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Abstract. An information theoretic framework for grouping observa-
tions is proposed. The entropy change incurred by new observations is
analyzed using the Kalman filter update equations. It is found, that the
entropy variation is caused by a positive similarity term and a negative
proximity term. Bounding the similarity term in the spirit of the mini-
mum description length principle and the proximity term in the spirit of
maximum entropy inference a robust and efficient grouping procedure is
devised. Some of its properties are demonstrated for the exemplary task
of edgel grouping.

1 Introduction

Grouping observations has been identified as an important issue in many com-
puter vision tasks and has been studied by many researchers (cf. [9], [10], [1],
[11]). In this context the Gestalt laws of psychology have received much attention
and the criterion of Prägnanz is considered extremely useful (cf. [13]). Its close
connection to the information theoretic minimum description length criterion
(cf. [14]) has been pointed out by [10] and [13].

In [12] the grouping is established based on local measures specially tailored
for the task of edgel grouping. A similar approach is made in [3], but there the
probability distributions of the observations are explicitly modeled and used to
guide the grouping. An information theoretic approach is made in [13] by phras-
ing the various Gestalt principles in terms of energy functions and minimizing
the overall free energy. Also the tensor voting approach of [5], [6] or [11] uses a
global consistency measure based on local measures of similarity and proximity.

The problem with the minimum description length criterion of [14] in the con-
text of an agglomerative grouping procedure is, that locally minimizing entropy
contradicts the principle of maximum entropy inference (cf. [7]), since greedily
grouping distant observations leads to the greatest entropy reduction. This ef-
fect is also known from robust statistics as leverage points (cf. [8]). To cope with
this problem, the Kalman filter update equations (cf. [4]) will be reviewed, and
the entropy change incurred by grouping a new observation is analyzed. It is
found, that this entropy variation is caused by a positive observation dependent
term, that measures similarity and a negative design dependent term, that mea-
sures proximity. A grouping algorithm based on bounding both influences on the



entropy variation is proposed, so that entropy reduction is caused by the obser-
vations in the spirit of minimum description length but the reduction through
decisions by the algorithm is bounded from below in the spirit of maximum en-
tropy inference. The algorithm and some of its properties will be demonstrated
for the exemplary task of edgel grouping.

2 The Kalman Filter

Having two sets of independent observations l1 and l2 of size N1 and N2 with
known covariance matrices C11 and C22 and a model depending on the para-
meter vector p of size U given by the two functions

g1(p) = l1 and g2(p) = l2

with the Jacobians
∂g1
∂p = A1 and ∂g2

∂p = A2

the best linear unbiased estimation of the parameters p̂(−) is found for the first
set of observations using the expected covariance matrix (cf. [8])
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The redundancy of the estimation is given by

R1 = N1 − U (3)

and in case R1 > 0, using the residuals
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and their weighted squared sum
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the covariance matrix of the estimated parameters can be obtained as

Ĉp̂p̂(−) = Ω2(−)
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Thereafter it is possible to updated the estimation sequentially including the
second set of observations. This is well known as Kalman filtering (cf. [4]) and
using the prediction error and its covariance matrix
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and the Kalman filter gain matrix
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the Kalman filter update equations are obtained as
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Finally the estimated covariance matrix of the parameters may be recom-
puted from the residuals using
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3 Estimated Entropy Variation

The Kalman filter was used to sequentially estimate the first two moments p̂ and
Ĉp̂p̂ of the distribution of the parameters. Knowing only those two moments,
the maximum possible entropy of the estimation is (cf. [2])
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Note that only the first term is caused by the randomness of the observations

and the second term depends only on the geometry of the design of the estima-
tion. Applying the results from Kalman filtering, the estimated entropy change
by including the second set of observations is in case, that R1 > 0
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(+)

p̂p̂

∣∣∣− 1
2

log
∣∣∣2πeĈ
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Again the entropy change is constituted from a positive term ∆ho, that
refelcts the increase in randomness due to the new observation, and a second
negative term ∆hd, that reflects the decrease in randomness due to the decision
of including the new observation into the estimation.

The first term ∆ho is closely related to the well known, and in case of Normal
distributed observations Fisher distributed, test statistic

T =
∆Ω2

Ω2(−)
∆R
R1

∝ F(∆R, R1)



that is frequently used to decide, if the second observation fits the model defined
by the first. Given a significance level α, a threshold Tα is derived from the
inverse of the Fisher distribution and the decision is made by comparing it with
the test statistic T . The test is not rejected, if T < Tα or equivalent
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If R1 = 0, the variance factor cannot be estimated from the observations
and must therefore assumed to be known. Thus the entropy change incurred by
including the new observation into the observation in case of R1 = 0 is

∆h = ĥ(p̂(+))− h(p̂(−)) =
1
2

log
∣∣∣2πeĈ
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Again the first term ∆ho is related to a well known, and in case of Nor-
mal distributed observations χ2-distributed, test statistic for the case, that the
variance factor is known

T ′ = ∆Ω2

∆R ∝ χ2(∆R)

so that again a T ′
α is derived from the inverse of the χ2-distribution, and the

hypothesis is not rejected, if

∆ho < U
2 log (2πeT ′
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This must be used to decide, if the new observation fits the model defined by
the previous observation in case that R1 = 0.

The above criterion measures the similarity between the new observation and
the model estimated from the previous observations. The key idea here is, that
also the entropy decrease ∆hd resulting from any decision made by the algorithm
should be bounded, yielding a proximity criterion for the observations. To find
this bound, the history of previous design matrices Aj and covariance matri-
ces Cjj is analyzed, because the geometry of the previous observations defines
the border, inside which the new observations may be encountered. Allowing
new observations to be a bit outside the range of the previous observations by
introducing a proximity factor λ > 1, the bound is found to be
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1
2 log

∣∣∣I − (C(−)

p̂p̂AT
j (Cjj + AjC

(−)

p̂p̂AT
j )−1Aj

∣∣∣ =: Ld (16)

4 The Grouping Algorithm

In the preceding section a similarity and a proximity criterion based on the in-
formation increase of including a new set of observations into an estimation were
derived. Those two criteria could be used to decide, if a new set of observations
could be grouped with an existing set of observations. Furthermore the Kalman



filter update equations yield an efficient method to aggregate observations se-
quentially, thus enabling a very efficient agglomerative grouping strategy.

The greedy method proposed here starts from an arbitrary observation and
sequentially aggregates new observations. In order to decide, which new obser-
vation is to be aggregated next, first the threshold on the design dependent
entropy loss Ld is computed from all observations already aggregated. Then for
every possible observation the observation dependent entropy increase ∆ho and
the design dependent entropy loss −∆hd are computed and compared to the
two thresholds. Among the qualifying observations, the grouping decision, that
destroys fewest information, is chosen in the spirit of maximum entropy infer-
ence, i.e. the candidate observation is aggregated, for which the design dependent
entropy loss −∆hd is minimal. This aggregation process is continued, until no
more observations qualify according to the two criteria. Note that the criteria
are efficiently computable due to the Kalman filter update equations. Finally
the aggregated observations are removed and the whole process is repeated until
all groups are found.

The complete grouping procedure is summarized in algorithm 1.

Algorithm 1 Grouping Algorithm
let the observations be Y = {(li, Cii)}
while Y 6= ∅ do

pick initial l1 ∈ Y, compute the Jacobian A1 of g1

start the group G = {l1}
compute initial C

(−)

p̂p̂ , p̂(−), Ω2(−)
and R1 according to (1), (2), (4) and (3)

repeat
compute the threshold Ld from G according to (16)
determine the threshold Lo depending on R1 according to (13) or (15)
initialize the candidate set C = ∅
for all li ∈ Y\G do

compute the Jacobian Ai of gi at p̂(−)

compute F (i), ∆Ω2(i)
and ∆R(i) for li according to (5), (8) and (10)

compute ∆ho
(i) depending on R1 according to (12) or (14)

compute ∆hd
(i) according to (12)

if ∆ho
(i) < Lo ∧∆hd

(i) > Ld then
include the candidate C = C ∪ {li}

end if
end for
pick lc ∈ C with maximum ∆hd

(c)

include it into the group G = G ∪ {lc}
update C

(−)

p̂p̂ , p̂(−), Ω2(−)
and R1 for lc according to (6), (7), (9) and (11)

until C = ∅
output group G
Y = Y\G

end while



5 Example: Edgel Grouping

The simple problem of grouping edgels in images to straight lines has been
studied extensively and will be used here to demonstrate some properties of the
presented grouping algorithm.

Using the measured image coordinates (ri, ci) together with the image gra-
dients (nri , nci) the simple linear line model(

ci 1
1 0

)(
m
b

)
=

(
ri
nri

nci

)
can be used. Note that the coordinate system can be rotated for each group, so
that the model can easily deal with vertical lines.

The 1000 × 1000 pixel patch depicted on the left hand side of figure 1 was
cut out of an aerial image. The edge pixels were extracted using the Canny edge
detector and for each edge pixel the gradient was computed using the Sobel
operator. The resulting set of edgels and their gradients are shown on the right
hand side of figure 1.

Fig. 1. 1000× 1000 pixel patch cut out of an aerial image and the extracted edgels.

The edgels were aggregated using the proposed grouping algorithm and two
exemplary groups are shown in figure 2. Note that the two groups were not linked
together, although they are on the same line and would be joined, if only the
observation dependent similarity criterion had been used. Since no intermediate
observation points are present, the proximity criterion imposed by the design of
the estimation prevented further growth of the group.

The proximity factor was chosen as λ = 1.5, i.e. the grouping algorithm was
allowed to decrease the entropy by 3

2 the maximum number of bits, that any
edgel lying between the other edgels would do. The resulting candidate sets of
new observations for two stages of aggregation of the same exemplary group are
shown in figure 3. The black dots are the qualifying observations according to the



Fig. 2. Two exemplary groups of edgels.

Fig. 3. Candidate sets of new observations at two stages of the same exemplary group.
The black dots are the qualifying observations according to the proximity criterion,
the black crosses according to the similarity criterion and the black asterisks are the
intersection of both criteria.

proximity criterion, the black crosses are the qualifying observations according
to the similarity criterion and the black asterisks at the intersection of both are
the qualifying observations for the grouping. It can also be seen, that the two
criteria are orthogonal.

On the left hand side of figure 3 an early stage of aggregation is shown. The
model line is still very uncertain especially far away from the few defining edgels.
On the other hand, the range of qualifying observations on the line imposed by
the proximity criterion is very narrow so that this effect is compensated and
does not affect the grouping.

On the right hand side of figure 3 a latter stage of aggregation is shown.
Observe that the model line has now become very narrow, reflecting the fact, that
now many aggregated observations contribute to the estimation. The range of
qualifying observations along the line has become wider, so that new observations
can be collected.



6 Summary and Conclusions

An information theoretic framework for the grouping of observations was pro-
posed. By analyzing the entropy change incurred by including a new observation
into an estimation a similarity criterion, that minimizes description length, and
a proximity criterion, that enforces maximum entropy decisions, was derived.
Based on those two criteria a grouping algorithm was proposed, that, using the
efficient Kalman filter update equations, greedily reduces description length and
at the same time ensures robustness through maximum entropy inference.

The applicability of the presented method goes far beyond the presented
edgel grouping example. Whenever similarity is defined by a known parametric
object model, the presented method may be applied. This is the case for many
important geometric grouping problems, like for example aggregating 3D-surface
patches obtained from dense stereo matching or laser scanning to planes or
conics, and will be subject to further investigation.
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