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Abstract. This work addresses the two major drawbacks of current
statistical uncertain geometric reasoning approaches. In the first part a
framework is presented, that allows to represent uncertain line segments
in 2D- and 3D-space and perform statistical test with these practically
very important types of entities. The second part addresses the issue of
performance of geometric reasoning. A data structure is introduced, that
allows the efficient processing of large amounts of statistical tests involv-
ing geometric entities. The running times of this approach are finally
evaluated experimentally.

1 Introduction

In [5] the uncertain geometric entities point, line and plane in 2D- and 3D-space,
represented using Grassmann-Cayley algebra, were used to perform statistical
tests such as incidence, equality, parallelism or orthogonality between a pair of
two entities. This is a very useful tool in many computer vision and perceptual
grouping tasks, as both often deal with measurements of geometric entities and
rely on the relational properties of the measured entities between each other (cf.
[11], [8], [9]).

However, there are two major drawbacks in this approach: first the Grassmann-
Caley algebra does not allow to represent localized objects, such as line segments
in 2D- and 3D-space, in a straightforward manner and second there are no con-
siderations about performing a huge amount of relational tests in an efficient
manner.

Both of these drawbacks are addressed in this work. The first issue is ad-
dressed by using compound entities, i.e. to construct new geometric entities
from the existing base entity classes, on the one hand and moving from the pro-
jective framework of [5] and [7] to an oriented projective framework (cf. [13]) on
the other hand. The second issue is addressed by proposing a data structure for
storing the entities and gaining efficiency in testing geometric relations over a
large amount of data. The proposed data structure will resolve the shortcomings
of the classical multi-dimensional data structures R-Tree, R*-Tree and Quadtree
(cf. [6], [12],[4], [10]), that are unable to store uncertain line segments for the
efficient use in statistical testing tasks.

The speed gained by using the proposed index structure for geometric reason-
ing, instead of simply computing all relational properties pairwise in a sequential
manner, will be evaluated experimentally.



2 Compound Geometric Entities and their Relations

2.1 Base Entities in Oriented Projective Space

The line segments will be constructed from uncertain geometric base entities in
oriented projected space. For this base entities first consider the 2D-case: a point
and a line may be represented by homogeneous 3-vectors x and l. In oriented
projective space the sign of the scalar product lT x can be used to indicate, if the
point lies on the right hand side or on the left hand side of the line. This can be
used to define the notion of direction for lines and orientation for points. Note,
that points with negative orientation do not correspond to Euclidean points. If
one represents the uncertainty of the entities with their covariance matrices Σll

and Σxx and chooses a threshold Tα according to the χ2-distribution as proposed
in [5], the statistical incidence test can be extended in the following way:

– if
lT x

lT Σxxl + xT Σllx
<

√
Tα (1)

holds, there is no reason to reject the hypothesis, that the point lies on the
left hand side of the line. This will be denoted by x ∈− l.

– if

−
√

Tα <
lT x

lT Σxxl + xT Σllx
(2)

holds, there is no reason to reject the hypothesis, that the point lies on right
hand side of the line. This will be denoted by x ∈+ l.

Notice, that the two cases are not mutually exclusive, but the combination of
both conditions yields the classical incidence relation, that is proposed in [5].
This will be denoted by x ∈ l.

In 3D-space the situation for points and planes is just the same, since every
test comprising of a scalar product can be extended this way. In addition to
the incidence relation the notation for the relations parallelism (‖, ‖− and ‖+)
and orthogonality (⊥, ⊥− and ⊥+) are introduced as well in the case of scalar
valued test statistics. If the test statistic instead is vector valued and bilinear,
the situation is a little more involved. Let us first consider the case of a point
X and a line L in 3D-space. According to [5], there is no reason to reject the
hypothesis X ∈ L if

dT Σ+
ddd < Tα (3)

with

d = Γ
T
(L)X and Σdd = Π

T
(X)ΣLLΠ(X) + Γ

T
(L)ΣXXΓ(L)

and Tα chosen according to the χ2
2-distribution (see [5] for the definition of

the matrices Π and Γ). Since d is a vector, the notion of a single sign is not
applicable here. However a test can be formulated, whether two points X and Y
lie on opposite sides of L, by requiring, that X and Y lie on opposite sides of each



of the four planes defined by the rows of Γ
T
(L), that is, if Γ

T
(L)X = −Γ

T
(L)Y.

Thus one obtains the following statistical test: if for all i = 1..4 the condition(
dx

i

σdx
i

< Tα ∧
dy

i

σd
y
i

> −Tα

)
∨

(
dy

i

σd
y
i

< Tα ∧ dx
i

σdx
i

> −Tα

)
with

dx
i = Γi

T
(L)X σ2

dx
i

= Πi
T
(X)ΣLLΠi(X) + Γi

T
(L)ΣXXΓi(L)

dy
i = Γi

T
(L)Y σ2

dy
i

= Πi
T
(Y)ΣLLΠi(Y) + Γi

T
(L)ΣYYΓi(L)

and Tα chosen according to the χ2-distribution holds, then there is no reason
to reject the hypothesis, that X and Y lie on opposite sides of L. This will
be denoted by (X,Y) ∈⊗ L. Every bilinear test statistic can be used this way,
although the interpretations of the test are not as clear as in the case of point-line
incidence.

2.2 Representing Line Segments and their Tests

First consider the 2D-case again: A line segment can be represented by its two
end-points x and y, the line l connecting those two end-points and the two lines
m and n, orthogonally intersecting l in x and y and directed, such that their
normals point away from the line segment. More details about the construction
of such line segments can be found in [2].

Again the construction generalizes to 3D line segments in a straightforward
manner, by using the end-points X and Y, the connecting line L and the planes
A and B orthogonally intersecting L in the points X and Y, directed, such that
their normals point away from the line segment.

It is now possible to perform a sequence of statistical tests on the base ele-
ments to obtain a result for the compound entity. For example the incidence of a
2D point z with the 2D line segment (x,y, l,m,n) can be defined as either z be-
ing incident to one of the endpoints x or y, or z being incident to the connecting
line l and lying between the two directed lines m and n. In the previous notation
with logical and denoted by ∧ and logical or denoted by ∨ this then looks like:
z ≡ x∨ z ≡ y∨ (z ∈ l∧ z ∈− m∧ z ∈− n). Other statistical tests including inci-
dence, equality, orthogonality and parallelity with 2D line segments are derived
easily in a similar manner (cf. [2] for details). In case of 3D line segments some
useful relations are summarized in table 1. It can be seen, that a lot of useful
statistical tests can be performed very easily with the proposed representation
for line segments.

3 Storing Uncertain Geometric Entities

3.1 Necessary Conditions

Now a data structure will be developed, that allows to efficiently find all uncer-
tain entities, that match a given bilinear relation with a given uncertain entity,



Entity Relation Tests
point Z incident (Z ≡ X1) ∨ (Z ≡ Y1) ∨ ((Z ∈ L1) ∧ (Z ∈− A1) ∧ (Z ∈− B1))
line M intersect L1 ∈ M ∧ (X1, Y1) ∈⊗ M

orthogonal L1 ∈ M ∧ (X1, Y1) ∈⊗ M ∧ L1⊥M
parallel L1‖M
incident L1 ≡ M

plane C intersect (X1, Y1) ∈⊗ C
incident L1 ∈ C

orthogonal (X1, Y1) ∈⊗ C ∧ L1⊥C
parallel L1‖C

line segment
(X2, Y2, L2, A2, B2) intersect L1 ∈ L2 ∧ (X1, Y1) ∈⊗ L2 ∧ (X2, Y2) ∈⊗ L1

orthogonal L1 ∈ L2 ∧ (X1, Y1) ∈⊗ L2 ∧ (X2, Y2) ∈⊗ L1 ∧ L1⊥L2
parallel ((X1 ∈

− A2 ∧Y1 ∈
− B2) ∨ (X1 ∈

− B2 ∧Y1 ∈
− A2)) ∧ L1‖L2

incident ((X1 ∈
− A2 ∧Y1 ∈

− B2) ∨ (X1 ∈
− B2 ∧Y1 ∈

− A2)) ∧ L1 ≡ L2
equal (X1 ≡ X2 ∧Y1 ≡ Y2) ∨ (X1 ≡ Y2 ∧Y1 ≡ X2)

Table 1. Relations with the 3D line segment (X1,Y1,L1,A1,B1)

e.g. given a line segment, one is able to find all those line segments, that orthogo-
nally intersect the given one, out of a large set of stored line segments. Therefore
a necessary condition for bilinear tests like eq. (3) is derived first. The generic
bilinear test has the form

dT Σ−1
ddd < Tα,n (4)

with
d = A(x)y and Σdd = A(x)ΣyyA(x)T + B(y)ΣxxB(y)T

With σ2
x denoting the largest eigenvalue of Σxx, σ2

y denoting the largest eigen-
value of Σyy and the rows of A and B denoted by ai and bi, a necessary condition
for eq. (4) is given by

(aT
1 y)2

σ2
yaT

1 a1 + σ2
xbT

1 b1
+ · · ·+ (aT

ny)2

σ2
yaT

nan + σ2
xbT

nbn
< Tα,n

Since all terms are positive, this can only hold, if

∀i (aT
i y)2

σ2
yaT

i ai + σ2
xbT

i bi
< Tα,n

⇔ ∀i |aT
i y|

|ai||y|
<

√
Tα,n

(
σ2

y

yT y
+

σ2
x

aT
i ai

bT
i bi

yT y

)
(1)
<

√
Tα,n

σy

|y|
+

√
Tα,n

σx

|ai|

where the inequality (1) holds, because the bi are projections of y onto some
subspace for every relation considered (cf. [5]). One can also assume, that all ai

and y are spherically normalized, because the entities in oriented projective space
are represented by homogeneous vectors. If one substitutes δx = 2

√
3

3

√
Tα,nσx

and δy = 2
√

3
3

√
Tα,nσy a necessary condition for eq. (4) (cf. [2] for a proof) is

given by

|aT
i y| ≤

{
cos

(
π
2 − arccos δx − arccos δy

)
if δx + δy ≤ 1

1 otherwise (5)



This equation has a simple geometric interpretation: The hypothesis test of eq.
(4) can only result in not rejecting the hypothesis, if there is a vector a′ within
the cone with axis ai and opening angle arccos δx and another vector y′ within
the cone with axis y and opening angle arccos δy, so that the vectors a′ and y′

are perpendicular.
Notice, that reasoning along the same lines yields necessary conditions for

the positive and negative orientation test (cf. eq. (2) and eq. (1)):

±aT
i y ≤

{
cos

(
π
2 − arccos δx − arccos δy

)
if δx + δy ≤ 1

1 otherwise (6)

Thus, associating a key (y, δy) with each base entity (y,Σyy), one is able to
check only using this key together with eq. (5) or (6), if a statistical hypothesis
test with the associated entity might result in not rejecting the hypothesis.

3.2 Combination of Keys

The next step is to combine two keys (y1, δy1) and (y2, δy2) into a new superkey
(y′, δy′), such that the superkey yields a necessary condition for both of the
keys. Since all keys represent hypercones, one looks for the enclosing hypercone
to calculate the superkey. Note first, that the axis of the superkey’s hypercone
must lie in the hyperplane spanned by the two axes y1 and y2, thus one can
first calculate the intersection of the hypercone (y1, δy1) with this hyperplane.
Because it lies in the hyperplane, it can be parametrized by y′1 = (1−λ)y1+λy2

and inserting into the hypercone condition results in
(

y′T1 y1
|y′1|

)2

= 1−δ2
y1

. Solving
this quadratic equation for λ yields two solutions and thus two vectors y′11 and
y′12. Doing the same for the hypercone (y2, δy2) yields two more solutions y′21 and
y′22. Two of those four lines must lie on the surface of the enclosing cone, namely
those two with the greatest enclosing angle. To find those, one must first orient
the lines to point into the same direction as the corresponding hypercone axis.
This can simply be achieved by checking signs of scalar products. Together with
a spherical normalization one obtains y∗ij = sign

(
yT

ijyi

) yij

|yij | . Since the surface
of the enclosing hypercone must lie on both sides of the axis y2 in relation to
y1, one now determines, which lines lie on which side:

yN
i =

{
y∗i1 if y3−i

T y∗i1 > y3−i
T y∗i2

y∗i2 otherwise yF
i =

{
y∗i1 if y3−i

T y∗i1 < y3−i
T y∗i2

y∗i2 otherwise

Finally one is able to select those two oriented lines, that include both hyper-
cones, again by simply checking scalar products:

m =
{

yF
1 if y2

T yF
1 < y2

T yN
2

yN
2 otherwise n =

{
yF

2 if y1
T yF

2 < y1
T yN

1

yN
1 otherwise

Thus the superkey is now given by:

y′ =
m + n

|m + n|



δy′ =

{√
1− (mT y′)2 if y′T y∗1 > 0 ∧ y′T y∗2 > 0

1 otherwise

By definition it has the property, that whenever eq. (5), or (6) holds for any of
(y1, δy1) or (y2, δy2), it must hold for (y′, δy′). Also notice, that it can easily be
generalized to more than two keys just by sequentially enlarging the hypercone.

3.3 The Data Structure

Having defined those keys, one is now able to define an R-Tree like data structure
(cf. [6]), that allows to store compound uncertain geometric entities of a single
type, as follows:

– every node of the tree contains at most 2M and at least M elements, unless
it is the root

– the elements of the leaf nodes are the compound uncertain geometric entities
((y1,Σy1y1), ..., (yn,Σynyn)) together with a key ((y1, δy1), ..., (yn, δyn)) as
defined in section 3.1

– every inner node’s link is associated with a key ((y′1, δy′1
), ..., (y′n, δy′n)) con-

structed from the subnode’s keys as described in section 3.2

Two facts follow immediately from the definition of the tree: first its height is
bounded by O(log N) (cf. [1]) and second a statistical test with an entity stored
in a leaf node can only result in not rejecting the hypothesis, if for all keys along
the path to the root, the eq. 5 or 6 (depending on the test) holds. The second
property is used to define the query algorithm for the data structure, by only
descending into a subtree if the necessary condition with the key holds. Thus,
the more complex the query, the better is the performance of the algorithm,
since more subtrees can be truncated at an earlier point in time.

To insert an element into the tree and maintain the first property, a strategy
similar to the construction of an R-Tree is used. On every level the algorithm
computes for every subtree the enlargement of the opening angles of the keys
hypercones and inserts the entity into the subtree, where the enlargements are
minimal. If a node has more than 2M elements, the node is split into two subsets
of size M and M + 1, such that the opening angles of the superkeys hypercones
of the elements of each subset are minimal. To find those subsets, the quadratic
split heuristic proposed in [6] is used. As shown in [1], the running time of this
algorithm is bounded by O(logN).

A more detailed description together with some implementation details can
be found in [2]. Note also, that the data structure is not limited to line segments,
but can store and perform any kind of statistical test on data, that is constructed
from multiple (or single) uncertain base entities of the Grassmann-Cayley alge-
bra. For points it is similar to the classical R-Tree, thus a similar performance
can be expected in this case.



4 Experimental Evaluation

Fig. 1. Running times for construction and intersec-
tion queries of 3D line segments

The running times of the
data structure proposed
in the previous section
were evaluated on artifi-
cial line segment data in
3D-space. A set of N line
segments inside the cube
of volume 1 centered at
the origin were generated
randomly. The line seg-
ments were of random
length between 0.05 and
0.1 and random orienta-
tion with the standard
deviation of the end-
points being 0.001. All
N line segments were in-
serted into the proposed
data structure and an-
other random line seg-
ment was used to retrieve all line segments from the data structure, that in-
tersect the given one. Intersection was chosen, because it has the broadest field
of application, though the other relations behave very similar. An application
example for this kind of query that benefits from the proposed data structure
can be found in [3]. The running times on a current standard desktop computer
for different values of the nodes half size M are depicted at the bottom of figure
1.

Since classical multi-dimensional data structures do not support statistical
geometric tests as query, the running time for sequentially comparing all N line
segments with the given one is shown in the middle of figure 1. It can be seen,
that the improvement is up to a factor of 50, depending on the number of line
segments stored in the data structure.

The drawback of using an index structure is, that the construction requires
time. The construction times for different values of M are depicted on top of
figure 1. It can be seen, that the choice of M = 2 is best, since the construc-
tion time heavily depends on M and the query times do not depend on M so
strongly. Certainly a large amount of queries, for example required by a spatial
join algorithm, to a fairly large and static set of line segments is required to
exploit the benefits of the proposed data structure.

5 Conclusion

In this work a framework was presented, that allows to perform statistical tests
on uncertain geometric entities constructed from tuples of uncertain base entities



in oriented projective space. It was shown, that uncertain line segments in 2D-
and 3D-space are constructible in such a way, that statistical reasoning about
this practically very important geometric entities is possible in this framework.

The second contribution of this work is the introduction of a data structure,
that allows to perform this kind of tests in an efficient manner. The special
structure of statistical testing was used in the design of the data structure, such
that it is capable of performing complex statistical reasoning tasks in an efficient
manner. It therefore outperforms classical multi-dimensional data structures,
since they are not able to handle this kind of queries.

Since the amount of measured, i.e. uncertain, geometric data in many com-
puter vision tasks is extremely high, the need for efficient geometric reasoning
algorithms is evident. The experiments showed, that the gain in performance is
very high, if large amounts of data are to be processed, so that the application
of the presented framework and data structure could lead to new, more feasible
algorithms in the analysis of large aerial images or large image sequences, where
known statistical properties of the measured data can be used.
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