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Abstract. A multi-class traffic scene segmentation approach based on
scene flow data is presented. Opposed to many other approaches using
color or texture features, our approach is purely based on dense depth and
3D motion information. Using prior knowledge on tracked objects in the
scene and the pixel-wise uncertainties of the scene flow data, each pixel
is assigned to either a particular moving object class (tracked/unknown
object), the ground surface, or static background. The global topological
order of classes, such as objects are above ground, is locally integrated
into a conditional random field by an ordering constraint. The proposed
method yields very accurate segmentation results on challenging real
world scenes, which we made publicly available for comparison.

1 Introduction

Traffic scene segmentation and categorization is an active field of research in
the computer vision community. Remarkable results on monocular images using
color, intensity, or texture features have been achieved, e.g., by [1], [2], or [3].
Additionally, structure from motion is used for labeling static scenes in [4]. Traffic
scenes are highly challenging since the cameras are (quickly) moving through
an unknown environment with uncontrolled illumination or weather conditions,
highly dynamic interaction of multiple objects, and a variety of different object
classes in the scene. In practice, reliable color information is often not available.

Recent advances in scene flow computation allow for the reconstruction of
dense 3D motion fields from stereo image sequences in real-time [5], [6]. With
such methods, depth and motion information is available at almost every pixel in
the image, enabling new opportunities for object detection and scene segmenta-
tion. In [7], Wedel et al. use graphcuts to separate moving points from stationary
points in the scene flow data (two class problem).

We extend this idea to a multi-class segmentation problem, replacing the
threshold-based reasoning as in [7] by a probabilistic hypothesis competition.
At this, we focus on traffic scenes where the vision sensor is mounted behind
the windshield of the ego-vehicle, which moves in a mainly static, but unknown
structured environment. In our model, the world consists of a ground surface
(typically the road), static elevated obstacles on the ground surface (buildings,
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Fig. 1. System overview. Motion, depth, height, and surface normal features are ex-
tracted from 3D scene flow data and transferred into CRF class potentials for (known)
moving objects, the ground surface, and the static background. Both smoothness and
ordering constraints are integrated at the inference step.

traffic signs,...), as well as a finite number of independently moving objects (other
cars, pedestrians, bicyclists,...). The objective of our approach is to provide a
pixel-wise labeling, assigning each pixel in the current image to one of the dis-
junct classes static background/obstacle, ground, or moving object.

The moving object class is further separated into a set of known objects, which
have been tracked before, and an unknown moving object class. This means, we
directly exploit object information (position, orientation, velocity,...), available
from previous time steps. The indiviual likelihood of each pixel belonging to a
particular class based on the scene flow data is defined. The interaction of neigh-
boring pixels is incorporated by modeling the problem as a Conditional Random
Field (CRF), a widely used representation for segmentation problems. Beside
requiring smoothness of the segmentation result, we integrate model knowledge
on the scene topology such as objects are above the ground into our labeling.
Fig. 1 gives an overview on the system.

Defining the potentials based on scene flow features has several advantages
compared to similar stereo vision based approaches using gray value distances,
for example, [8]. Issues such as robustness to varying illumination or denoising of
the flow field are already addressed at the scene flow computation level. The seg-
mentation directly benefits from all improvements at this level without changing
the actual segmentation approach. Furthermore, we are able to apply the same
segmentation algorithms to scene flow data provided by other sensors.

We will first introduce the generic mathematical framework in Section 2.
Then, an exemplary realization of the CRF potential functions is given in Sec-
tion 3. The system will be evaluated based on challenging real-world scenes in
Section 4. Section 5 concludes the results and gives an outlook on future work.

2 General CRF Segmentation Framework

Let L = {l1, . . . , lI} denote a labeling for a given image, where the label li ∈
{C1, . . . CJ} assigns a particular class Cj to the i-th pixel. The objective is to
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find a labeling L∗ from the set of all possible labelings, L , that maximizes the
conditional probability p(L|z,Θ), i.e., L∗ = arg maxL∈L p(L|z,Θ). Here, the
feature vector z, with z = [zT1 , . . . ,z

T
I ]T, contains the pixel-wise input data for

the segmentation process, andΘ represents a set of global parameters. We model
p(L|z,Θ) as CRF [9] aligned to the pixel grid with a maximum clique size of
two as

log(p(L|z,Θ)) =

I∑
i=1

Φ(li, zi,Θ) +
∑

(s,t)∈N

Ψ(ls, lt, zs, zt,Θ). (1)

In our model, the positive function Φ defines the unary potentials for each class
Cj . At this point it is assumed that the potential at pixel i depends only on
the parameters and the feature data at this position. The potentials between
neighboring pixels are given by the positive function Ψ , where N denotes the
set of all pairs of neighboring pixels.

There exist several inference methods, such as graph cuts or loopy belief
propagation (LBP) [10], to minimize the energy of a CRF. For a comparative
study on these methods see [11]. The segmentation method proposed in this
paper utilizes LBP, but is generic in a sense that it does not depend on the
actual choice of the inference method. In the following, we will give a concrete
realization of the potential functions.

3 Scene Flow-based Traffic Scene Segmentation

In our approach, the feature vector zi of the i-th pixel consists of a position
and velocity vector of the corresponding 3D point with respect to a static world
coordinate system, i.e., zi = [Xi, Yi, Zi, Ẋi, Ẏi, Żi]

T. For each zi a covariance
matrix is computed as in [7]. The parameter set Θ includes the intrinsic and
extrinsic parameters of the camera, ego-motion, as well as a ground surface model
Ω with parameters ΘΩ , and a list of M tracked objects O = {O1, . . . ,OM}.

For the labeling decision, each class provides a certain expectation on particu-
lar elements of the feature vector. For example, the ground surface gives a strong
constraint on a point’s height, while the motion state of a known tracked object
forecasts the velocity of a point that belongs to this object. This means, we can
extract different criteria based on the feature vector that each are discriminative
for a subset of our target classes. Thus, we compose the total potential function
Φ by the sum of K single potential functions Φk, 1 ≤ k ≤ K, that incorporate
these criteria:

Φ(li, zi,Θ) =

K∑
k=1

Φk(li, zi,Θ). (2)

These functions could be learned from sufficiently large training data. Alterna-
tively, this concept also allows for an intuitive modeling of the scene. Below we
will propose K = 4 realizations of unary potentials for traffic scene segmentation
based on scene flow, including motion, distance, height, and surface normal cri-
teria. Other knowledge on the expected scene could be easily added accordingly.
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Fig. 2. Base functions used for defining the potentials.

3.1 Basic Functions

The single potential functions Φk are defined based on different parametrization
of three basic functions scaled to the range κ = [κmin, κmax] (see Fig. 2).
Gaussian: A bell-shaped, zero-mean, multi-dimensional Gaussian function g
with covariance matrix Cx, defined as

g (x,Cx,κ) = (κmax − κmin) exp
(
−1/2 xT

C
−1
x x

)
+ κmin (3)

The function is scaled in a way that its maximum is κmax and it converges
towards a minimum value of κmin. For κmax = (

√
(2π)|Cx|)−1 and κmin = 0 it

corresponds to a normal distribution.
Sigmoidal: A one-dimensional sigmoidal function s with width λ and turning
point at x = 0, scaled to the range κ with

s(x, λ,κ) = (κmax − κmin)/(1 + exp (−x/λ)) + κmin. (4)

Π-shaped: A gating function Π that is composed of two opposite sigmoidal
functions with slope λ

Π(x, xmin, xmax, λ,κ) =(κmax − κmin) (s(x− xmin, λ, 0, 1)

−s(x− xmax, λ, 0, 1)) + κmin (5)

It has its maximum value κmax within xmin and xmax, respectively, and converges
towards κmin outside this range. To limit the number of parameters, κmin and
κmax will be assigned to one of three basic potential levels κVL, κUL, and κDK for
very likely, unlikely, and don’t know. Each level can be increased by the constant
offset κSP to be able to slightly prefer a given class (notation: κ+XX = κXX + κSP).

3.2 Unary Potentials

In the following, the main ideas of the function design are presented. In our
approach, the classes C1, . . . , CJ are denoted as BG (static background/ obstacle),
GS (ground surface), O1 (tracked object no. 1), . . . , OM (tracked object no. M),
and UO (unknown moving object), i.e., J = M + 3. Each potential function Φk
must be defined for all candidate classes Cj .
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Motion Potential. The larger the distance of the velocity vector V i = [Ẋi, Ẏi, Żi]
T

to the expected velocity Ṽ i(Cj ,Θ) at this position, the more unlikely belongs
this point to class Cj . If it is very close to the expectation, we do not know
whether this pixel belongs to the given class, since there might be another class
of similar motion in the scene, but we want to slightly prefer this hypothesis.
For all classes beside UO we are able to specify Ṽ i. The background and ground
are stationary and, thus, move only according to the known camera motion. The
velocity vector of tracked objects is also assumed to be known. This yields

Φ
(motion)
1 (li = Cj , zi,Θ) = log g

(
V i − Ṽ i(Cj ,Θ),C∆V ,κ

(j)
1

)
, Cj¬UO (6)

where C∆V denotes the covariance matrix of the velocity difference and κ
(j)
1 =

[κUL, κ
+
DK]. For Cj = UO, a constant potential of κ+UL is defined.

Distance Potential. Assuming we have an idea on the m-th tracked object’s
pose and dimension in 3D space, we are able to specify an expected distance
range [Z̃min,i(Om), Z̃max,i(Om)] for the class Om. If Zi lies outside this range,
the i-th point does very unlikely belong to the given object class. On the other
hand, if it is within the range, the likelihood for the object class increases. This
is modeled by the Π-shaped basic function. For the class GS, we can directly
predict the distance Z̃i(ΘΩ) of the i-th point based on the surface model Ω. As
for the motion potentials, a Gaussian function is used to transform the distance
into a potential. There is no expectation on the distance for the classes BG and UO.
However, we define points above a maximum distance Zmax to be very likely to
belong to the background, and unlikely to belong to an unknown object. Points
closer than Zmax are equally likely to belong to either background or an unknown
object based on the distance, which is expressed by a sigmoidal function. The

distance potential function Φ
(dist)
2 is thus defined as Φ

(dist)
2 (li = Cj , zi,Θ) =


log s

(
Zi − Zmax, λ

(j)
2 ,κ

(j)
2

)
, Cj ∈ {BG, UO}

log g
(
Zi − Z̃i(ΘΩ), σ2

∆Z ,κ
(j)
2

)
, Cj = GS

logΠ
(
Zi, λ

(j)
2 , Z̃min,i(Om), Z̃max,i(Om),κ

(j)
2

)
, Cj = Om

(7)

with κ
(j)
2 : [κUL, κ

+
DK]

(Om,GS), [κDK, κVL]
(BG), [κUL, κDK]

(UO) ; λ
(BG)
2 > 0, λ

(UO)
2 < 0, and

σ2
∆Z corresponding to the variance of the distance difference.

Height Potential. Analog to the distance potential we can define an expected
height range [Ỹmin,i(Om), Ỹmax,i(Om)] for a given known object class as well as

for the expected ground height Ỹi(ΘΩ). For the unknown object class a constant
height range is assumed. We do not have an expectation on the height of the
background class. However, what we know is that points above a maximum
height Ymax are unlikely to belong to moving objects or the ground surface and,
thus, are likely to belong to the background class. The height potential function
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Φ3(height) is given by Φ
(height)
3 (li = Cj , zi,Θ) =

log s
(
Yi − Ymax, λ

(j)
3 ,κ

(j)
3

)
, Cj = BG

log g
(
Yi − Ỹi(ΘΩ), σ2

∆Y ,κ
(j)
3

)
, Cj = GS

logΠ
(
Yi, λ

(j)
3 , Ỹmin,i, Ỹmax,i,κ

(j)
3

)
, Cj ∈ {Om, UO}

(8)

with κ
(j)
3 : [κDK, κVL]

(BG), [κUL, κDK]
(GS), [κUL, κ

+
DK]

(Om,UO) ; and λ
(BG)
2 > 0.

Surface Normal Potential. In traffic scenes, the class GS differs from all
other modeled classes by its surface normal. The predicted surface normal of
the ground surface at a given position i is defined by ñi(ΘΩ). The expected
normal of any other class is assumed to be perpendicular to the ground sur-
face normal. Thus, we can formulate a separation criteria based on the angle α
between ñi(ΘΩ) and the measured surface normal ni by a sigmoidal function as

Φ
(normal)
4 (li = Cj , zi,Θ) = log s

(
α (ñi(ΘΩ), ni)− 45◦, λ

(j)
4 ,κ

(j)
4

)
,∀Cj (9)

with κ
(j)
4 = [κUL, κVL] for all classes, and λ

(GS)
4 < 0, λ

(BG,Om,UO)
4 > 0.

At pixels with no scene flow data available, e.g., at stereo occlusions, a con-
stant potential is added for all classes that slightly prefers the BG class above the
horizon and GS below.

3.3 Binary Potentials

The binary terms Ψ in (1) define the interaction of two neighboring pixels con-
cerning the labeling decision, where the neighborhood structure is defined by
the four neighborhood of the image grid. In this contribution the modeling of
the binary terms is based on two assumptions. First, we claim smoothness for
the labeling result by defining neighboring pixels to be assigned to the same
class with a high likelihood τ1 and to be labeled different with a low likelihood
τ2 (Potts model). Second, prior knowledge on the global topological order of
classes in the image is locally integrated by an ordering constraint.

Since cars and pedestrians move on the ground surface and are not assumed to
fly, pixels representing one of the object classes are likely to be above GS labeled
pixels, while BG pixels are likely to be above all other classes with respect to the
image rows. Instead of learning the order of labels, as for example in [12], our
ordering assumption is directly modeled by the relation ’≺’, defining the strict
topological ordering of the class labels GS ≺ {O1, ..., OM, UO} ≺ BG from bottom to
top in the image. For two neighboring pixels at image rows vs and vt, assuming
w.l.o.g. vs ≤ vt, the binary terms are given by

Ψ(ls = Cjs, lt = Cjt, zs, zt,Θ) =

 τ1 , js = jt
τ2 , js 6= jt ∧ (js ≺ jt ∨ vs = vt)
τ3 , js 6= jt ∧ js ⊀ jt ∧ vs < vt

, (10)

with Cjs, Cjt ∈ {BG, GS, . . . , UO}, and τ1 > τ2 � τ3 > 0, i.e., τ3 represents the
very small likelihood that the ordering constraint is violated.
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(a) INTERSECTION (b) STROLLER (c) LEAD VEHICLE

Fig. 3. The test scenes (mask: pixels w/o scene flow data, e.g. due to stereo occlusions).

4 Experimental Results

The proposed segmentation method is tested based on representative traffic
scenes with manual ground truth available. The rectified stereo image pairs at
two consecutive time steps together with the camera parameters, ego-motion in-
formation, as well as the ground truth labeling and prior information on moving
objects in the scene is made publicly available.3 We encourage other researchers
in the field of scene flow segmentation to compare their methods based on these
examples.

4.1 Data Set and Experimental Setup

Three classes of scenes have been selected (see Fig. 3).
INTERSECTION: An intersection scene with four oncoming cars. This scene con-
tains partial occlusions, distant objects, as well as two nearby objects that move
in the same direction with approximately equal velocity.
STROLLER: A pedestrian with a stroller is walking in front of a crossing car. The
pedestrian casts a strong stereo shadow on the object, i.e., there are large regions
that can only be seen from one camera.
LEAD VEHICLE: The ego-vehicle follows the lead vehicle at approximately the
same velocity through dense urban traffic, including two oncoming cars, a slow
moving trailer ahead, and one car entering the visible field from the right.

In all scenes, the distance range and velocity of object O1 is known from
tracking using a similar method as proposed in [13]. The velocity of the ego-
vehicle and the intrinsic and extrinsic camera parameters are also known. The
scene flow is computed based on [5], however, any other method could be used
alternatively. A flat ground plane surface model is used here for simplicity. The
only parameter of this model is the pitch angle of the camera relative to the
ground, which is estimated from the measured 3D points. The constant camera
height over ground is known in advance. The parameterization of the unary base
potential levels is κVL = 0.9, κUL = 0.1, κDK = 0.5, and κSP = 0.05. We further
use Zmax = 50 m, Ymax = 3 m, and τ1 = 0.95, τ2 = 0.05, and τ3 = 0.0001 for the
binary terms in all experiments. However, the actual choice of these parameters
is uncritical. Even larger changes influence the result only marginally.

3 http://www.mi.auckland.ac.nz/EISATS
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(a) final labeling (b) ground truth (c) unary only

(d) w/o motion (e) w/o distance (f) w/o surface normals

(g) w/o height (h) w/o known object (i) w/o ordering c.

Fig. 4. Labeling results at different system configurations. The colors encode the max-
imum class potentials at a given pixel (blue=static background, green=ground surface,
red=tracked object, black=unknown moving object).

4.2 Labeling Results

The segmentation results for the INTERSECTION scene are depicted in Fig. 4 for
different configurations. In (a) the final labeling after 40 iterations of message
passing is shown, including all proposed unary and binary potentials. The manual
ground truth labeling is depicted in (b). As can be seen, the resulting labeling
correctly assigns most pixels on the first object to the tracked object class O1.
Two of the three remaining cars are correctly assigned to the class UO (non-
colored regions). Segments of this class can be used to initialize new object
tracks. The white car behind the tracked object is too slow in this scene to
be separated from the stationary background and, thus, is labeled as BG. The
road surface is reconstructed very well. Only ground regions close to the objects
are wrongly identified as O1 or UO due to moving shadows on the ground. The
confusion matrices for all investigated scenes are given in Table 1.

In (c), only the unary potentials are considered, yielding several background
blobs within the ground surface region and the objects. From (d) to (g) the effect
of skipping single unary potentials is demonstrated. Without motion informa-
tion, the unknown moving objects are assigned to the background, while without
the distance information, the two nearby objects are merged to one tracked ob-
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(a) ground truth (b) unary only (c) total

Fig. 5. Segmentation results of STROLLER (top) and LEAD VEHICLE (bottom) scene. Mid-
dle: Result if data is evaluated for each pixel independently. Right: Result if smoothness
and global ordering constraints are incorporated via local neighborhood inference (re-
sult after 40 iterations of loopy belief propagation).

ject due to the similarity in motion. The missing surface normal potential in
(f) leads to a degradation for a larger ground region at the left-hand side that
is wrongly assigned to background, however, it also indicates that the surface
normal is responsible for the discontinuities between ground and background at
the horizon in the final labeling. The absence of the height potential alters the
segmentation result only marginally in this scene, since there is not much struc-
ture about 3 m in the considered distance range. Without the information on the
tracked object, all objects are assigned to the UO class in (h) as expected. The
ordering constraint eliminates implausible background blobs that would occur
within the road surface without this constraint as shown in (i).

In Fig. 5, large parts of the tracked car and the pedestrian with the stroller are
correctly labeled as O1 and UO, respectively. Note that the currently stationary
leg is assigned to the background, since it is a non moving obstacle. The stereo
occlusion is filled with GS from below and BG from the top. The LEAD VEHICLE

results show a very good reconstruction of the ground surface (freespace) and
the moving objects in the scene, although the ego-vehicle is also moving.

GT\Est. % BG GS O1 UO % BG GS O1 UO % BG GS O1 UO

BG 72.9 99.3 0.7 0 0 75.5 99.8 0.1 0.1 0 58.7 98.8 0.5 0.2 0.5
GS 21.3 1.9 94.3 2.2 1.6 15.4 11.0 80.5 3.1 5.4 28.0 5.3 88.7 4.2 1.8
O1 3.6 4.9 0.1 94.9 0.1 4.8 14.0 4.4 74.5 7.1 5.2 0.8 0 99.2 0
UO 2.2 29.1 0.1 3.3 67.5 4.3 29.4 0.2 0 70.4 8.1 27.0 7.0 1.6 64.4

Table 1. Confusion matrices for INTERSECTION, STROLLER, and LEAD VEHICLE scene.
BG=background, GS=ground surface, O1=tracked object, UO=unknown moving object.



10 A. Barth, J. Siegemund, A. Meißner, U. Franke, and W. Förstner

5 Conclusion

In this contribution a generic framework for precise segmentation of traffic scenes
based on scene flow data and object priors has been proposed. This framework is
generic in a way that it is independent of the actual scene flow implementation,
CRF inference method, or object tracking algorithm. The proposed potential
functions represent an intuitive model of traffic scenes, including four class types
as well as ordering constraints for these classes. The model can be easily extended
by more complex features, other class types, or sophisticated surface models.

The experimental results have shown that the proposed segmentation method
performs very well on the considered test scenes. The main problems arise at
pixels with missing or error-prone scene flow data. In such situations, appearance
features, such as intensity edges or texture information, could provide useful
information to further improve the segmentation results, especially at the object
boundaries. Appearance potentials could be easily integrated into our framework.

Based on our segmentation algorithm and the published ground truth, it is
possible to evaluate and compare different scene flow implementations in future.
We are excited to see how other methods perform on our test scenes.
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