efficient real-time algorithms, that are also able to cope with planar scenes
were developed by [17] and [25]. Starting from this prerequisites the field of real-
time simultaneous localization and mapping has recently emerged and was given
much attention by many researchers (e.g. [4],[3],[5],[27],[15],[23]).

As the calibrated 3d reconstruction is only defined up to a similarity transfor-
mation, somehow fixing the scale is an important task. Although scale is a gauge
parameter and therefore does not affect the overall accuracy of the reconstruction
it does affect the stability of the reconstruction algorithms and must therefore be
chosen carefully. Usually this is done by initially selecting two reference images



and fixing the length of their base-line. Those key-frames are selected based on
image sharpness and disparity (cf. [16]), based on the distribution of matched
points in the images (cf. [12]), based on selecting the most appropriate motion
model (cf. [28],[21],[22]) or based on evaluating the bundle-adjustment of the
whole sequence (cf. [26]).

The contribution of this work is to present a statistically motivated measure
for the quality of the pair of reference images. Based on this quality measure
an efficient algorithm is proposed, that automates the manual setting of initial
number of frames or the initialization phase required for example by the approach
of [4]. It turns out, that, in case of known internal camera calibration, this is
a very efficient alternative to the model selection approach of [28],[21] and [22],
who proposed to decide when the base-line is large enough by checking, if the
image pair is related only by a homography or the full epipolar constraint. A
drawback of this approach is, that it cannot handle planar objects, which our
approach can.

To achieve this goal, another subject of recent computer vision research is
employed. It has been studied by [2] [11], [10],[8] and [9], how uncertainties can
be efficiently represented and propagated for geometric reasoning tasks involving
projective geometric entities. Especially the work of [9], who showed how covari-
ance matrices easily transform for various projective geometric constructions,
plays a key role in this work.

The paper is organized as follows: In section 2 first the shape of confidence
ellipsoids of scene points resulting from a given point correspondence and camera
pose is exploited. Based on this shape, more explicitly its roundness, a measure
for the quality of the image pair for the task of fixing the scale is derived. In
section 3 an algorithm is outlined, that is used to determine the optimal image
pair for fixing the scale of a 3d reconstruction. Finally some results on simulated
and real image sequences are shown in section 4.

2 Confidence Ellipsoids of Scene Points

Now the propagation of uncertainty from two measured corresponding image
points on the reconstructed scene point is analyzed. If a scene point X is observed
by two projective cameras P′ and P

′′, the image coordinates are

x′ ∼= P
′X (1)

and
x′′ ∼= P

′′X (2)

Denoting with S(·) the first two rows of the skew-symmetric matrix inducing the
cross-product

S(x) =
(

0 −x3 x2

x3 0 −x1

)
(3)

the two conditions can be written as

S(x′)P′X = −S(P′X)x′ = 0 (4)



Fig. 1. Scene geometry: Projecting rays of two corresponding image points x′
i and

x′′
i together with their uncertainties C ′

i and C
′′
i are observed by two cameras. The

corresponding scene point Xi has the uncertainty ellipsoid CXX . The roundness of this
object, i.e. the ratio of its smallest and longest axis, is a measure of the quality of the
scene geometry.

and
S(x′′)P′′X = −S(P′′X)x′′ = 0 (5)

if the image points are not at infinity. Both expressions are linear in the scene
point as well as in the image points, i.e.(

S(x′)P′

S(x′′)P′′

)
︸ ︷︷ ︸

A
4×4

X = 0 (6)

and (
−S(P′X) 0

0 −S(P′′X)

)
︸ ︷︷ ︸

B
4×6

(
x′

x′′

)
= 0 (7)

Now the scene point coordinates and the two image point coordinates are
assumed to be random variables. Note that, as all three quantities are homoge-
neous, the covariance matrices of their distributions are singular. Let the covari-
ance matrices of the image points x′ and x′′ be given by C

′ and C
′′ respectively,

then it has been shown by [9], that the covariance matrix CXX of the distribution
of the scene point coordinates X is proportional to the upper left 4×4-submatrix

CXX =
(
N−1

)
1:4,1:4

(8)



of the inverse of

N
5×5

=

A
T

(
B

(
C
′
0

0 C
′′

)
B

T

)−1

A X

XT 0

 (9)

Note, that no specific distribution must be assumed, as all arguments regard
only the second moments. We have neglected the effect of the uncertainty of the
projection matrices P′ and P

′′ here, as the relative orientation of the two cameras
is determined by many points, so that it is of superior precision compared to a
single point.

Now the effect of normalizing the homogeneous vector X = [XT
0 , Xh]T to

Euclidean coordinates on its covariance matrix CXX is analyzed. For this to be
meaningful it is assumed, that the cameras are calibrated, so that the reconstruc-
tion is Euclidean, i.e. defined up to a similarity transformation. The Jacobian of
a division of X0 by Xh is

Je =
∂X0/Xh

∂X0
=

1
Xh

(
I 3×3 −X0

Xh

)
(10)

and hence by linear error propagation the covariance matrix of the distribution
of the corresponding Euclidean coordinates is

C
(e) = JeCXXJ

T
e (11)

The roundness of the confidence ellipsoid is directly related to the condition
number of the 3d reconstruction of the point. Therefore it is a measure, how well
the two camera poses are suited for the task of 3d reconstruction. Hence, using
the singular value decomposition of this covariance matrix

C
(e) = U

λ1 0 0
0 λ2 0
0 0 λ3

V
T (12)

its roundness is defined as the square root of the quotient of the smallest and
the largest singular value

R =
√

λ3

λ1
(13)

This measure lies between zero and one, is invariant to scale changes and
only depends on the relative geometry of the two camera poses, the image points
and the object. If the two camera centers are the same, it is equal to zero. If
the object is equally far away from the two cameras and the projecting rays
of the image points are orthogonal and their covariance matrices are identical

and isotropic, it is equal to
√

1
2 . This is the maximum under the assumption

of isotropic covariance matrices. The maximum of one is reached for the same
configuration as before except for the covariance matrices of the projecting rays.
The principal axis of this covariance matrices must therefore be aligned with
the epipolar plane with the extension perpendicular to it being

√
2 times the

extension perpendicular to the viewing direction.



3 Determining the optimal image pair

Now the roundness measure of the previous section will be put into the context
of finding the optimal image pair for fixing the scale of a 3d reconstruction. Of
course the global optimal solution can only be found by checking all image pairs.
As our intended application is the real-time initialization of a simultaneous local-
ization and mapping system, the proposed algorithm fixes the first frame of the
sequence and terminates, when the first acceptable second frame is reached. The
acceptability will be determined via the roundness of the confidence ellipsoids of
the reconstructed scene points. The details are as follows:

1. Fix the first image of the sequence and let its projection matrix be

P
′ = [I|0]

2. Extract the interest points q′i together with their covariance matrices C q′
iq

′
i

from this image and apply the known camera calibration matrix K to the
image coordinates and their covariance matrices, yielding the directions

x′i = K
−1q′i

and their covariance matrices

C
′
i = K

−1
C q′

iq
′
i
K
−T

3. For each new image of the sequence do the following
(a) Extract the interest points q′′i together with their covariance matrices

C q′′
i q′′

i
from this new image and apply the known camera calibration

matrix yielding again the directions

x′′i = K
−1q′′i

and their covariance matrices

C
′′
i = K

−1
C q′′

i q′′
i
K
−T

(b) Determine the point correspondences x′i ↔ x′′i and relative orientation R,
t to the first image of the sequence according to the algorithm proposed
in [17]. The camera matrix for the current image is then

P
′′ = [R| − t]

(c) Determine the scene point positions Xi for each found correspondence
by forward intersection. This can for example be done by solving the
homogeneous equation system (6) using the singular value decomposition
of the matrix A.

(d) Determine the roundness Ri (cf. equation (13)) of each scene point Xi’s
confidence ellipsoid as outlined in the previous section.

(e) If the mean roundness is above a given threshold T , use this image
pair to fix the scale of the reconstruction and continue with the main
application.



Fig. 2. Left: Synthetic image sequence trajectory of the translation experiment, where
the camera faces the object and is moved to the right. Right: Roundness measure
against video frame for the synthetic translation experiment. A maximum is reached
at the frame, where the angle of the rays is approximately 35◦. As the distance to the
object increases, the roundness decreases again.

4 Results

To evaluate the usefulness of the proposed roundness measure, experiments on
synthetic as well as real image sequences were carried out. The setup for the
synthetic experiments is shown on the left hand sides of figure 2 and figure
3. The cameras where assumed to be normalized and the image points where
assumed to have isotropic and equal covariance matrices. Note, that by definition
the overall scale is irrelevant, since the proposed roundness measure only depends
on the relative scales and is therefore scale-invariant.

In the first experiment, depicted in figure 2, the camera was facing the object
and then moved to the right. The resulting roundness measure is shown on the
right hand side in figure 2. It can be observed, that a maximum roundness is
reached, where the angle of the projecting rays is approximately 35◦. As the
distance of the second camera to the object increases, the roundness decreases
again. The optimal image pair, i.e. the pair yielding highest stability, is therefore
not only dependent on the intersection angle of the projecting rays, but also on
the relative distances of the cameras to the object.

The second synthetic experiment was to rotate the camera around the object
at equal distance as depicted on the left hand side of figure 3. The resulting
roundness measure is shown on the right hand side in figure 3. It can be seen,

that it directly corresponds to the rotation angle and the maximum of
√

1
2 is

reached at an angle of 90◦, where the intersection of the rays is optimal for the
accuracy of the 3d reconstruction.



Fig. 3. Left: Synthetic image sequence trajectory of the rotation experiment, where
the camera is moved at equal distance around the object. Right: Roundness measure

against video frame for the synthetic rotation experiment. The maximum of
q

1
2

is

reached at the angle of 90◦.

Finally a real image sequence was taken using a cheap hand-held consumer
web-cam. Two exemplary frames are depicted in figure 4. Features were ex-
tracted and tracked and the roundness measure was computed for each frame
with respect to the first image, which is depicted on the left hand side in figure
4. The resulting roundness measure is shown in figure 5. In the first 25 frames
the camera was not moved, so that the roundness measure stays near to zero.
When the camera starts moving, the expected accuracy of the depth of the 3d
reconstruction, and hence the proposed roundness measure, is increasing. After

about 110 frames the roundness measure reached the threshold T =
√

1
10 . This

threshold is not a critical parameter but a minimal requirement stemming from
the goal of achieving a condition number of approximately 10 for the 3d recon-
struction. The corresponding last frame is depicted on the right hand side in
figure 4. It can be seen, that still enough corresponding points can be identified,
so that the determination of the relative orientation between the frames is not
an issue. Note also, that all processing was performed in real-time.

5 Conclusion

A fully automatic real-time algorithm for initially fixing the scale of the 3d
reconstruction in simultaneous localization and mapping applications with cal-
ibrated cameras was proposed. As the metric reconstruction is fixed up to a
similarity transformation in the calibrated case, the shape of the confidence el-
lipsoids of reconstructed scene points is a meaningful quantity. The roundness
of this confidence ellipsoids can be used to decide, when the accuracy of the



Fig. 4. Left: First image of the real image sequence. Right: Last image of the real image
sequence, where the roundness of the scene point covariance matrices was sufficiently
high.

Fig. 5. Roundness measure against video frame for the real image sequence. The cam-

era was not moved for the first 25 frames. The threshold value of T =
q

1
10

was reached

after the movement was sufficiently large on the frame depicted on the right in figure
4.

reconstruction is most stable, as it is directly related to the condition number
of the 3d reconstruction of the point. Hence, choosing the image pair for which
this roundness is maximal is the most stable choice for initially fixing the scale
of a 3d reconstruction.

The proposed algorithm was demonstrated to work on synthetic as well as
real monocular image sequences. Since the most complex operations are only the
inversion of a 5 × 5-matrix and two singular value decompositions of a 4 × 4-
and a 3× 3-matrix, the dominant part of the computation time is taken by the
feature extraction and tracking, enabling a real-time initialization phase.
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