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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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Kalman Filter 

§  It is a Bayes filter 
§  Performs recursive state estimation 
§  Prediction step to exploit the 

controls 
§  Correction step to exploit the 

observations 
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Kalman Filter Example 

Courtesy: Thrun 
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Mapping and Localization are 
State Estimation Problems 
§  Bayes filter is one tool for state 

estimation 
§  Prediction 

§  Correction 
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Kalman Filter 

§  Bayes filter 
§  Estimator for the linear Gaussian 

case 
§  Optimal solution for linear models 

and Gaussian distributions 
§  Result equivalent to least squares 

solution in a linear Gaussian world 
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Kalman Filter Distribution  

§  Everything is Gaussian 

 

1D 
3D 

Courtesy: K. Arras 



8 

How to Update a  
Gaussian Belief Based on 

Motions and Observations? 
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Properties: Marginalization and 
Conditioning 
§  Given 
 
§  The marginals are Gaussians 

§  as well as the conditionals 
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Marginalization 

§  Given 
 
        with 

§  The marginal distribution is 

          with 
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Conditioning 

§  Given 
 
        with 

§  The conditional distribution is 

          with 
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Marginalization and Conditioning 

marginalization conditioning 
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Linear Model for  
Motions and Observations 
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Linear Models 

§  Both models can be expressed through 
a linear function 
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Linear Models 

§  Both models can be expressed through 
a linear function 

§  A Gaussian that istransformed trough 
a linear function stays Gaussian 
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Linear Models 

§  The Kalman filter assumes a linear 
transition and observation model 

§  Zero mean Gaussian noise 

 



17 

Components of a Kalman Filter 

Matrix           that describes how the state 
evolves from        to    without controls or 
noise. 
Matrix           that describes how the control      
     changes the state from        to  . 

Matrix           that describes how to map the 
state      to an observation     . 

Random variables representing the process 
and measurement noise that are assumed to 
be independent and normally distributed 
with covariance       and       respectively. 
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Linear Motion Model 

§  Motion under Gaussian noise leads to 
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Linear Motion Model 

§  Motion under Gaussian noise leads to 

§      describes the noise of the motion 

 



20 

Linear Observation Model 

§  Measuring under Gaussian noise leads 
to 
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Linear Observation Model 

§  Measuring under Gaussian noise leads 
to 

§      describes the measurement noise  
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Everything stays Gaussian 

§  Given an initial Gaussian belief, the 
belief stays Gaussian 

 

 

Gaussian ? 
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Everything stays Gaussian 

§  Given an initial Gaussian belief, the 
belief stays Gaussian 

§  The product of two Gaussian is again  
a Gaussian 

§  We only need to show that           is 
Gaussian so that           is Gaussian  

 

Gaussian ? 
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Everything stays Gaussian 

§  Given an initial Gaussian belief, the 
belief stays Gaussian 

 

Gaussian Gaussian 



25 

Everything stays Gaussian 

§  Given an initial Gaussian belief, the 
belief stays Gaussian 

§  Is that sufficient so that           is 
Gaussian? 

 

Gaussian Gaussian 



26 

Everything stays Gaussian 

§  We can write 
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Everything stays Gaussian 

§  We can write 

 
§  and thus 
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Everything stays Gaussian 

§  We can split up     in a part that 
depends on     and on 

§  Thus 

§  Details: Probabilistic Robotics, Ch. 3.2 (p. 46-49) 

 

Gaussian Marginalization 
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Everything stays Gaussian 

§  Given an initial Gaussian belief, the 
belief stays Gaussian 

 

Everything is and stays Gaussian! 

Gaussian Gaussian 

Gaussian Gaussian 

Gaussian 

Gaussian 

Gaussian 
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How Do We Typically  
Represent Gaussians? 
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To Derive the Kalman Filter 
Algorithm, One Exploits… 
§  Product of two Gaussians is a Gaussian 
§  Gaussians stays Gaussians under linear 

transformations  
§  Marginal and conditional distribution of  a 

Gaussian stays a Gaussian 
§  Computing mean and covariance of the 

marginal and conditional of a Gaussian 
§  Matrix inversion lemma 
§  … 

This leads us to… 
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Kalman Filter Algorithm 
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1D Kalman Filter Example (1) 

prediction measurement 

correction 

It's a weighted mean! 
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1D Kalman Filter Example (2) 

prediction 

correction 
measurement 
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Kalman Filter Assumptions 

§  Gaussian distributions and noise 
§  Linear motion and observation model 

 
What if this is not the case? 
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Non-linear Dynamic Systems 

§  Most realistic problems (in robotics) 
involve nonlinear functions 
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Linearity Assumption Revisited 

Courtesy: Thrun, Burgard, Fox 
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Non-Linear Function 

Non-Gaussian! 

Courtesy: Thrun, Burgard, Fox 
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Non-Gaussian Distributions 

§  The non-linear functions lead to non-
Gaussian distributions 

§  Kalman filter is not applicable 
anymore!  

 
  What can be done to resolve this? 
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Non-Gaussian Distributions 

§  The non-linear functions lead to non-
Gaussian distributions 

§  Kalman filter is not applicable 
anymore!  

 
  What can be done to resolve this? 
 

  Local linearization! 
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EKF Linearization: First Order 
Taylor Expansion 
§  Prediction: 

§  Correction: 
Jacobian matrices 
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Reminder: Jacobian Matrix 
§  It is a non-square matrix           in general 

§  Given a vector-valued function 

 

§  The Jacobian matrix is defined as 
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Reminder: Jacobian Matrix 
§  It is the orientation of the tangent plane to 

the vector-valued function at a given point 

§  Generalizes the gradient of a scalar valued 
function 

Courtesy: K. Arras 
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EKF Linearization: First Order 
Taylor Expansion 
§  Prediction: 

§  Correction: 
Linear functions! 
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Linearity Assumption Revisited 

Courtesy: Thrun, Burgard, Fox 
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Non-Linear Function 

Courtesy: Thrun, Burgard, Fox 
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EKF Linearization (1) 

Courtesy: Thrun, Burgard, Fox 
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EKF Linearization (2)  

Courtesy: Thrun, Burgard, Fox 
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EKF Linearization (3) 

Courtesy: Thrun, Burgard, Fox 
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Linearized Motion Model 

§  The linearized model leads to 

§      describes the noise of the motion 
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Linearized Observation Model 

§  The linearized model leads to 

§      describes the measurement noise  
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Extended Kalman Filter 
Algorithm 

KF vs. EKF 
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EKF Localization Example 

Image courtesy: Thrun, Burgard, Fox 
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EKF Localization Example 

Image courtesy: Thrun, Burgard, Fox 

weighted sum of predictions and observations 

EKF 
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EKF Localization Example  

More noisy sensor… 

Image courtesy: Thrun, Burgard, Fox 

larger covariances for the observations 
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EKF Localization Example  

More noisy sensor… 

Image courtesy: Thrun, Burgard, Fox 

larger covariances, trusts the prediction more 
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Extended Kalman Filter 
Summary 
§  Extension of the Kalman filter 
§  One way to handle the non-linearities 
§  Performs local linearizations  
§  Works well in practice for moderate 

non-linearities  
§  Large uncertainty leads to increased 

approximation error error 



58 

Literature 

Kalman Filter and EKF 
§  Thrun et al.: “Probabilistic Robotics”, 

Chapter 3 
§  Schön and Lindsten: “Manipulating the 

Multivariate Gaussian Density” 
§  Welch and Bishop: “Kalman Filter 

Tutorial” 


