Photogrammetry & Robotics Lab

Kalman Filter and Extended Kalman Filter

Cyrill Stachniss

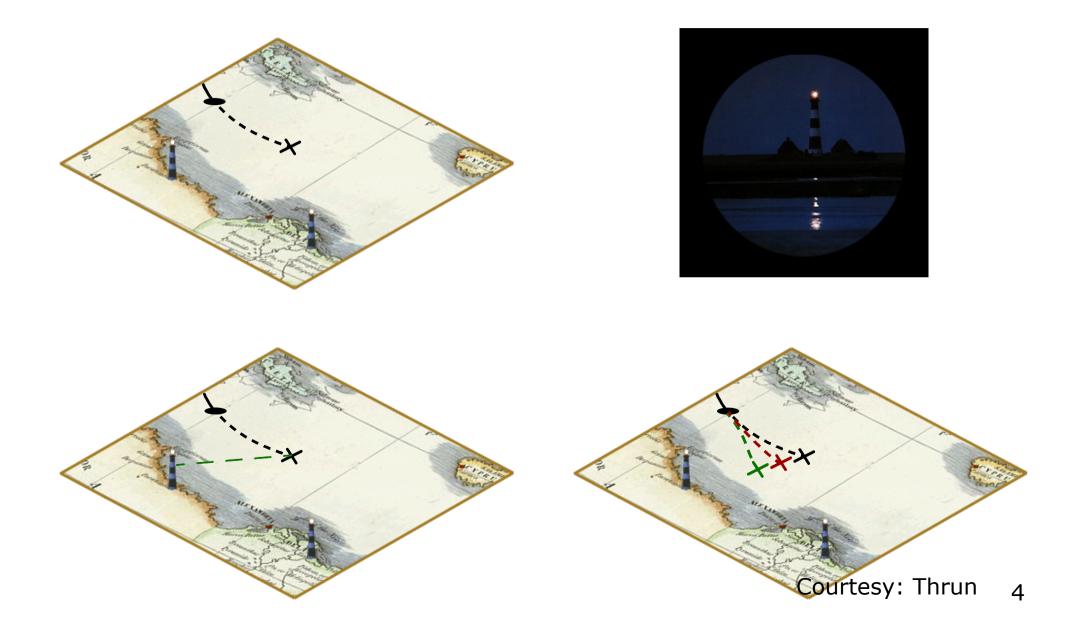
5 Minute Preparation for Today

https://www.ipb.uni-bonn.de/5min/

Kalman Filter

- It is a Bayes filter
- Performs recursive state estimation
- Prediction step to exploit the controls
- Correction step to exploit the observations

Kalman Filter Example



Mapping and Localization are State Estimation Problems

- Bayes filter is one tool for state estimation
- Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$

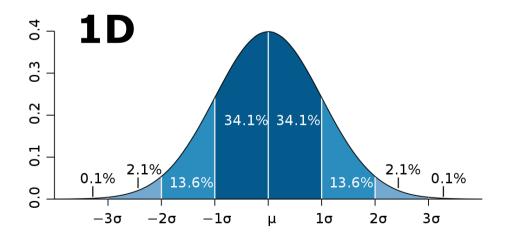
Kalman Filter

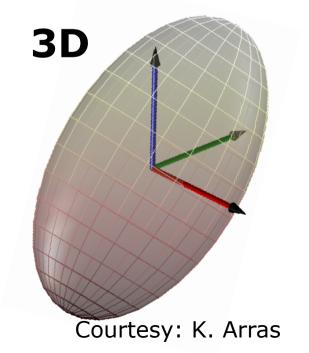
- Bayes filter
- Estimator for the linear Gaussian case
- Optimal solution for linear models and Gaussian distributions
- Result equivalent to least squares solution in a linear Gaussian world

Kalman Filter Distribution

Everything is Gaussian

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)$$





How to Update a Gaussian Belief Based on Motions and Observations?

Properties: Marginalization and Conditioning

• Given
$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $p(x) = \mathcal{N}$

The marginals are Gaussians

 $p(x_a) = \mathcal{N} \qquad p(x_b) = \mathcal{N}$

as well as the conditionals

 $p(x_a \mid x_b) = \mathcal{N} \qquad p(x_b \mid x_a) = \mathcal{N}$

Marginalization • Given $p(x) = p(x_a, x_b) = \mathcal{N}(\mu, \Sigma)$ with $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

The marginal distribution is

$$p(x_a) = \int p(x_a, x_b) \, dx_b = \mathcal{N}(\mu, \Sigma)$$

with
$$\mu = \mu_a$$
 $\Sigma = \Sigma_{aa}$

Conditioning

• Given
$$p(x) = p(x_a, x_b) = \mathcal{N}(\mu, \Sigma)$$

with $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

The conditional distribution is

$$p(x_a \mid x_b) = \frac{p(x_a, x_b)}{p(x_b)} = \mathcal{N}(\mu, \Sigma)$$

with
$$\mu = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (b - \mu_b)$$

$$\Sigma = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

Marginalization and Conditioning

$$p\left(\left(\begin{array}{c} x_a \\ x_b \end{array}\right)\right) = \mathcal{N}(\mu, \Sigma) = \mathcal{N}\left(\left(\begin{array}{c} \mu_a \\ \mu_b \end{array}\right), \left(\begin{array}{c} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{array}\right)\right)$$

marginalization

conditioning

$$p(x_a) = \mathcal{N}(\mu, \Sigma)$$
$$\mu = \mu_a$$
$$\Sigma = \Sigma_{aa}$$

$$p(x_a \mid x_b) = \mathcal{N}(\mu, \Sigma)$$
$$\mu = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (b - \mu_b)$$
$$\Sigma = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

Linear Model for Motions and Observations

Linear Models

 Both models can be expressed through a linear function

$$f(x) = Ax + b$$

Linear Models

 Both models can be expressed through a linear function

f(x) = A x + b

 A Gaussian that istransformed trough a linear function stays Gaussian

Linear Models

- The Kalman filter assumes a linear transition and observation model
- Zero mean Gaussian noise

$$x_t = A_t x_{t-1} + B_t u_t + \epsilon_t$$

$$z_t = C_t x_t + \delta_t$$

Components of a Kalman Filter

 A_t Matrix $(n \times n)$ that describes how the state evolves from t-1 to t without controls or noise.

- Matrix $(n \times l)$ that describes how the control u_t changes the state from t-1 to t.
- C_t Matrix $(k \times n)$ that describes how to map the state x_t to an observation z_t .
- Random variables representing the process ϵ_t and measurement noise that are assumed to δ_t be independent and normally distributed with covariance R_t and Q_t respectively.

Linear Motion Model

Motion under Gaussian noise leads to

$$p(x_t \mid u_t, x_{t-1}) = ?$$

Linear Motion Model

Motion under Gaussian noise leads to

$$p(x_t \mid u_t, x_{t-1}) = \det(2\pi R_t)^{-\frac{1}{2}}$$
$$\exp\left(-\frac{1}{2}(x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1}(x_t - A_t x_{t-1} - B_t u_t)\right)$$

• R_t describes the noise of the motion

Linear Observation Model

 Measuring under Gaussian noise leads to

$$p(z_t \mid x_t) = ?$$

Linear Observation Model

 Measuring under Gaussian noise leads to

$$p(z_t \mid x_t) = \det(2\pi Q_t)^{-\frac{1}{2}}$$
$$\exp\left(-\frac{1}{2}(z_t - C_t x_t)^T Q_t^{-1}(z_t - C_t x_t)\right)$$

• Q_t describes the measurement noise

Given an initial Gaussian belief, the belief stays Gaussian

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

Gaussian ?

Given an initial Gaussian belief, the belief stays Gaussian

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$
Gaussian

- The product of two Gaussian is again a Gaussian
- We only need to show that $\overline{bel}(x_t)$ is Gaussian so that $bel(x_t)$ is Gaussian

Given an initial Gaussian belief, the belief stays Gaussian

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})}_{Gaussian} \frac{bel(x_{t-1}) \, dx_{t-1}}{Gaussian}$$

Given an initial Gaussian belief, the belief stays Gaussian

$$\overline{bel}(x_t) = \int \underbrace{p(x_t \mid u_t, x_{t-1})}_{\text{Gaussian}} \underbrace{bel(x_{t-1}) \, dx_{t-1}}_{\text{Gaussian}}$$

• Is that sufficient so that $\overline{bel}(x_t)$ is Gaussian?

We can write

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$= \eta \int \exp\left(-\frac{1}{2} (x_t - A_t \ x_{t-1} - B_t \ u_t)^T \ R_t^{-1} (x_t - A_t \ x_{t-1} - B_t \ u_t)\right)$$

$$\exp\left(-\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1})\right) \ dx_{t-1}$$

We can write

$$\overline{bel}(x_t) = \eta \int \exp\left(-\frac{1}{2} (x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1} (x_t - A_t x_{t-1} - B_t u_t)\right) \\ \exp\left(-\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1})\right) dx_{t-1}$$

$$= \text{and thus}$$

$$\overline{bel}(x_t) = \eta \int \exp(-L_t) dx_{t-1}$$

$$L_t = \frac{1}{2} (x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1} (x_t - A_t x_{t-1} - B_t u_t)$$

$$+ \frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1})$$

• We can split up L_t in a part that depends on x_t and on x_t, x_{t-1}

$$L_t = L_t(x_{t-1}, x_t) + L_t(x_t)$$

Thus

$$\overline{bel}(x_t) = \eta \int \exp\left(-L_t(x_{t-1}, x_t) - L_t(x_t)\right) dx_{t-1}$$

= $\eta \exp\left(-L_t(x_t)\right) \int \exp\left(-L_t(x_{t-1}, x_t)\right) dx_{t-1}$
Gaussian Marginalization

Details: Probabilistic Robotics, Ch. 3.2 (p. 46-49)

Given an initial Gaussian belief, the belief stays Gaussian

$$\overline{bel}(x_t) = \int \underbrace{p(x_t \mid u_t, x_{t-1})}_{\text{Gaussian}} \underbrace{bel(x_{t-1})}_{\text{Gaussian}} dx_{t-1}$$

$$\overline{caussian}$$

$$\overline{caussian}$$

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

$$\overline{caussian}$$

$$\overline{caussian}$$

$$\overline{caussian}$$

Everything is and stays Gaussian!

How Do We Typically Represent Gaussians? $\mu \sum$

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$
$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

$$\rightarrow \mu_t = ? \quad \Sigma_t = ?$$

To Derive the Kalman Filter Algorithm, One Exploits...

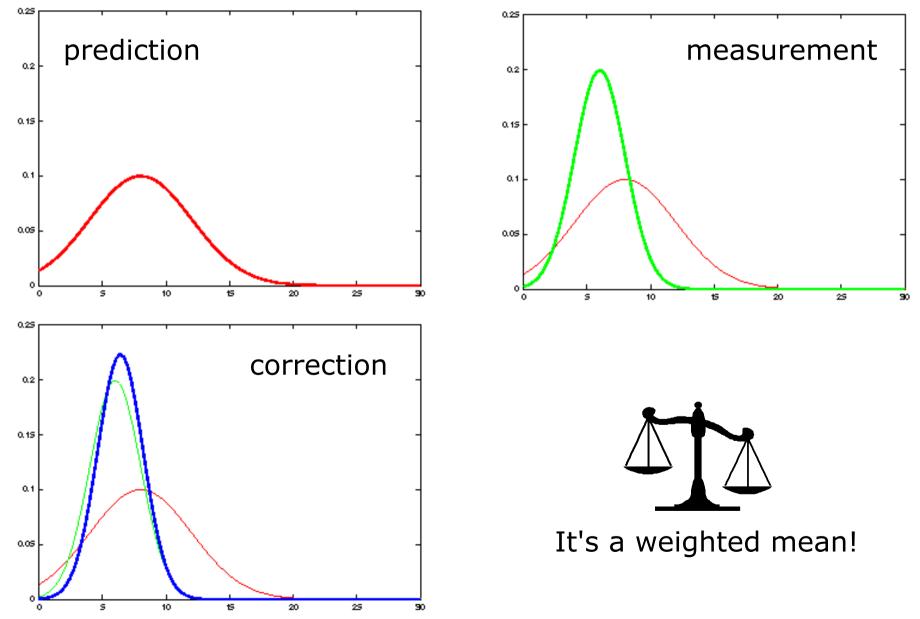
- Product of two Gaussians is a Gaussian
- Gaussians stays Gaussians under linear transformations
- Marginal and conditional distribution of a Gaussian stays a Gaussian
- Computing mean and covariance of the marginal and conditional of a Gaussian
- Matrix inversion lemma

This leads us to...

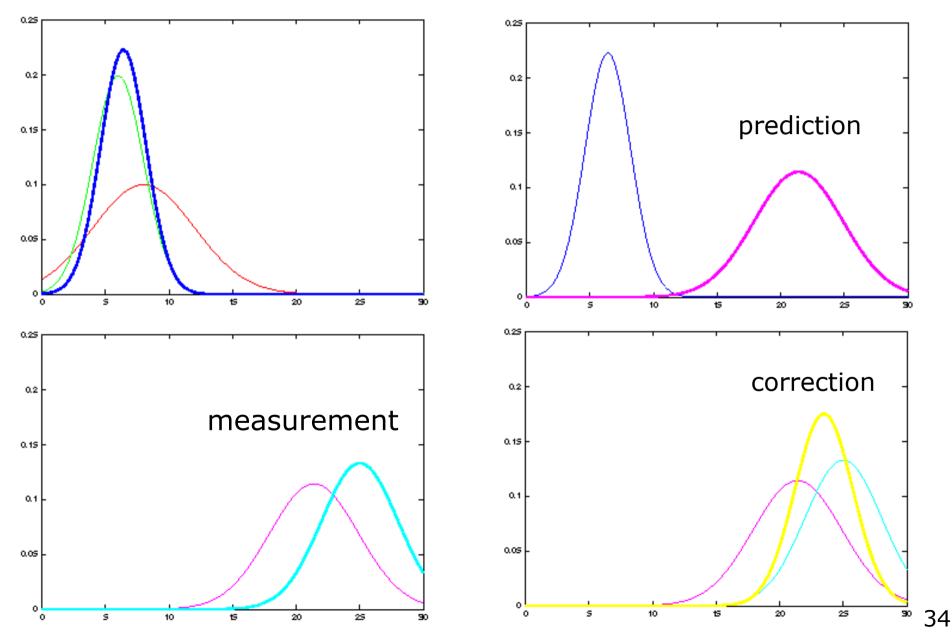
Kalman Filter Algorithm

1: **Kalman_filter**
$$(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$$
:
2: $\bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ u_t$
3: $\bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^T + R_t$
4: $K_t = \bar{\Sigma}_t \ C_t^T (C_t \ \bar{\Sigma}_t \ C_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \ \bar{\mu}_t)$
6: $\Sigma_t = (I - K_t \ C_t) \ \bar{\Sigma}_t$
7: return μ_t, Σ_t

1D Kalman Filter Example (1)

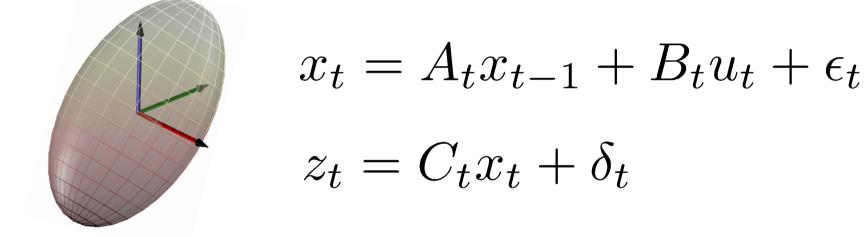


1D Kalman Filter Example (2)



Kalman Filter Assumptions

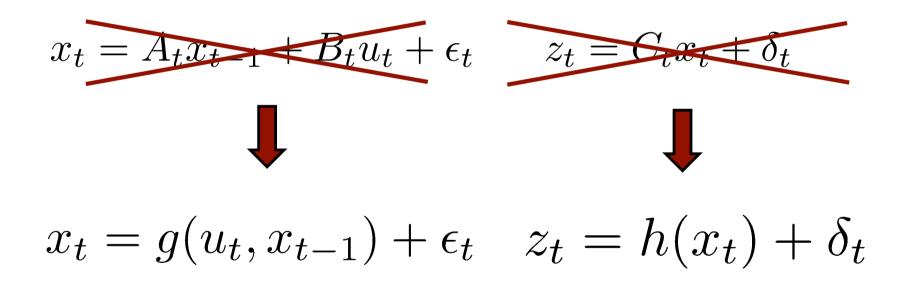
- Gaussian distributions and noise
- Linear motion and observation model



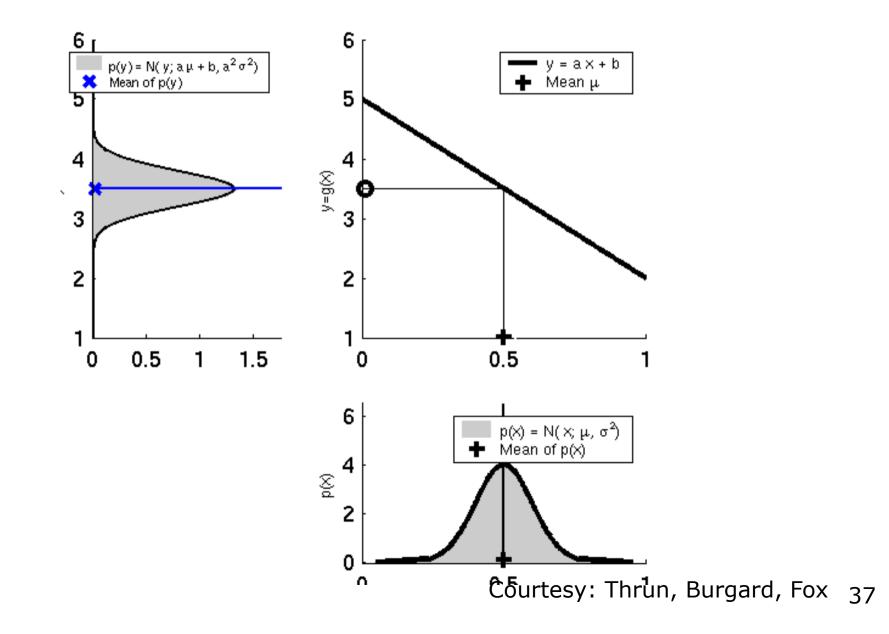
What if this is not the case?

Non-linear Dynamic Systems

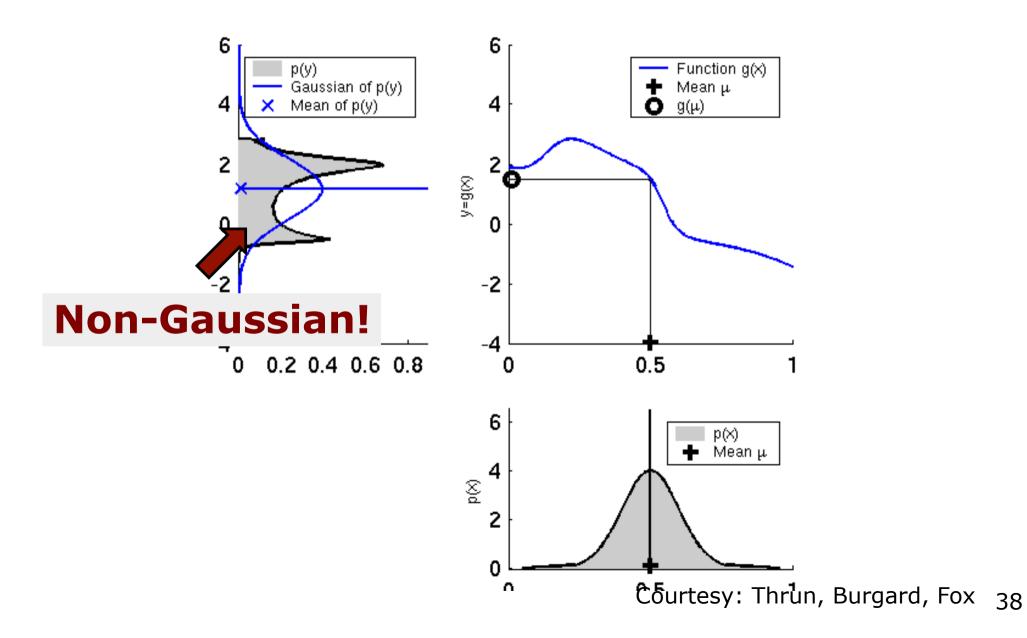
 Most realistic problems (in robotics) involve nonlinear functions



Linearity Assumption Revisited



Non-Linear Function



Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!

EKF Linearization: First Order Taylor Expansion

Prediction:

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \underbrace{\frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}}_{=: G_t} (x_{t-1} - \mu_{t-1})$$

$$= Correction:$$

$$h(x_t) \approx h(\bar{\mu}_t) + \underbrace{\frac{\partial h(\bar{\mu}_t)}{\partial x_t}}_{=: H_t} (x_t - \bar{\mu}_t) \quad \text{Jacobian matrices}$$

 \circ (

 \mathbf{x}

Reminder: Jacobian Matrix

- It is a **non-square matrix** $m \times n$ in general
- Given a vector-valued function

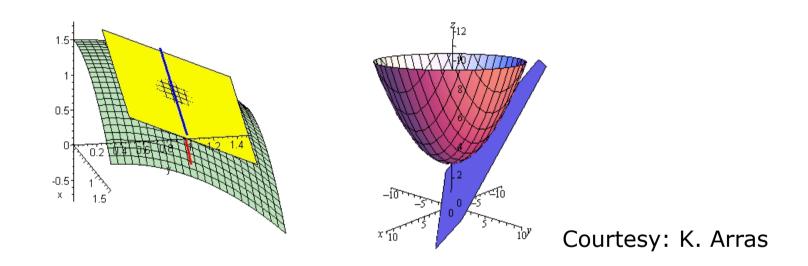
$$g(x) = \begin{pmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{pmatrix}$$

The Jacobian matrix is defined as

$$G_{x} = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{2}}{\partial x_{n}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}} & \frac{\partial g_{m}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}} \end{pmatrix}$$

Reminder: Jacobian Matrix

 It is the orientation of the tangent plane to the vector-valued function at a given point



 Generalizes the gradient of a scalar valued function

EKF Linearization: First Order Taylor Expansion

Prediction:

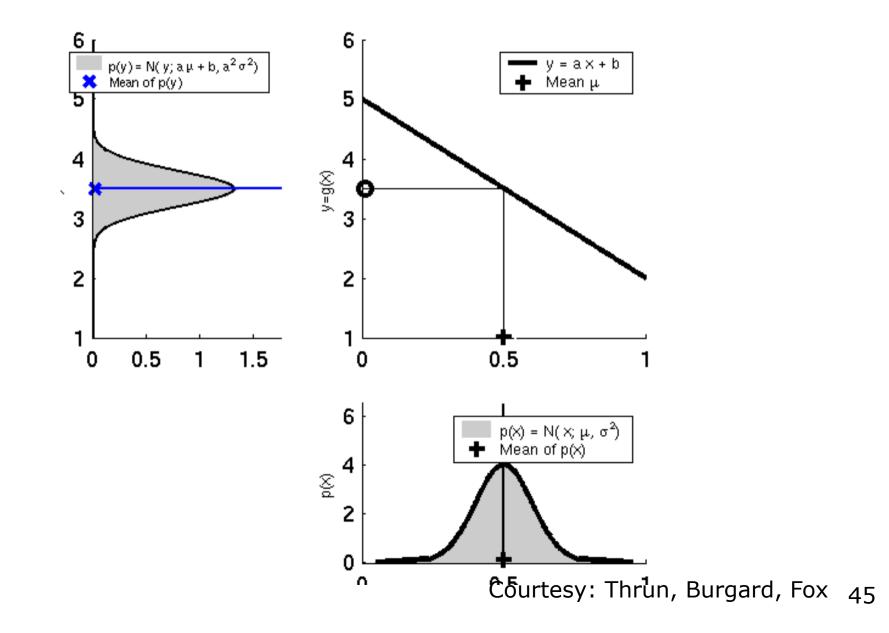
$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \underbrace{\frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}}_{=: G_t} (x_{t-1} - \mu_{t-1})$$

$$= Correction:$$

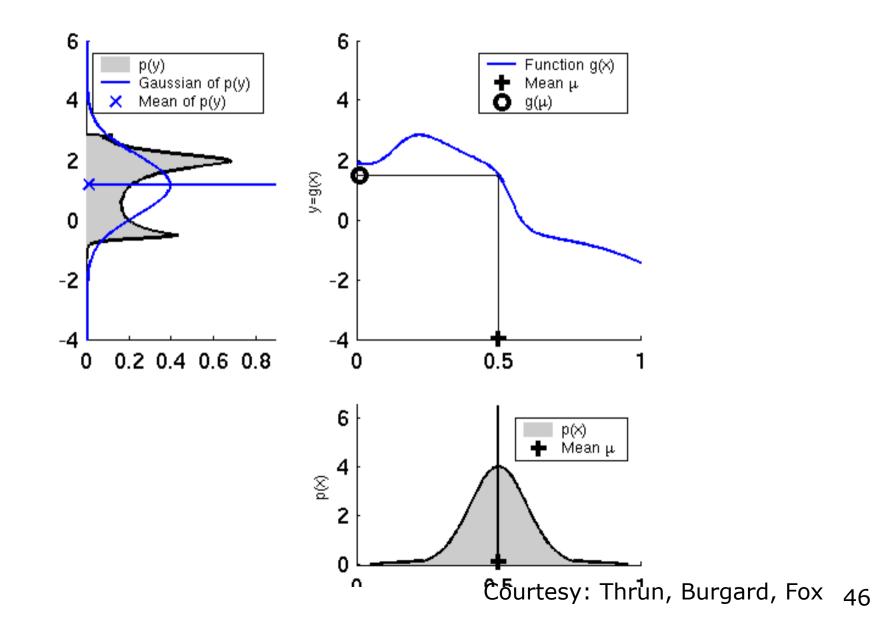
$$h(x_t) \approx h(\bar{\mu}_t) + \underbrace{\frac{\partial h(\bar{\mu}_t)}{\partial x_t}}_{=: H_t} (x_t - \bar{\mu}_t) \quad \text{Linear functions!}$$

`

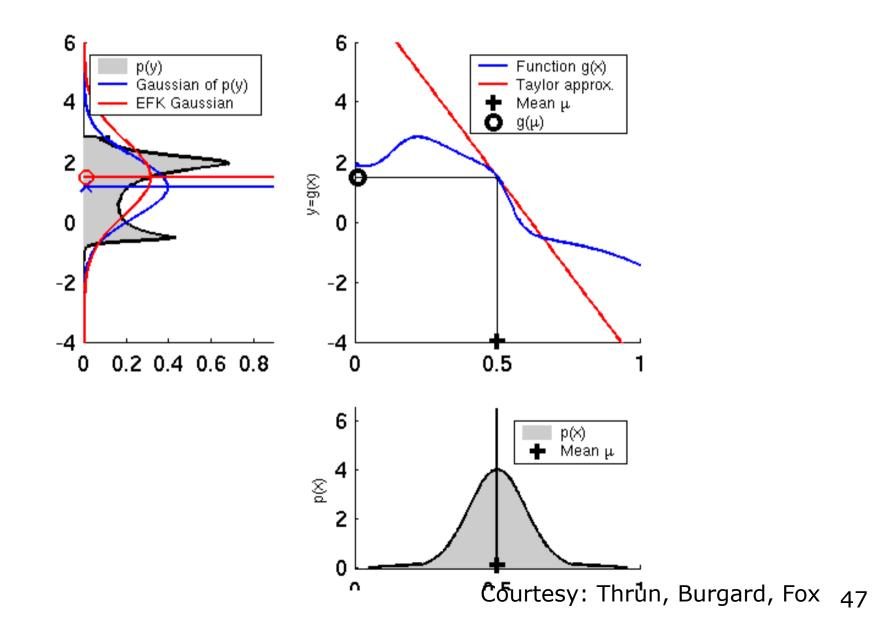
Linearity Assumption Revisited



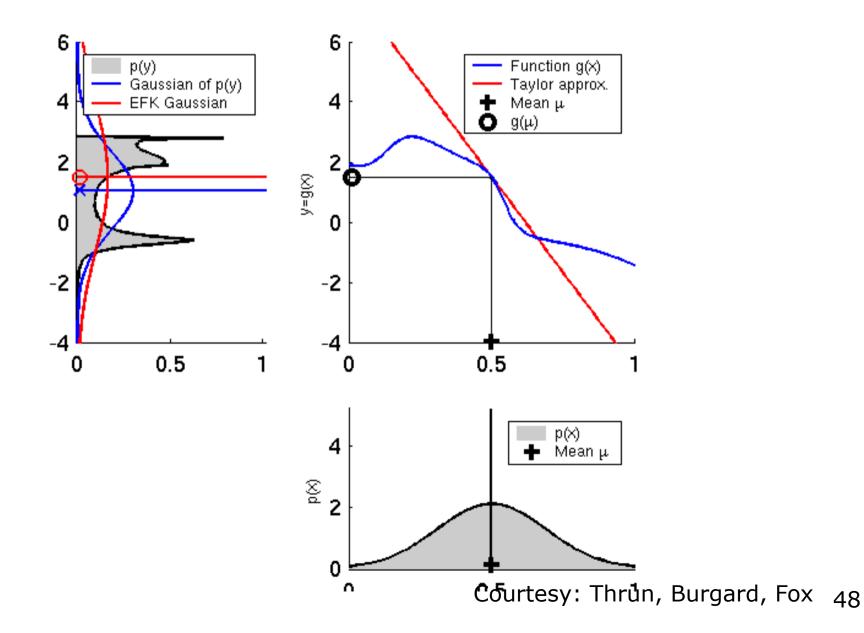
Non-Linear Function



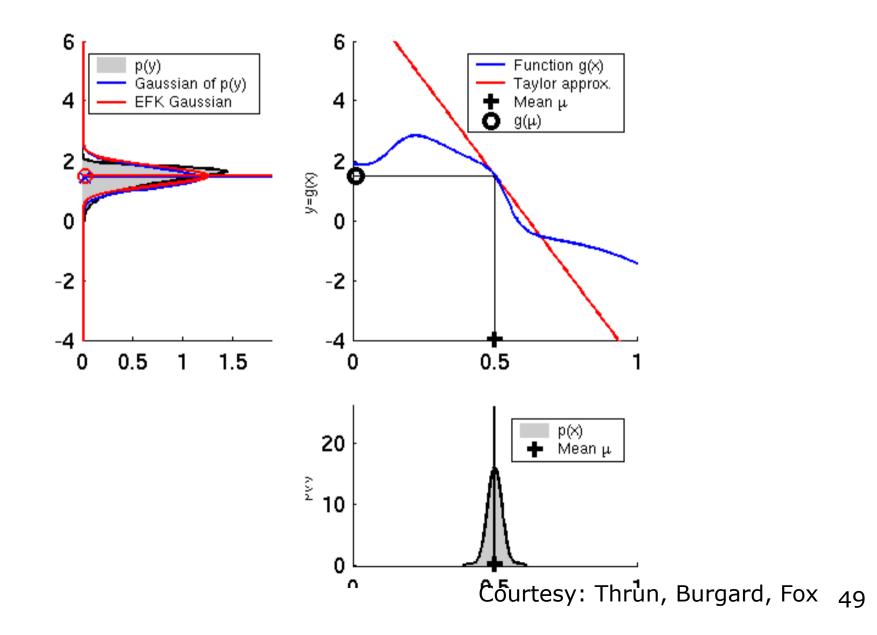
EKF Linearization (1)



EKF Linearization (2)



EKF Linearization (3)



Linearized Motion Model

The linearized model leads to

$$p(x_t \mid u_t, x_{t-1}) \approx \det (2\pi R_t)^{-\frac{1}{2}} \\ \exp \left(-\frac{1}{2} \left(x_t - g(u_t, \mu_{t-1}) - G_t \left(x_{t-1} - \mu_{t-1} \right) \right)^T \right) \\ R_t^{-1} \left(x_t - g(u_t, \mu_{t-1}) - G_t \left(x_{t-1} - \mu_{t-1} \right) \right) \right) \\ \\ \text{linearized model}$$

R_t describes the noise of the motion

Linearized Observation Model

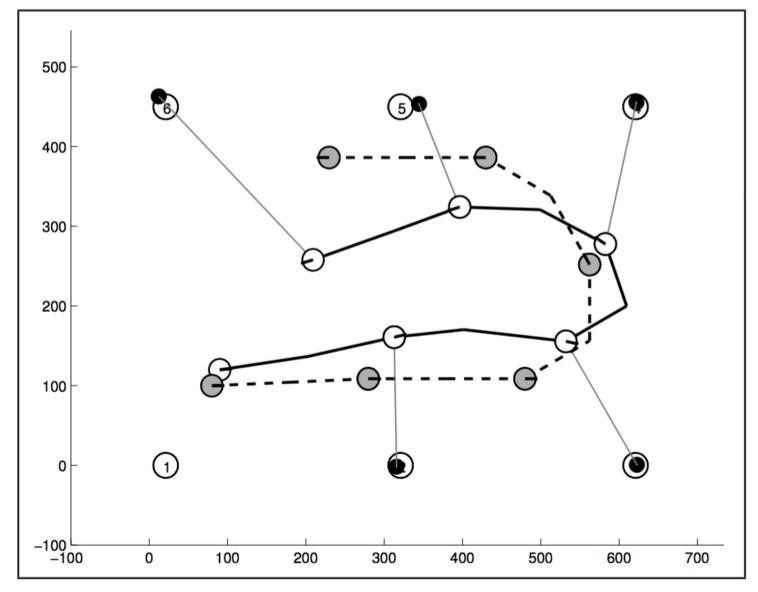
The linearized model leads to

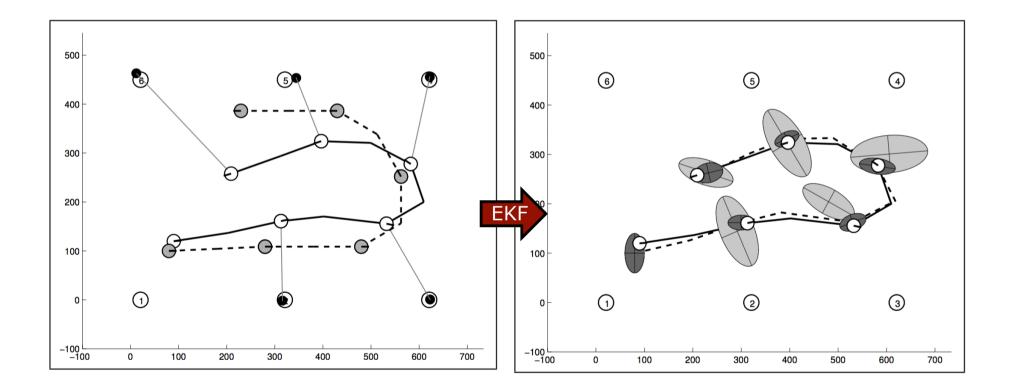
$$p(z_t \mid x_t) = \det (2\pi Q_t)^{-\frac{1}{2}} \\ \exp \left(-\frac{1}{2} \left(z_t - h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t \right) \right)^T \right)^T \\ Q_t^{-1} \left(z_t - \underbrace{h(\bar{\mu}_t) - H_t \left(x_t - \bar{\mu}_t \right)}_{\text{linearized model}} \right) \right)$$

• Q_t describes the measurement noise

Extended Kalman Filter Algorithm

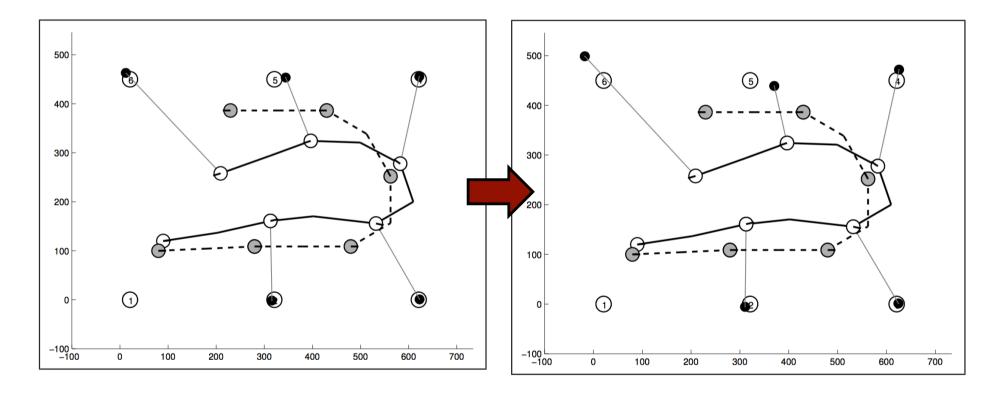
1: **Extended_Kalman_filter**
$$(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$$
:
2: $\bar{\mu}_t = \underline{g}(u_t, \mu_{t-1})$
3: $\bar{\Sigma}_t = \overline{G}_t \Sigma_{t-1} \overline{G}_t^T + R_t$
4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - \underline{h}(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t
KF vs. EKF





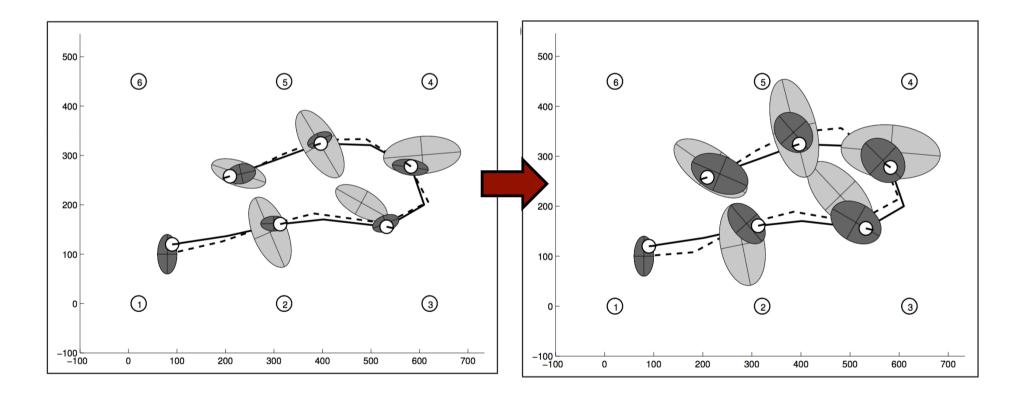
weighted sum of predictions and observations

More noisy sensor...



larger covariances for the observations

More noisy sensor...



larger covariances, trusts the prediction more

Extended Kalman Filter Summary

- Extension of the Kalman filter
- One way to handle the non-linearities
- Performs local linearizations
- Works well in practice for moderate non-linearities
- Large uncertainty leads to increased approximation error error

Literature

Kalman Filter and EKF

- Thrun et al.: "Probabilistic Robotics", Chapter 3
- Schön and Lindsten: "Manipulating the Multivariate Gaussian Density"
- Welch and Bishop: "Kalman Filter Tutorial"