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5 Minute Preparation for Today

5 Minutes with Cyrill
Kalman Filter

https://www.ipb.uni-bonn.de/5min/



Kalman Filter

= [t is a Bayes filter
» Performs recursive state estimation

= Prediction step to exploit the
controls

= Correction step to exploit the
observations



Kalman Filter Example
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Mapping and Localization are
State Estimation Problems

= Bayes filter is one tool for state
estimation

= Prediction

bel(x;) = /p(ast ug, xp1) bel(xy_1) day_q

= Correction

bel(xy) =n p(ze | x¢) bel(xy)



Kalman Filter

= Bayes filter

» Estimator for the linear Gaussian
case

= Optimal solution for linear models
and Gaussian distributions

= Result equivalent to least squares
solution in a linear Gaussian world



Kalman Filter Distribution

= Everything is Gaussian

p(x) = det(2r%) F exp (— 5 (z — )75 & — )
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How to Update a
Gaussian Belief Based on
Motions and Observations?



Properties: Marginalization and
Conditioning

= Given ( .
T =

Lb

) p(z) =N
= The marginals are Gaussians

p(xa) =N p(xb) =N

= as well as the conditionals
p(zg | 2p) =N plap|ze) =N



Marginalization
= Given p(x) = p(xq, ) = N(u, X)

: _ [ HMa L Yiga  2ab
with « <%> E_< S

= The marginal distribution is

pa) = / p(as 23) dzy = N (1, %)

with H = g Z:zaa

)
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Conditioning
= Given p(x) = p(xq, ) = N(u, X)

: _ [ HMa L Yiga  2ab
with # (%) Z( S

» The conditional distribution is

o p(xaaxb) o
p(xa ‘ CCb> o p(l‘b) o N(l“’? Z)

W|th H = q + Eabzb_bl(b — Ub)
¥ = Yaa — Lab Ly, Tha

)
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Marginalization and Conditioning

(5 )) o= (5). (B 52)

marginalization conditioning
p(ra) = N (1, ¥) p(za | 2p) = N(p, %)
[= g 1= pa + SapSyy (b — pp)

2= Yaa 2= 2ga — Zabzb_blzba
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Linear Model for
Motions and Observations
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Linear Models

= Both models can be expressed through
a linear function

flx)=Ax+b
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Linear Models

= Both models can be expressed through
a linear function

flr)=Ax+0

= A Gaussian that istransformed trough
a linear function stays Gaussian
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Linear Models

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

vy = A1 + Brus + €

2y = Cyxy + 0y
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Components of a Kalman Filter

A Matrix (n X n) that describes how the state
t evolves from t — 1 to t without controls or
noise.

Bt Matrix (n x [) that describes how the control
ut changes the state from¢ —1 to¢.

(', Matrix (k x n) that describes how to map the
state x; to an observation z;.

€4 Random variables representing the process
and measurement noise that are assumed to

515 be independent and normally distributed
with covariance R, and (), respectively.
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Linear Motion Model

= Motion under Gaussian noise leads to

p(wy | ug, w4—1) =7
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Linear Motion Model

= Motion under Gaussian noise leads to

p(xe | U, T4—1) = det(QWRt)_%

1 _
eXp (—5(% — Ay — Btut)TRt 1(% — Ay — Btut)

» R; describes the noise of the motion

)
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(zt | x¢) =7
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z | ) = det(27Qy) 2

exp <_%(Zt — CtSUt)TQt_l(Zt — Ctxt))

= (); describes the measurement noise
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief stays Gaussian

bel(x1) = n p(2t | x4) el(ay)

Gaussian ?
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief stays Gaussian

bel(x1) = n p(2t | x4) el(ay)

Gaussian ?

= The product of two Gaussian is again
a Gaussian

= We only need to show that bei(z,) is
Gaussian so that bel(z;) is Gaussian
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief stays Gaussian

bel(x;) = /p(aft g, 1) bel(xy_1) day_q
Gaussian Gaussian
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief stays Gaussian

Bel(awe) = [ oo | wes i) bel(ar) doy
Gaussian Gaussian

= Is that sufficient so that boei(z,) is
Gaussian?
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Everything stays Gaussian

= We can write

bel(x+)

— /p(act | ug, wp—1) bel(wi—1) dwi—1

1 _
= 7N /exp (—5 (il?t — At x4 — By Ut)T R, . (ZUt — Ay — By Ut))

1 _
exXp (—5 (967:—1 — ,Ltt—1)TZt_11($t—1 — Mt—1)) dri—1
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Everything stays Gaussian

= We can write

bel(x+)

1 _
= 7 /exp <—§ (ﬂ?t — At x4 — By Ut)T R, : (ZUt — Ay x4 — By Ut))

1 _
exXp <—§ (ﬂft—l — Mt—1)TZt_11($t—1 — ,ut—1)> dri—1

= and thus
bel(z) = 1 / exp (—Ly) day_y
L, = % (s — Ay £4—1 — By ug)? Ry (wp — Ay 4—1 — By uy)
43 @t — )T S (s — )
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Everything stays Gaussian

= We can split up L; in a part that
depends on x; and on X, T+_1

Ly = Ly(wg—1,7¢) + Li(my)
= Thus
bel(zy) = 7 /exp (—Li(xe_1,2¢) — Li(y)) dayq

= 1 exp (—Ly(zy)) /exp (—L¢(wi—1,2¢)) dvi—q
Gaussian Marginalization

= Details: Probabilistic Robotics, Ch. 3.2 (p. 46-49)
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief stays Gaussian

w(azt) — /p(aft g, 1) bel(xy_1) day_q

" — .
Gaussian Gaussian Gaussian

Gaussian

bel(x1) = n p(2t | x¢) el(ay)

Gaussian Gaussian Gaussian

Everything is and stays Gaussian!



How Do We Typically
Represent Gaussians?

D3

@(a}t) — /p(a?t Up, Tp—1) bel(xy_1) day_q
n

p(2t | x¢) w(ﬂ?t)

= Lt = Zt =
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To Derive the Kalman Filter
Algorithm, One Exploits...

= Product of two Gaussians is a Gaussian

= Gaussians stays Gaussians under linear
transformations

= Marginal and conditional distribution of a
Gaussian stays a Gaussian

= Computing mean and covariance of the
marginal and conditional of a Gaussian

= Matrix inversion lemma

This leads us to... "



Kalman Filter Algorithm

Kalman _filter(u;_1, %1, U, 2¢):

fe = At pe—1 + By uy
Y = Ay X1 A;‘gr + Ry

Ky =Y Cér(Ct >y C;;F + Q)1
pe = iy + Ki(2¢ — Cy fig)

Y= — Ky Cy) X4

return iy, 2
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1D Kalman Filter Example (1)

_| prediction _ measurement

correction

It's a weighted mean!




1D Kalman Filter Example (2)

prediction

measurement
'
/ Ry
s A
/‘fﬁ )
s /.._,»". N,
S A

correction
,'/..- B RN
7 '\\
.f'fz L.l\'\
/ AN
.



Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = A1 + Brus + €
Lt — Ct:z:t -+ 51;

What if this is not the case?
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Non-linear Dynamic Systems

= Most realistic problems (in robotics)
involve nonlinear functions

vy = ATpor<cBilly + e 2 =t
l {

Lt = Q(Utal’t—l) T € 2y = h(l’t) + 515
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Linearity Assumption Revisited

6 6
piy)= Ny ap+h,a%e?) — -3+ h
K Mean of piy) = Meanp
) D
4
. ®
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6| |
ped) = N{ % @, o)
&= Mean of p(x)
2|
0

€burtesy: Thrun, Burgard, Fox 37



Non-Linear Function

6 6
Py — Function gix)
— Gaussian of p{y) = Meanp
4l X Meanof p(y) 4 Q 9w
~ 2
> 0 i
2t
Non-Gaussian! . |
-'0 0.2 04 06 0.8 0 0.5 1
6 px)
= Meanp
2|
0 s 2

€burtesy: Thrlin, Burgard, Fox 38



Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

39



Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!

40



EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(ug, thi—
g(utaxt—l) %g(uta,ut—l) + g(a; 'uj 1) (xt—l —,ut—l)
t—
| —
—: G4
= Correction: \

h(we) ~= h(fe) +
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Reminder: Jacobian Matrix

= Jtis a non-square matrix m x n in general

= GGiven a vector-valued function

(9
ga2\T
g9(x) = ;
\ gm(x) )
= The Jacobian matrix is defined as
/ 991 9g1 991 \
82131 8332 e 8a:n
992 9Oga dga
G.—| Mo
8g.m (’9g.m (’9g.m
\ (9331 (92132 T (’9:13n /
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Reminder: Jacobian Matrix

It is the orientation of the tangent plane to
the vector-valued function at a given point

Courtesy: K. Arras

= Generalizes the gradient of a scalar valued
function
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EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(ug, thi—
g(utaxt—l) %g(uta,ut—l) + g(a; 'uj 1) (xt—l —,ut—l)
t—
| —
—: G4
= Correction: \

Linear functions!

h(we) ~= h(fe) +
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Linearity Assumption Revisited

6 6
piy)= Ny ap+h,a%e?) — -3+ h
K Mean of piy) = Meanp
) D
4
. ®
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6| |
ped) = N{ % @, o)
&= Mean of p(x)
2|
0

€Surtesy: Thrun, Burgard, Fox 45



Non-Linear Function

6 6
Py — Function gix)
— Gaussian of p{y) = Meanp
4l X Meanof p(y) 4 Q 9w
2 2
0 T o0t
2 2t
4 4 + -
0 0204 06 0.8 0 0.5 1
6 p(x)
= Meanp
2|
0 L

€6urtesy: Thrin, Burgard, Fox g4¢



EKF Linearization (1)

6 6
ply) ‘ — Function g(x)
— Gaussian of p(y) — Taylor approx.
4 )| — EFK Gaussian 4 4= Meanp
O s

2 2
0 T oo
-2 2t
-4 . -4 + '
0 0.2 0.4 0.6 0.8 0 0.5 1
6 px)
d= Meanp
24
>
2 L
0 £ S

€G6urtesy: Thrun, Burgard, Fox 47



EKF Linearization (2)

6y 6
piy) — Function g(x)
— Gaussian of p{y) — Taylor approx.
4 d —— EFK Gaussian 4 \:- Mean p
O s
2 i; -
R g
0 T 0}
-2 2t
-4 - ' -4 +
0 0.5 1 0 0.5 1
4 o= E}?an e
= 2 /\
0 L

N

Cdurtesy: Thrin, Burgard, Fox 4g



EKF Linearization (3)

6 6
ply) [ Function g(x)
— Gaussian of p(y) — Taylor approx.
4 || — EFK Gaussian 4 $= Meanp
O s

o N
Y=g
o N

-2 -2
4L ' 4 +
0 05 1 1.5 0 0.5 1
20 | -|-Ex'|:2)anp
* 10|
0
N

€Surtesy: Thrin, Burgard, Fox 49



Linearized Motion Model

» The linearized model leads to

1
2

p(ﬂj‘t ‘ Ut,ZCt_l) ~ det (27TRt)

1
exp ( — 3 (xt — g(ug, pp—1) — Gt (41 — Mt—l))T

B (= glus, 1) = Go (w1 — 1))

A

linearized model

» R; describes the noise of the motion
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Linearized Observation Model
» The linearized model leads to

p(z | 7)) = det (27Q;) 2

exp (= 5 (21— hliie) — Hy (20— )"

Q; " (2t — hijir) — Hy (z¢ — ﬂt)))

linearized model

= () describes the measurement noise
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Extended Kalman Filter
Algorithm

Extended_Kalman _filter(u;_1, %1, us, 2¢):

e = g(Us, fht—1
Zt — Gt Zt—l G%F —|— Rt

Kt — it Hg(Ht it HE—FQt

pe = i + Ki(2¢ — h(ig))
Zt — (I— Kt Ht) Zt
return iy, 2+

At < Gt
)_1 Ct HHt

KF vs. EKF
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EKF Localization Example

500 -
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Image courtesy: Thrun, Burgard, Fox 53



EKF Localization Example

500 - 500 -
©® ©) ®@
400 - 400
300 300
200 -
100~
oF 0 @ @ @
1% (l) 1(IJO 2(1)0 360 4(IJO 5cl)o 6(1)0 7(;0 ‘19?00 (') 160 260 360 460 5(|)o 6(l)o 760

weighted sum of predictions and observations

Image courtesy: Thrun, Burgard, Fox 54



EKF Localization Example

More noisy sensor...
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larger covariances for the observations

Image courtesy: Thrun, Burgard, Fox 55



EKF Localization Example

More noisy sensor...

500 -

400 -

200 -

500 -

larger covariances, trusts the prediction more

Image courtesy: Thrun, Burgard, Fox 5g



Extended Kalman Filter
Summary

» Extension of the Kalman filter
= One way to handle the non-linearities
» Performs local linearizations

= Works well in practice for moderate
non-linearities

= L arge uncertainty leads to increased
approximation error error
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Literature

Kalman Filter and EKF

= Thrun et al.: "Probabilistic Robotics”,
Chapter 3

= Schon and Lindsten: “"Manipulating the
Multivariate Gaussian Density”

= Welch and Bishop: "Kalman Filter
Tutorial”
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