#### **Photogrammetry & Robotics Lab**

#### **Recursive Bayes Filter**

**Cyrill Stachniss** 

# **5 Minute Preparation for Today**



https://www.ipb.uni-bonn.de/5min/

## **Recursive State Estimation**

#### **State Estimation**

- Estimate the state  $\boldsymbol{x}$  of a system given observations  $\boldsymbol{z}$  and controls  $\boldsymbol{u}$
- Goal:

 $p(x \mid z, u)$ 

#### **State Estimation**

- Estimate the state  $\boldsymbol{x}$  of a system given observations  $\boldsymbol{z}$  and controls  $\boldsymbol{u}$
- Goal:

 $p(x_t | z_{1:t}, u_{1:t})$ 















(reminder)

# Tiny Reminder (Probability Theory)

#### (reminder)

#### **Bayes' Rule**

$$p(x, y) = p(x \mid y) p(y)$$
$$p(x, y) = p(y \mid x) p(x)$$





#### (reminder) Bayes' Rule with Background Knowledge z

$$p(x \mid y) = \frac{p(y \mid x) p(x)}{p(y)}$$
$$(x \mid y, z) = \frac{p(y \mid x, z) p(x \mid z)}{p(y \mid z)}$$

#### (reminder)

# Law of Total Probability and Marginalization

#### Law of Total Probability

$$p(x) = \sum_{y} p(x \mid y) p(y) \qquad p(x) = \int p(x \mid y) p(y) \, dy$$

6

#### **Marginalization**

$$p(x) = \sum_{y} p(x, y) \qquad \qquad p(x) = \int p(x, y) \, dy$$

#### (reminder) Markov Property/Assumption

- The future is independent from the past given the current state."
- Markov property = the conditional probability distribution of future states depends only upon the present state, not on the sequence of events that preceded it.
- Such a process has no memory

#### **State Estimation**

- Estimate the state  $\boldsymbol{x}$  of a system given observations  $\boldsymbol{z}$  and controls  $\boldsymbol{u}$
- Goal:

 $p(x_t | z_{1:t}, u_{1:t})$ 

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ 

definition of the belief

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ =  $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$ 

Bayes' rule

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$
  
=  $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$   
=  $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$ 

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$
  
=  $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$   
=  $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$   
=  $\eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \frac{p(x_{t-1} \mid z_{1:t-1}, u_{1:t})}{p(x_{t-1} \mid z_{1:t-1}, u_{1:t})} dx_{t-1}$ 

Law of total probability

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \end{aligned}$$

Markov assumption

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \end{aligned}$$

#### independence assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

recursive term

# **Complete Derivation of the Recursive Bayes Filter**

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \end{aligned}$$

# **Prediction and Correction Step**

 Bayes filter can be written as a two step process

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$ 

#### Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

#### Correction step

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$ 

# **Motion and Observation Model**

Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \, \underline{p(z_t \mid x_t)} \, \overline{bel}(x_t)$$

observation model (also: measurement or sensor model)

# **Different Realizations**

- The Bayes filter is a **framework** for recursive state estimation
- There are different realizations

#### Different properties

- Linear vs. non-linear models for motion and observation models
- Gaussian distributions only?
- Parametric vs. non-parametric filters

• ...

# **Popular Filters**

#### Kalman filter & EKF

- Gaussians
- Linear or linearized models

#### Particle filter

- Non-parametric
- Arbitrary models (sampling required)

# **Motion Model** $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

# **Basic Motion Models**

- Motion is inherently uncertain
- How can we model this uncertainty?





#### **Example: Odometry-Based Motion**



# **Probabilistic Motion Models**

- Specifies a posterior probability that action u carries the robot from  $x_{t-1}$  to  $x_t$ 

$$p(x_t \mid u_t, x_{t-1})$$

## **Odometry Model**

- Motion from  $(\bar{x}, \bar{y}, \bar{\theta})$  to  $(\bar{x}', \bar{y}', \bar{\theta}')$
- Odometry information  $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$



# **Probability Distribution**

- Noise in odometry  $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$
- Example: Gaussian noise

 $u \sim \mathcal{N}(0, \Sigma)$ 



### **Example: Odometry-Based Motion**



# Observation Model

$$bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_{t-1})$$

#### **Range Sensors**









# **Example: Simple Observation Model with Gaussian Noise**

- Range sensor estimating the distance to the closest obstacle
- Gaussian noise in the range reading



#### **Model for Laser Scanners**

Scan z consists of K measurements.

$$z_t = \{z_t^1, \dots, z_t^k\}$$

 Individual measurements are independent given the sensor position

$$p(z_t \mid x_t, m) = \prod_{i=1}^k p(z_t^i \mid x_t, m)$$

## Simplest Ray-Cast Model

- Ray-cast models consider the first obstacle along the line of sight
- Gaussian noise in the distance



# More Advanced Ray-Cast Model

- Ray-cast models consider the first obstacle along the line of sight
- A more advanced model may look like that. Why?



# More Advanced Ray-Cast Model

- Ray-cast models consider the first obstacle along the line of sight
- Mixture of four models: considers different effects (dynamic objects, random, max-range, noise)



#### **Beam-Based Proximity Model**

#### measurement noise



### **Beam-Based Proximity Model**

#### unexpected obstacles



## **Beam-Based Proximity Model**

#### random measurement



 $P_{rand}(z \mid x, m) = \text{const.}$ 

#### **Beam-Based Proximity Model**

#### max range/no return



## **Resulting Mixture Density**



#### How can we determine the parameters?

#### **Raw Sensor Data**

Measured distances for expected distance of 3m.



#### Results



#### **Beam-Endpoint Model**



Image courtesy: Roy / Thrun, Burgard, Fox 50

#### **Beam-Endpoint Model**



map

likelihood field

Courtesy: N. Roy 51

# Model for Perceiving Landmarks with Range-Bearing Sensors

- Range-bearing  $z_t^i = (r_t^i, \phi_t^i)^T$
- **Pose**  $(x, y, \theta)^T$
- Observation of feature j at location  $(m_{j,x}, m_{j,y})^T$

$$\begin{pmatrix} r_t^i \\ \phi_t^i \end{pmatrix} = \begin{pmatrix} \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\ \operatorname{atan2}(m_{j,y} - y, m_{j,x} - x) - \theta \end{pmatrix} + Q_t$$

#### What if monocular cameras are used?

# Summary

- Probabilities occur is most of the problems addressed here
- Bayes filter is a framework for state estimation
- There are different realizations of the Bayes filter that we will study in this course (e.g., EKF, particle filter)
- Motion and observation model are central models in the Bayes filter to be specified

#### Literature

#### **Probability Primer**

 Thrun et al. "Probabilistic Robotics", Chapter 2.1 & 2.2

#### **On the Bayes filter**

 Thrun et al. "Probabilistic Robotics", Chapter 2.3