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EKF SLAM – Simultaneous 
Localization and Mapping 
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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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SLAM: Simultaneous 
Localization and Mapping 
§  Build a map of the environment from 

a mobile sensor platform 
§  At the same time, localize a mobile 

sensor platform in the map build so far 
§  Online variant of the bundle 

adjustment problem 
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SLAM Applications 
Indoors 

Space 

Undersea 

Underground 

Courtesy: Evolution Robotics, H. Durrant-Whyte, NASA, S. Thrun 
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Definition of the SLAM Problem 

Given 
§  The sent controls commands 

§ Observations 
 

Wanted 
§ Map of the environment 

§  Path (or current pose) of the vehicle 
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Bayes Filter 

§  Recursive filter with a prediction 
step and a correction step 

§  Estimates: 

§  Kalman Filter is a recursive Bayes 
Filter for the linear Gaussian case 

§  EKF for dealing with non-linearities 
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EKF for Online SLAM 

We consider here the Kalman filter as  
a solution to the online SLAM problem 

Courtesy: Thrun, Burgard, Fox 
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Extended Kalman Filter 
Algorithm 
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EKF SLAM 

§  Application of the EKF to SLAM 
§  Estimate robot’s pose and locations of 

landmarks in the environment 
§  Assumption: known correspondences 
§  State space (for the 2D plane) is 
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EKF SLAM: State Representation 
§  Map with n landmarks: (3+2n)-dimensional 

Gaussian 
§  Belief is represented by 
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EKF SLAM: State Representation 
§  More compactly  
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EKF SLAM: Filter Cycle 

1.  State prediction 
2. Measurement prediction 
3. Measurement 
4. Data association 
5. Update 
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EKF SLAM: Initial State 
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EKF SLAM: Predicted Motion 
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EKF SLAM: Predicted 
Measurement 
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EKF SLAM: Obtained 
Measurement 
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EKF SLAM: Data Association and 
Difference Between h(x) and z 
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EKF SLAM: Update Step 
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EKF SLAM: Concrete Example 

Setup 
§  Platform moves in the 2D plane 
§  Velocity-based motion model 
§  Observation of point landmarks 
§  Range-bearing sensor 
§  Known data association 
§  Known number of landmarks 
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Initialization 

§  Platform starts in its own reference 
frame (all landmarks unknown)  

§  2N+3 dimensions 
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Extended Kalman Filter 
Algorithm 
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Prediction Step (Motion) 

§  Goal: Update state space based on the 
motion 

§  Motion in the plane 

§  How to map that to the 2N+3 dim 
state space used in the EKF? 
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Update the State Space 

§  From the motion in the plane 

§  to the 2N+3 dimensional space 
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Extended Kalman Filter 
Algorithm 

DONE 
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Update Covariance 

§  The function   only affects the motion 
and not the landmarks   

 
 Jacobian of the motion (3x3) 

Identity (2N x 2N) 
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Jacobian of the Motion 
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Jacobian of the Motion 
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Jacobian of the Motion 
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Jacobian of the Motion 
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This Leads to the Update 

Apply & DONE 
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Extended Kalman Filter 
Algorithm 

DONE 
DONE 
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EKF SLAM:Prediction Step 
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Extended Kalman Filter 
Algorithm 

DONE 
Apply & DONE 
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EKF SLAM: Correction Step 

§  Known data association 
§          :  i-th measurement at time t 

observes  the landmark with index j 
§  Initialize landmark if unobserved  
§  Compute the expected observation 
§  Compute the Jacobian of  
§  Proceed with computing the Kalman 

gain 
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Range-Bearing Observation 

§  Range-Bearing observation 
§  If landmark has not been observed, 

we can initialize it with: 

location of 
landmark j 

estimated 
location of 

the platform 

relative 
measurement 
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Expected Observation: h(x) 

§  Compute expected observation 
according to the current estimate 
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Jacobian for the Observation 

§  Based on  

§  Compute the Jacobian 

low-dim space  
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Jacobian for the Observation 

§  Based on  

§  Compute the Jacobian 
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The First Component 

§  Based on  

§  We obtain (by applying the chain rule) 
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Jacobian for the Observation 

§  Based on  

§  Compute the Jacobian 
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Jacobian for the Observation 

§  Use the computed Jacobian 

§  map it to the high dimensional space 
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Next Steps as Specified… 

DONE 
DONE 
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Extended Kalman Filter 
Algorithm 

DONE 
DONE 

Apply & DONE 

Apply & DONE 
Apply & DONE 
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EKF SLAM – Correction (1/2) 
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EKF SLAM – Correction (2/2) 
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Implementation Notes 

§  Measurement update in a single step 
requires only one full belief update  

§  Always normalize the angular 
components  

§  You may not need to create the 
matrices explicitly (e.g., in Matlab)  
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Done! 
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Loop Closing 

§  Loop closing means revisiting (and 
recognizing) an already mapped area 

§  Data association under 
§  high ambiguity 
§  possible environment symmetries 

§  Uncertainties collapse after a loop 
closure (whether the closure was 
correct or not) 
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Before the Loop Closure 

Courtesy: K. Arras 
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After the Loop Closure 

Courtesy: K. Arras 
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 Loop Closures in SLAM 

§  Loop closing reduces the uncertainty 
in robot and landmark estimates  

§  This can be exploited when exploring 
an environment for the sake of better  
(e.g. more accurate) maps 

§  Wrong loop closures lead to filter 
divergence 
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EKF SLAM Correlations 

§  In the limit, the landmark estimates 
become fully correlated 

 Courtesy: Dissanayake  
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EKF SLAM Correlations 

Map              Correlation matrix 
Courtesy: M. Montemerlo 
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EKF SLAM Correlations 

Map              Correlation matrix 
Courtesy: M. Montemerlo 



55 

EKF SLAM Correlations 

Map              Correlation matrix 
Courtesy: M. Montemerlo 
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EKF SLAM Correlations 

§  The correlation between the robot’s 
pose and the landmarks cannot be 
ignored 

§  Assuming independence generates too 
optimistic estimates of the uncertainty 

Courtesy: J.M. Castellanos 
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EKF SLAM Uncertainties 
§  The determinant of any sub-matrix of the map 

covariance matrix decreases monotonically 
§  New landmarks are initialized with maximum 

uncertainty  
  

 Courtesy: Dissanayake 
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EKF SLAM in the Limit 

In the limit, the covariance associated 
with any single landmark location 
estimate is determined only by the 
initial covariance in the vehicle location 
estimate. 

Courtesy: Dissanayake 
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Example: Victoria Park Dataset 

Courtesy: E. Nebot 
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Victoria Park: EKF Estimate 

Courtesy: E. Nebot 
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Victoria Park: Landmarks 

Courtesy: E. Nebot 
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Example: Tennis Court Dataset 

Courtesy: J. Leonard and M. Walter 
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EKF SLAM on a Tennis Court 

odometry estimated trajectory 

Courtesy: J. Leonard and M. Walter 
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EKF SLAM Complexity 

§  Cubic complexity w.r.t. the 
measurement dimensionality  

§  Cost per step: dominated by the 
number of landmarks: 

§  Memory consumption:  
§  The EKF becomes computationally 

intractable for large maps! 
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EKF SLAM Summary 

§  Using the EKF to estimate pose and 
map in an SLAM fashion 

§  The first probabilistic SLAM 
approaches used the EKF 

§  Successful in medium-scale scenes 
§  Approximations exists to reduce the 

computational complexity 
§  Todays mainly used for short-term 

estimates (VO) 
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EKF SLAM Summary 

§  Unimodal (Gaussian) estimates only 
§  Convergence proof for the linear 

Gaussian case and then equivalent to 
least squares 

§  The smaller the noise the better the 
estimate in the non-linear case 

§  Can diverge if non-linearities are large 
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Literature 

EKF SLAM 
§  Thrun et al.: “Probabilistic Robotics”, 

Chapter 10 


