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Abstract. In this paper we investigate the relation between camera
calibration and structure from motion. A method is presented to analyze
the effect of systematic errors and uncertainty in camera calibration on
3D-reconstruction and motion parameters. In two simple examples from
stereo with lateral and forward motion the approach is demonstrated.
The approach can easily be extended to more complex situations and
used for planning and online diagnostics in calibration and structure
from motion.

1 Introduction

Geometric reconstruction is a central task in Computer Vision motivating the
large amount of papers on geometric analysis of stereo and motion in the last
decade. The calibration of camera systems plays an important role in getting
reliable metric information from 3D-Objects. This paper investigates the relation
between camera calibration and structure from motion (SfM) as a representative
example for performing sensitivity analysis. Specifically, it is assumed that the
calibration is performed off-line leading to calibration parameters which then are
used in image sequence analysis. The uncertainty of the calibration parameters
can be described by the first two moments of their distribution, namely the
bias, i. e. an error in the mean value, and the covariance matriz, i. e. the effect
of random errors of the observations during calibration. The uncertainty of the
calibration propagates to the estimated motion parameters and the 3D-structure,
for which the uncertainty are described again by bias and covariance matrices.
Whereas calibration is an old and not the central issue of the paper, the
necessity for analyzing the sensitivity with respect to calibration errors has been
stressed only recently, for example directly in [ACDR94] or indirectly in [Har94)].
The effect of calibration errors on the result of motion estimates (cf.[KH94])
and SfM ([FA96], [SS97,5tu97]) has been addressed in previous work. However,
in all cases simplifications have been made, e. g. by restricting to only a few
parameters, especially to errors in the principle point or the principle distance,
or more general, to the calibration parameters distinguishing projective and
Euclidean reconstruction.
Sensitivity analysis may be achieved in several ways:
= Algebraic methods (cf. e. g. [Stu97]) give closed form expressions for bias and
covariance matrices. They therefore have the advantage of giving insight
into the internal structure of the system and the domain of validity of the
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analysis. But algebraic methods require idealized situations and therefore
cannot be used for online self diagnosis.

— Monte Carlo simulations for determining bias and covariance matrices are
able to handle all types of models, errors and configurations and therefore
are not limited to specific application! but have the disadvantage that a
generalization of their results is limited.

— Numerical determination of bias and covariance matrices share advantages
and disadvantages of algebraic and simulation techniques. They assume com-
parably small errors and smooth functions and require the specification of
a certain representative geometric setup. However, their results have more
predictive power than simulations, they are applicable for online diagnosis
and also for quite ‘general nonlinear problems. The lack of representativity
and predictive power may be compensated by linking their results to alge-
braically achieved ones.

We want to demonstrate this combination of algebraic and numerical analysis by
choosing the analysis of the interrelation of calibration and SfM as an example.

2 Theoretical Background
2.1 Statistical Tools

This section describes the necessary tools from statistics. Stochastical variables
are underscored, z, if this seemns necessary for clarification; the covariance matrix
of a vector z is given by D(z) = ¥,;; a general distribution of z with first and
second moments g, and X, is designated with r ~ M (u,, ¥:;).

Propagation of True and Random Errors. Given a nonlinear function y =

F(z) of a stochastic vector z = p, + e, with distribution z ~ M (p,, ¥;;) the
following holds for small deterministic or stochastic errors:

Ay=J,.Az  y~M(f(u,), Jy:ZeT,,) (1)

with the Jacobian Jy, = (dy;/0x;). Observe that this error propagation of
means and variances is independent on the actual distribution, thus does not
require the stochastical variables to be normally distributed. Possible mutual
dependencies between the input variables are taken into account by the covari-
ances on the off diagonal elements of the covariance matrix.

Parameter Estimation. Parameter estimation aims at inferring the most likely
values of unknown parameters, collected in a U-vector @ = (f;) from obser-
vations, collected in a N-vector y = (y;). It is most easily set up if an explicit
expression for the observations as a function of the unknown parameters is avail-
able, specifying the first moments E(y) = f(B8). Together with the covariance
matrix D(y) = X, it establishes the nonlinear model, which, when making
errors e in the observations explicit by y = E(y) + e, reads as

y=E@y)+e y=~M((B) Ty) (2)

even are able to handle all types of gross errors
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We obtain a linear model using approximate values 3(%: 8 = 8(® + A3 and
the Jacobian A = (dy; /9B;):

Ay =E(Ay) +e=y - £(B) ~ M(A4B, Z,,) )

It is assumed to hold also for the estimated quantities, thus we have for the first’
moments: .

Ay=AAB+¢€ (4)

The best linear unbiased estimate (BLUE, cf. e. g. [MAT6]) for the unknown
parameters is given by 8 = B + AB with

| ZE — (ATE;ylA)—lATS;;Ay with EEE= N’l = (ATE;;A)—I (5)

Observe that the covariance matrix of the estimated parameters is equal to
‘the inverse of the normal equation matrix IN which is always available when
éstimating parameters using — possibly weighted — least squares. It can be derived
by error propagation from eq. (5) using eq. (1).

Self Calibration and SfM. The general setup of self calibration from several
images, containing SfM as a special case, leads to a natural partitioning of the
unknowns 87 = (t7, kT, sT) into transformation parameters t representing the
orientation, motion or external parameters of all camera stations, parameters
k for describing the object structure, e. g. by coordinates of 3D-points and
‘additional calibration parameters s for deseribin_g___tihe the internal orientation
(cf. sect. 3.1) of the camera. Instead of Ay = AASB + € (cf. eq. (4)) the linear.
model now may be written as

Ay=BAt+CAk+ HAs+¢ ~(6)

This setup allows to flexibly model all types of deviations from the pin hole
model, e. g. the case where two cameras of a stereo image sequence have different
characteristics which keeps constant over a certain time interval.

Obviously egs. (2) to (6) can be used for both, self calibration and SfM.
“The geometry in SfM is usually weak, this is why the parameters As are often
-;é;'zlibrated off-line.

2.2 Effect of Calibration Errors

The model (6) is also used to investigate the effect of errors and inaccuracies in
the calibration on the 3D-coordinates Ak and/or motion parameters At.

The Effect of Bias in Calibration Parameters. Assume the model (6) holds in
SfM for estimating the unknown parameters 3. If the calibration of the camera
isincorrect, the observations y are biased by H As. With eq. (5) the influence
on the unknown parameters, actually only containing t and k is given by

AB=(ATZ;}A)'ATE HAs (7)
.-'I_‘his expression can be used to evaluate the influence of each parameter s; on

-€ach unknown parameter ;. For example we can evaluate the effect of changes
m the focal distance in the camera to the 3D-reconstruction.
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The effect of Uncertainty in Calibration Parameters. The uncertainty in the
calibration parameters can be expressed by the second order moments 8 ~
M (s, X,,(8)). The effect on the coordinates can be evaluated the same way
as the random observational errors under (1) by using the actual covariance ma-
triz of the observations, which takes the random observational and the random
systematic errors into account: From Ay = E(Ay) + H As + e (eq. (6)) one ob-

tains E';;ue =Xy, + HX, H' by error propagation. This leads to the actual
covariance matrix of the unknown parameters

¢ $. X true ¢
rue __ 13 Fi _ -1 4T y-1 rue -1 -1
Tc = (z: z:;) =NTATZ; ) - ENC - EAN (8)

— N-l + N—'IATE;;HEL,HTE;;AN'I - EEE-(E) + EEE(S) (9)

which only in case the calibration parameters are estimated with infinite accu-
racy (255(3) = 0) equals V~'. We can recognize the two sources of uncertainty
in 3D-reconstruction, one from the feature measurement in image processing and

one from the calibration step.

3 The Examples

In this section we demonstrate our approach in two simple examples. The results
are compared with an algebraic solution.

3.1 The setup

We investigate lateral and forward motion with a single camera. The structure
and the motion are estimated simultaneously from two images. We consider a
>cube’ of data—points in a distance of 10 meters and a camera motion about 1
meter. The coordinate system is fixed between the two projection centers. In
the adjustment process there is a rank deficiency of 7. We fix the two projection

centers and the rotation around the basis (figure 1).
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Fig. 1. Experimental setup for forward motion and lateral motion

A pinhole camera—model is used in the investigation:

r2(92;)(Pi — Po;)

r1(92;)(P; — Po;) %= 5(25) (pi — Poj)

Tii=¢cC + Azx;;
! r3(92;)(Pi — Poj) ’
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where z;; and y;; are the coordinates of the image of the i-th point in camera in
position j. R(f2;) is the rotation matrix for image j depending on the rotation
parameters £2;, p; is the 3-vector of the coordinates of the object point i, py; is
the 3-vector of the coordinates of the projection center and Az;;(s) and Ay;;(s)
are correction terms. In our example we consider a physical motivated model. It
includes 4 Parameters to describe the interior orientation of the camera:

Aa:,'j =y + ::.-_,-A;{rz —_— rg) Ay,-j = VH + y.’jAl(rz - rg) (11)

(c—principal distance, zy, yy—principal point, A;-radial distortion, r? = xu +
y?;» ro-constant, depending on the size of the image [WE80]). We took the nu-
merical values from calibration of a real camera-system ([AF97), ¢ = 1144pel,
zy = 3.5pel, yg = 10.8pel,. A; = —6.1e — 8).

3.2 Algebraic Prediction

X

Fig. 2. The geometry for lateral (left) and for forward motion (right)

First we are making some predictions about the effect of errors in the prin-
cipal distance ¢ on the 3D-reconstruction. By fixation of the motion parameters
the 3D-coordinate of one point can easily be calculated by triangulation (cf. fig.
2): for forward motion:

b z'z" b ' '+ z"
X = c——— . =
cw=ay 27 3@-29) (12)
and for lateral motion:
_ b (2" + ") . be
X = 5(2’1:__1.:)’ Z = " — ' (13)

Observe that the Z coordinate in forward motion and the X and Y coordinate
in lateral motion are independent from the principal distance c. Changes and
errors in the calibration of this parameter do not effect the estimation in these
coordinates. On the other hand, c directly effects the X, Y coordinates (forward
motion)

b z'z" Ac
X AX = ; = 4
+ ¢+ Ac (z' - z") ax c+ Ac (14)
and the Z-coordinates in (lateral motion):
Z+ az = Merdd. 4, _ Ay (15)

' -z c
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The size of the error depends also on the position of the points in space. Points
with a greater distance from the motion trajectory are more effected. We can
do this analysis for all interior orientation parameters. But an analytic solution
without fixation of the motion parameters is more complicated, so at this point
we explore the numerical method.

3.3 Effect of calibration errors on 3D-Coordinates

Bias. The elements (83;/dsx) in N"'ATX, HAs (eq. (7)) directly give
the influence on individual estimates. Table 1 collects the maximum influence
numbers for the interior orientation parameters (according (11)) onto the 3D-
coordinates. The coefficient A; needs a comment for interpretation: A value of
2.21078 leads to a maximum distortion of 1 [pel] in the image plane. From all

dc dru Oy aA:

9z1/0.00131-6.5 10~ °|-2.6 107%([-2.9 10°
Forward motion |9y|[0.0013|-1.3 107%|-3.2 107%|-2.7 10°
“loz|l 0.0 | -0.0012 | -0.0013 |-1.4 10°

8z|| 0.0 | -0.0082 0.0 4.6 10°
Lateral motion |dy|| 0.0 0.0 -0.0087 ||4.6 10°
Hz||-0.0087| 0.0 0.0 3.1 107

Table 1. Maximum influence of calibration parameters c[pel], zrlpel], ynlpel],
A[1/pel?] on the coordinates of the 3D-reconstruction [m]

influence numbers (not only the maximum numbers) we get some interesting
results:

— Errors in the principle distance ¢ do not influence the Z-coordinate in for-
ward motion and the X and Y coordinate in lateral motion. The size of
the influence number depends on the X and Y point coordinate in forward
motion and the Z coordinate in lateral motion. The result is analogical to
the algebraic solution

— Errors in the principal point coordinates causes errors in the Z-coordinate
in forward and X and Y -coordinates in lateral motion. Points far from the
motion trajectory are more effected.

— Calibration errors in A; have an appr. 10 times larger influence on the co-
ordinates in the case of lateral motion than for forward motion.

The maximal effect of calibration errors could be observed on the ’corner’ of our
’point—cube’. This can be intuitively expected.

Uncertainty. According to eq. (8) we can propagate the uncertainty from the cal-
ibration to the 3D-reconstruction. We consider a example point (1.5, 1.5, 10)[m]
on the corner of the cube and assume a precision in point measurement of about
0.5pel in the image plane, which is a reasonable assumption for non-signalized
points. The camera is calibrated with a medium precision (see standard devia-
tions in table 2). The first column reports the estimated precision of the point
coordinates without taking the calibration errors into account (table 2). The
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() ") (t**)
c Ty yH A >
oc = 55pel(5%c)|o-n = 25pel|oyy = 25peljoa = 1le = T

o.(/0.117 0.072 0.0 0.0 0.023 0.193
Forward|oy||0.119 0.072 0.0 0.0 0.025 0.195
.(/0.313 0.0 0.031 0.033 0.108 0.431
a.|(0.100 0.0 0.206 0.0 0.463 0.507

Lateral |0, (|0.088 0.0 0.0 0.218 0.455 0.505
,]0.572 0.481 0.0 0.0 3.084 3.122

Table 2. Uncertainty in camera calibration and effect on 3D-reconstruction (point
(1.5,1.5,10)[m]), precision of 3D-reconstruction (standard-deviation [m]), (*)-error
free calibration, (**)-effect of uncertainty in one single parameter, (***)-all error-
sources integrated -

influence of the uncertainty from the single calibration parameters are shown in
the next columns. The last column describes the estimated precision including
both influences, point measurement and calibration.

Observe that the critical parameters in our example are the calibration of the
principal distance ¢ and the radial distortion coefficient A;. For lateral motion
the effect of the camera—calibration is more critical than for forward motion.

3.4 Errors by linearization 7

One could argue, that the simple linearization step would falsify our error approx-
imation. This can faced by adjusting the structure and the motion parameters
with modified interior orientation within a adjustment by nonlinear optimiza-
tion. Then the reconstruction error can be compared with the linear approxima-
tion. We did this adjustment with larger modifications of the interior orientation
parameters. The effect of the modifications on our example point for forward
motion are reported in table 3. The results for lateral motion are similar. The
approximation from the linear algorithm are also shown. Comparing the results
it can be observed, that the differences between linear approximation and the
nonlinear adjustment can be neglected in practise.

Ac = —100pel| Az = 25pel| Ay = 25pel|AA; = 1e =T
ﬂnonﬁncnr '0144 0010 0006 -0024
AZ Appros. -0.130 0.000 0.000 -0.024
Aynontinear -0.144 0.005 0.011 20.025
Ay approe. -0.130 0.000 0.000 -0.025
AZnontinear 0.000 -0.123 -0.130 -0.109
Az approz. 0.000 -0.120 -0.130 -0.110

:I‘able 3. Nonlinear adjustment in comparison to linear approximation, Modifications
in 3D-reconstruction caused by changes of the interior orientation, forward motion,
example point (1.5, 1.5, 10)[m]
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4 Conclusions

The paper presented methods for sensitivity analysis and demonstrated its ap-
plicability for evaluating the effect of systematic and stochastic calibration errors
in structure from motion estimation. The proposed methodology is useful during
planning, for online self diagnosis and for final evaluation and is transferable to
all types of parameter estimation problems in Computer Vision. To find ana-
lytic solutions is often hard. The numerical analysis is very flexible and different
functional models can be investigated in a short time.

We also got some interesting results for structure from motion. The effect of
errors and uncertainties in the camera parameters are very different. Errors in
the principle distance modify directly the reconstruction. The sensitivity for cali-
bration errors for forward and lateral motion is different. For example for forward
motion the effect of errors in the principal point coordinates are very small. With-
out calibrating this parameters (assumption image center) a 3D-reconstruction
would be reasonable depending on the requirements in the application. This
could be checked in a planning stage by the proposed approach.

The next step in our work is to apply these tools in real applications. There
are interesting questions to answer, for example: which precision of camera cali-
bration is needed to fulfill the requirements in an application or can the desired
measurement precision be reached by the camera setup.
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