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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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Recursive State Estimation 
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State Estimation 

§  Estimate the state    of a system given 
observations    and controls 

§  Goal: 
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Recursive Bayes Filter 

Courtesy: Thrun, Burgard and Fox 
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Recursive Bayes Filter 
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Tiny Reminder  
(Probability Theory) 

(reminder) 
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Bayes’ Rule 
(reminder) 
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Bayes’ Rule  
with Background Knowledge z 

(reminder) 
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Law of Total Probability 
and Marginalization  

Law of Total Probability 

Marginalization 

(reminder) 
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Markov Property/Assumption 

§  “The future is independent from the 
past given the current state.”  

§  Markov property = the conditional 
probability distribution of future states 
depends only upon the present state, 
not on the sequence of events that 
preceded it. 

§  Such a process has no memory 

(reminder) 
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State Estimation 

§  Estimate the state    of a system given 
observations    and controls 

§  Goal: 
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Recursive Bayes Filter 1 

definition of the belief 
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Recursive Bayes Filter 2 

Bayes’ rule 
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Recursive Bayes Filter 3 

Markov assumption  
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Recursive Bayes Filter 4 

Law of total probability 
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Recursive Bayes Filter 5 

Markov assumption  
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Recursive Bayes Filter 6 

independence assumption  
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Recursive Bayes Filter 7 

recursive term 
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Complete Derivation of the 
Recursive Bayes Filter 
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Prediction and Correction Step 

§  Bayes filter can be written as a two 
step process 

§  Prediction step 

§  Correction step 



26 

Motion and Observation Model 

§  Prediction step 

§  Correction step 

motion model 

observation model 
(also: measurement or sensor model) 
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Different Realizations 

§  The Bayes filter is a framework for 
recursive state estimation 

§  There are different realizations  
§  Different properties 

§  Linear vs. non-linear models for motion 
and observation models 

§ Gaussian distributions only? 
§  Parametric vs. non-parametric filters 
§ … 
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Popular Filters 

§  Kalman filter & EKF 
§ Gaussians 
§  Linear or linearized models 

§  Particle filter  
§ Non-parametric 
§  Arbitrary models (sampling required) 
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Motion Model 
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Basic Motion Models  

§  Motion is inherently uncertain 
§  How can we model this uncertainty? 

Courtesy: Thrun, Burgard, Fox 
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Example: Odometry-Based 
Motion 

Courtesy: Thrun, Burgard, Fox 
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Probabilistic Motion Models 

§  Specifies a posterior probability that 
action u carries the robot from 
to 

(optional) 
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Odometry Model 
§  Motion from             to            .  
§  Odometry information                             

(optional) 
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Probability Distribution 

§  Noise in odometry  
§  Example: Gaussian noise 

(optional) 
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Example: Odometry-Based 
Motion 

Courtesy: Thrun, Burgard, Fox 

(optional) 
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Observation 
Model 
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Range Sensors 
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Example: Simple Observation 
Model with Gaussian Noise 
§  Range sensor estimating the distance 

to the closest obstacle 
§  Gaussian noise in the range reading 
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Model for Laser Scanners 

§  Scan z consists of K measurements. 

§  Individual measurements are 
independent given the sensor position 

(optional) 
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§  Ray-cast models consider the first 
obstacle along the line of sight 

§  Gaussian noise in the distance 

Simplest Ray-Cast Model 
(optional) 
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§  Ray-cast models consider the first 
obstacle along the line of sight 

§  A more advanced model may look like 
that. Why? 

More Advanced Ray-Cast Model 
(optional) 
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§  Ray-cast models consider the first 
obstacle along the line of sight 

§  Mixture of four models: considers 
different effects (dynamic objects, 
random, max-range, noise) 

More Advanced Ray-Cast Model 
(optional) 
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Beam-Based Proximity Model 
measurement noise 

zexp 0 

Image courtesy: Burgard 

(optional) 
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Beam-Based Proximity Model 

zmax 

unexpected obstacles 

zexp zmax 0 

Image courtesy: Burgard 

(optional) 
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Beam-Based Proximity Model 
random measurement 

zexp zmax 0 

Image courtesy: Burgard 

(optional) 
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Beam-Based Proximity Model 

max range/no return 

zexp zmax 0 

Image courtesy: Burgard 

(optional) 
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Resulting Mixture Density 

How can we determine the parameters? 

Image courtesy: Burgard 

(optional) 
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Raw Sensor Data 
Measured distances for expected distance of 3m.  

Image courtesy: Burgard 

(optional) 
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Results 

300cm 400cm 

162 6 Robot Perception

(a) Sonar data, plots for two different ranges

zk∗t zk∗t
(b) Laser data, plots for two different ranges

zk∗t zk∗t

Figure 6.6 Approximation of the beam model based on (a) sonar data and (b) laser
range data. The sensor models depicted on the left were obtained by a maximum
likelihood approximation to the data sets depicted in Figure 6.5.

6.3.3 Mathematical Derivation of the Beam Model

To derive the ML estimator, it shall prove useful to introduce auxiliary vari-
ables ci, the so-called correspondence variable. Each ci can take on one of
four values, hit, short, max, and random, corresponding to the four possible
mechanisms that might have produced a measurement zi.

Let us first consider the case in which the ci’s are known. We know which
of the four mechanisms described above caused each measurement zi. Based
on the values of the ci’s, we can decompose Z into four disjoint sets, Zhit,
Zshort, Zmax, and Zrand, which together comprise the set Z. The ML estima-
tors for the intrinsic parameters zhit, zshort, zmax, and zrand are simply the
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Image courtesy: Burgard 

(optional) 
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Beam-Endpoint Model 

Image courtesy: Roy / Thrun, Burgard, Fox 

(optional) 
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Beam-Endpoint Model 

map likelihood field 

Courtesy: N. Roy 

(optional) 
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Model for Perceiving Landmarks 
with Range-Bearing Sensors 
§  Range-bearing 
§  Pose 
§  Observation of feature j at  

location 

What if monocular cameras are used?  

(optional) 
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Summary 

§  Probabilities occur is most of the 
problems addressed here 

§  Bayes filter is a framework for state 
estimation 

§  There are different realizations of the 
Bayes filter that we will study in this 
course (e.g., EKF, particle filter) 

§  Motion and observation model are 
central models in the Bayes filter  
to be specified 
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Literature 
Probability Primer 
§  Thrun et al. “Probabilistic Robotics”,  

Chapter 2.1 & 2.2 
 
On the Bayes filter 
§  Thrun et al. “Probabilistic Robotics”,  

Chapter 2.3 


