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Abstract— This article presents a practical solution for fast
and precise localization of a vehicle’s position and orientation
with respect to stop sign controlled intersections based on video
sequences and mapped data. It consists of two steps. First,
an intersection map is generated offline based on street-level
imagery and GPS data, collected by a vehicle driving through
an intersection from different directions. The map contains
both landmarks for localization and information about stop
line positions. This information is used in the second step to
precisely and efficiently derive a vehicle’s pose in real-time when
approaching a mapped intersection. At this point, we only need
coarse GPS information to be able to load the proper map data.

The experimental results show this approach is able to suc-
cessfully localize a vehicle at stop intersections with decimeter
accuracy under various weather conditions and after several
months between the map data collection and the test drive.

The proposed method enables a variety of functions for
future driver assistance systems, such as stop line violation
warning, advanced Adaptive Cruise Control/ Traffic Jam Assist
functions in cities, or autonomous driving.

I. INTRODUCTION

Future advanced driver assistance systems require infor-
mation about the host vehicle’s relative position and orien-
tation, not only with respect to a given lane, as used in lane
keeping or recent Traffic Jam Assist functions, but also with
respect to the traffic environment and road infrastructure.
Traffic intersections in particular are highly challenging
environments. Precisely estimating the host vehicle’s pose,
for example, with respect to traffic lights, stop lines, or
crosswalks enables a variety of new functions, making cars
smarter in terms of obeying the traffic rules. This is especially
essential with increased automation of the driving task in
future cars, or in terms of augmented reality applications.

In this article we focus on stop intersections, but the
proposed methods can easily extend to other traffic scenarios.
The objective is to derive the host vehicle’s pose, i.e.
position and orientation, with respect to an intersection and
in particular with respect to a given stop line the host vehicle
is approaching.

Instead of analyzing the complex environment in front
of a vehicle purely based on the real-time video data, e.g.
by detecting stop signs in the scene to identify potential
intersections, we decrease the complexity of the problem
by storing static information about the intersection in a
map ahead of time from a previous drive through the same
intersection. This gives us an expectation of what the sensors
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Fig. 1. Bird’s Eye view of our vision-based localization method. The
objective is to refine a vehicle’s pose with respect to a stop line (yellow
line) based on video images and mapped waypoints (red and blue circles)
along a reference trajectory (green line).

are going to see at a certain coarse location. The real-
time task reduces to matching the image content with the
expectation from the map and refining a pose prior based
on a set of observed waypoints in the scene (see Fig. 1). A
Kalman filter is applied to smooth the estimation results and
integrate additional information about the ego motion of the
host vehicle.

Mapping an unknown 3D environment based on sensor
data has been well addressed in the robotics domain in
recent decades, resulting in numerous publications about the
so called Simultaneous Localization and Mapping (SLAM)
problem [1], [2]. In particular, graph-based SLAM ap-
proaches have been established as practicable and accurate
solution even for large scale problems [3]. Methods that only
use video cameras and information about the robot’s motion
are referred to as Visual SLAM. These methods typically
aim for a consistent 3D model of the local environment over
a larger area or route. For a recent survey on visual SLAM
approaches in the intelligent vehicles domain, see [4]. Our
work is closely related to the work published in [5], that uses
a self-generated map of 3D visual landmarks for estimating
all six degrees-of-freedom of the host vehicle with respect
to the map. However, we further reduce the complexity of
the problem by adding several constraints, reasonable for
typical road scenes, to get a very fast result. Besides mapping
characteristic landmarks suitable for localization, there has
also been work done in the field of mapping static road
objects such as traffic lights [6], [7] or road signs [8].

We will first introduce the map generation steps in Sec. II
and then explain how this data is used for real-time pose esti-
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mation in Sec. III. Experimental results and our conclusions
are given in Sec. IV and Sec. V, respectively.

II. MAP GENERATION

In our approach we decouple the estimation of the refer-
ence poses at which the video images are captured from the
computation of the waypoints used for real-time localization.
This significantly reduces the complexity of the problem.

A. Data Collection and Reference Trajectory Generation
In the data collection phase a vehicle equipped with a for-

ward looking stereo camera mounted behind the windshield
is driven through an intersection from all possible directions.
We record images at a fixed rate of 16 Hz and assign
information about the current host vehicle’s ego motion state
to each image, such as speed and yaw rate, as well as
GPS data from the on-board navigation system (latitude,
longitude, heading) if available.

Once all data has been acquired, any coarse and noisy
GPS positions are adjusted by fitting the most likely cubic
B-spline model to the data points for each trajectory. The
pose refinement also incorporates the host vehicle’s speed
and yaw rate as constraints between two adjacent positions
to yield consistent reference trajectories. Outliers in the GPS
data are detected and removed from the estimation in an
iterative procedure. Finally, the resulting continuous spline
function allows for assigning each recorded image a refined
reference pose on this reference trajectory.

B. Waypoint Computation
We select only a subset of images, denoted as reference

images, for the waypoint computation. We keep the sequen-
tial order of the images and make sure the selected images
are a minimum distance apart according to the assigned
position on the reference trajectory. This reduces the amount
of data to be stored in the map. For each reference image, we
extract image features using a feature detector and describe
the features with a descriptor. There is a variety of feature
detectors and descriptors. We use a combination of the FAST
corner detector [9] and the BRIEF descriptor [10] in our
experiments, however, any other suitable combination might
be used as well.

Next, feature matching between K consecutive reference
images is performed in a sliding window manner. Features
that can be matched in all K reference images are considered
stable. Since the camera poses are known from the reference
trajectory, one can estimate a 3D waypoint and its covariance
matrix from the corresponding image points using triangula-
tion in a maximum likelihood sense. We typically use K = 3
images. See Fig. 2 for an example.

For each waypoint a new map entry is generated. We only
store a 2D Cartesian coordinate, i.e. we are ignoring the
height coordinate and the corresponding covariance matrix
of the waypoint. In addition, we maintain a link to all feature
positions and descriptors of all images used to compute
this point. It is therefore not only possible to query a
list of waypoints for a given reference pose, but also the
corresponding image features.

Fig. 2. Corresponding image features between neighboring images (FAST -
BRIEF ). Waypoints are computed based on K = 3 consecutive images.

C. Mapping of Stop Lines

We implemented a convenient semi-automated approach
for mapping stop lines. During the data acquisition phase
the human operator is asked to push a button on the steering
wheel whenever the vehicle is stopped exactly at a stop line,
i.e. with the front bumper right above the line on the ground.
This internally marks the current image as the stop position.

In the offline processing step, the manually marked po-
sition generates a stop line hypothesis, given the known
constant transformation from the camera to the vehicle front.
An advantage of this approach is that both the stop line
position and the reference images are stored in the same
reference coordinate system.

To overcome deviations that human drivers have in stop-
ping exactly at a stop line, we further refine the coarse
stop line position as well as the stop line orientation based
on the captured reference images. The objective is to align
the projection of the stop line to strong image intensity
edges in nearby reference images containing the stop line.
We assume a good alignment if the projected line covers
a region with a strong image gradient. A particle filter is
used to sample several hypotheses of stop line poses around
the initial approximate value. The particles are weighted
according to the following equation:

wi = IΛmax −
I∑

i=1

Λ(i) (1)

where Λ(i) corresponds to the entry of the Euclidean distance
transform [11] of the thresholded gradient image at the i-
th pixel of the projected line, 1 < i < I , and Λmax to the
maximum of Λ. The final stop line position is then computed
as the weighted average of the final particle set. An example
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Fig. 3. Stop line refinement based on image gradient. The dashed red line
represents the initial hypothesis, the solid green line is the refined result
over 5 reference images.

for this refinement step is given in Fig. 3. An efficient stereo-
vision based 3D representation, called Stixels [12], is used to
analyze whether the area in front of the vehicle is occupied
by an object, e.g. a lead vehicle, or whether the ground
is visible. The refinement is skipped when the stop line is
occluded in the reference images.

As an alternative approach to the manual annotation
of stop line positions during the data acquisition phase,
one could also initialize the stop line refinement based on
detected stop signs in the image using computer vision
techniques, or a road attribute map from an external source.

III. REAL-TIME LOCALIZATION

Instead of computing a full bundle adjustment of all
measurements and object poses, we reduce the problem to a
planar resection of single vehicle poses based on fixed way-
point correspondences. This fast approximation still provides
very accurate results in practice, given good knowledge of the
coarse location from previous time steps. This section first
introduces how we derive a single pose based on observed
waypoints at one time step, then describes how the pose
estimate is recursively refined using a Kalman filter.

A. Single Time Step Pose Estimation

Given a set of planar waypoints IXn = [xn, yn, 0]T,
2 < n < N , with uncertainty IΣXnXn in a 3D Cartesian
reference coordinate system, denoted as intersection system
I, and noisy observations [un, vn]T of their image projection
coordinates, we estimate the relative position and orientation
of the host vehicle. It is defined by the 4× 4 transformation
matrix VMI of its local vehicle coordinate system V with
respect to I, with

VMI =

 VRI(ψ) 0 VT I
0T 1 0
0T 0 1

 , (2)

i.e. we restrict the degrees of freedom of this transformation
to a 2D rotation VRI around the height axis by angle ψ, and
a 2D translation vector VT I = [Tx, Ty]T. The intersection
system and vehicle system coincide in the ground plane.
All systems are right-handed with x pointing forward, y to
the left, and z upwards. The camera is rigidly mounted to
the host vehicle with a known six parameter transformation
CMV of coordinates from the vehicle system V to the camera
system C (homogeneous form).

The relationship between homogeneous image coordinates
Cxn = [un, vn, 1]T and intersection coordinates of a way-
point is given by the projection

Cxn = λ

[K 03×1
] CMV VMI


xn
yn
zn
1


 , (3)

with the 3 × 3 intrinsic camera calibration matrix K, and λ
being the free scale parameter. For ease of readability we
skip the point index n in the following equations.

Multiplying CRT
VK−1 from left on both sides yields

CRT
VK−1 Cx = λ

[I3 CRT
V
CT V

]
VMI


x
y
z
1


 . (4)

With the substitutions

CRT
VK−1 Cx =

x′y′
z′

 (5)

CRT
V
CT V = Ω (6)

we receivex′y′
z′

 = λ

 VRI

[
x
y

]
+ VT I +

[
Ωx

Ωy

]
z + Ωz

 . (7)

Since only waypoints in front of the camera are considered,
x′ > 0 holds and we may build the fraction of the first two
rows

y′

x′
=

sin(ψ)x+ cos(ψ)y + Ty + Ωy

cos(ψ)x− sin(ψ)y + Tx + Ωx
= g(ψ, Tx, Ty) (8)

yielding a nonlinear function g relating the unknown pose
parameters ψ, Tx, and Ty to the transformed measurements
x′ and y′. We solve for these unknown parameters in an iter-
ative manner using Least-Squares optimization, considering
all N measurements. Note that the unknown z-coordinate
becomes obsolete by this step and thus does not have to be
stored in the map.

To speed up the computation, we treat the waypoints co-
ordinates IX as fixed throughout the optimization process.
We also reduce the approximation error by considering the
uncertainty of the waypoints in the stochastic model. In
order to increase the robustness of the approach, an outlier
test is applied before each new iteration of the estimation
process, rejecting points that are not consistent with the
current estimate.

B. Sequential Pose Estimation

The following steps are performed to make the above steps
practicable for localization of a vehicle with respect to an
intersection.
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a) Initialization: In the very first step, an approximate
value of the vehicle’s global position is required to load
the right map data and extract a list of waypoints that
are assumed to be visible from the current pose. We use
coarse GPS information about the host vehicle’s position and
heading. Alternatively, image retrieval approaches could be
exploited to identify the current position purely based on
similarity of the image content to reference images in the
database [13]. However, using GPS significantly speeds up
the process and increases the reliability of the initialization.

b) Waypoint Selection: Given an approximate value of
the vehicle’s location we search for the nearest reference pose
in the database. Since each reference pose is linked to a list
of waypoints, we obtain both the 2D positions [x, y] of these
points as well as a list of descriptors D of the image features
that have been considered for computing the waypoint.

c) Feature Matching: We are using the same feature
detector and descriptor that was used to compute waypoints
to detect and describe features in the current image. The
resulting image feature descriptors are then compared to
the waypoint descriptors D. We require a feature to match
at least dK/2e descriptors according to a matching cost
function, if K is the number of images that were used to
compute the waypoint. This process can be computed in
parallel for further speed up.

d) Temporal Filtering: The single pose estimates are
used as direct measurements for a Kalman filter with a
linear motion model. The measurement noise results from the
uncertainty of the estimated parameters. The Kalman filter
not only smooths the results, it also allows for predicting
the next pose based on the ego-motion and using it as the
next approximate value. In our system the ego-motion is
derived from the speed and yaw rate of the host vehicle. Any
other method, such as visual odometry could be used instead.
To be less sensitive to errors in the pose estimation, an
outlier detection method based on the Mahalanobis distance
between the prediction and the measurement is applied. Once
initialized, the feature-based localization does not require
additional GPS measurements. However, GPS is used to
verify the estimation result if available. Increasing deviations
from the GPS measurement can trigger a reinitialization.

The Kalman filter has the additional advantage of being
highly efficient in terms of a real-time system, compared to
methods that simultaneously adjust a sequence of poses, e.g.
combining the information of multiple time steps into one
huge equation system such as bundle adjustment.

C. Stop Line Distance Computation

Once the relative position of the host vehicle with respect
to the intersection is known, it is straightforward to compute
the vehicle’s relative position to a given stop line, which
is also defined in the intersection system. The uncertainty
of this relative transformation results from the uncertainty
of the filtered pose estimate and the uncertainty of the stop
line position in the map. We define the stop line distance as
the orthogonal distance from the host vehicle’s front center
position to the stop line.

Fig. 4. Example intersection with four reference trajectories and mapped
stop lines superimposed on areal imagery based on WGS84 coordinates
(Source: Bing Maps).

IV. EXPERIMENTAL RESULTS

We have tested our system both on recorded image se-
quences and in live traffic. Fig. 4 shows a typical 4-Way
Stop intersection at a residential area in Palo Alto, CA.
Four reference trajectories (colored dots) and the mapped
stop lines (yellow lines) for each intersection approach are
overlaid on the image. The reference poses and stop lines,
as well as a number of waypoints not shown here, were
generated according to the method described in Sec. II in
February 2013.

Using this intersection, we evaluated the accuracy and
precision of our approach with recorded sequences from test
drives where the driver was instructed to stop as close as
possible to the stop line, i.e. with the vehicle front bumper
above the line marking on the ground. The evaluation criteria
is the estimated stop line distance at the time the recorded
vehicle speed reaches zero. The stop line distance is positive
if the vehicle front bumper is passed the stop line. A negative
distance means the vehicle has not reached the stop line
yet. We found that the standard deviation of a human driver
stopping at a stop line is about 15 cm after some practice.

In the first experiment, we considered three different data
sets. The first data set included 12 trajectories recorded
two days after the reference trajectory was generated, while
the second data set with 15 trajectories was recorded a
week after. In the third data set, 12 trajectories have been
considered, including samples from April, June, August,
October, and December 2012, as well as February 2013.
The October and December scenes were collected in heavy
rain. Fig. 5 shows some example images of these sequences
with the estimated stop line position as well as the matched
features superimposed. In all experiments the North-South
direction (Fig. 4, purple dots) was considered, which is in
particular challenging since there are many trees along the
street that make it more difficult to find stable waypoints.
The recorded trajectories typically start 40-50 m before the
stop line.

We compared our proposed feature-based localization
approach to a Kalman filter approach that fuses the raw
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(a) February 2013

(b) December 2012

(c) October 2012

(d) August 2012

Fig. 5. Sample images from sequences in Palo Alto data set #3 with
predicted stop line positions (blue lines) and matched features superimposed
(blue crosses=reference image, yellow crosses=current image).

GPS measurements with the vehicle speed and yaw rate to
estimate the vehicle position using the same linear motion
model that is being used in our approach.

Fig. 6 shows the distribution of the resulting stop line
distance estimates at the time the vehicle actually stopped.
The red horizontal lines indicate the median, the upper
and lower bound of the blue boxes indicate the 75th and
25th percentile respectively. It turns out that our approach
outperforms the GPS-based solution in all three experiments
in terms of accuracy. The median stop line distance for
the first data set is −0.35 m. Given the fact that the stop
line marking at this intersection is 30 cm wide, the data
indicates the driver has stopped right in front of that marking
most of the time. Please note that the proposed stop line
refinement in the mapping phase tends to shift the stop
line to the center of the line marking. The corresponding
standard deviation is 0.19 m, which is within an order of
magnitude of the variation of a human driver stopping at
the stop line. Since the focus in the mapping phase is on
the relative accuracy between the stop line position and the
reference trajectory, the GPS-based approach can be more
inaccurate and is strongly influenced by the current satellite
configuration. This effect can be seen in the second data set.
Here, the median GPS-based stop line distance is −1.1 m.

Fig. 6. Distribution of the estimated stop line distances for different data
sets and localization methods at the Palo Alto intersection.

The feature-based approach gets closer to the truth, however,
with a median of −0.69 m there is still a larger offset
compared to the first data set. This indicates that a poor
initialization, which is based on GPS, still has some effect
on the result of the feature-based localization, which is only
a refinement of the approximate values.

The long-term study shows the estimated distances are
closer to zero for both approaches. This can be explained by
the fact that these sequences include a larger variety of the
actual stop positions, i.e. for some of the older sequences
it is not guaranteed that the driver has stopped exactly at
the same position. Thus, we expect a larger variance of
the measurements. The median stop line distance for the
feature-based localization on the long-term data set is less
than 10 cm.

We repeated the experiment at an intersection in San Fran-
cisco, CA that does not follow the planar ground assumption.
We have collected data from 25 trajectories approaching the
same intersection on two different days, 15 on the first day,
and 10 a week later. The results are shown in Fig. 7. The
median of the estimated stop line distance is less than −1
cm for both data sets using the feature-based localization.
For comparison, using the GPS-based method the median
stop line distance is +0.63 m on the first day, and +1.12 m
on the second day. The high accuracy of the feature-based
localization can be explained by much more stable features
on building facades compared to the Palo Alto data set, where
most features were placed on trees. Example images from
this data set are given in Fig. 8.

In total it turns out that our approach provides a more pre-
cise localization of the stop line compared to the GPS-based
localization, i.e. the standard deviation is much smaller. Since
we also knew the host vehicle was stopped exactly at the stop
line most of the time, we can also conclude that our approach
is more accurate in detecting when the vehicle has actually
reached the stop line position than the GPS-based approach.

The overall computation time of the real-time localization
is 21 ms per image on average, including 7 ms for feature
detection and 11 ms for brute force feature matching. The
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Fig. 7. Distribution of the estimated stop line distances for the San
Francisco data set. The median stop line distance is less than 1 cm with the
feature based localization.

actual pose refinement takes less than 1 ms on a Quad Core
PC (Intel i7-2600K). The remaining time is overhead, e.g.
for loading the waypoint lists.

V. CONCLUSION

We have presented a real-time pose estimation approach
that is both fast and precise for localizing a vehicle’s pose
with respect to an intersection, and in particular with respect
to a stop line. The method is generic such that it could easily
be applied to different traffic scenarios.

The relative localization based on image features outper-
forms the global GPS-based solution in terms of the stop line
distance accuracy. Relative accuracy is much more essential
than global accuracy in many applications, e.g., if the vehicle
should stop automatically at a stop line.

Furthermore, due to the significant simplification of the
pose estimation to a 2D problem, we both increase the
robustness of the approach in real-world traffic scenes and
significantly speed the process. The low computational costs
of our approach is one key advantage compared to other
real-time capable approaches that estimate more degrees of
freedom of the vehicle’s pose. The real-time pose refinement
can be computed in less than 1 ms. The remaining processing
time is mainly dominated by the feature detection and
matching. These steps could be further optimized, e.g., by
exploiting parallel processing capabilities.
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