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5 Minute Preparation for Today

5 Minutes with Cyrill
Bag of Visual Words

‘\\ \;! “,” . )i”;) '
https://www.youtube.com/watch?v=a4cFONdc6nc



What is Bag of Visual Word for?

= Finding images in a database, which
are similar to a given query image

= Computing image similarities
= Compact representation of images




Analogy to Text Documents

Of all the sensory impressions proceeding to
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Looking for Similar Papers

< ipb.uni-bonn.de @] |

Co IPB Paper Repository Display:

Sort by % date % author % conference % year

Dense Planar-Inertial SLAM with Structural Constraints
M. Hsiao, E. Westman, M. Kaess

In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018
5/26/2018 SLAM | Mapping | Sensor Fusion
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In this work, we develop a novel dense planarinertial SLAM (DPI-SLAM) system to reconstruct dense 3D models of large indoor environments using a
hand-held RGB-D sensor and an inertial measurement unit (IMU). The preintegrated IMU measurements are loosely-coupled with the dense visual
odometry (VO) estimation and tightly-coupled with the planar measurements in a full SLAM framework. The poses, velocities, and IMU biases are
optimized together with the planar landmarks in a global factor graph using incremental smoothing and mapping with the Bayes Tree (iISAM2). With
odometry estimation using both RGB-D and IMU data, our system can keep track of the poses of the sensors even without sufficient planes or visual
information (e. g. textureless walls) temporanly Modeling planes and IMU states i in the fuIIy probab|||st|c global optlmlzatlon reduces the dnft that distorts

“find similar papers by first counting the
occurrences of certain words and second
return documents with similar counts.”

This work proposes a novel deep network architecture to solve the camera Ego-Motion estimation problem. A motion estimation network generally learns
features similar to Optical Flow (OF) fields starting from sequences of images. This OF can be described by a lower dimensional latent space. Previous
research has shown how to find linear approximations of this space. We propose to use an Auto-Encoder network to find a non-linear representation of
the OF manifold. In addition, we propose to learn the latent space jointly with the estimation task, so that the learned OF features become a more robust
description of the OF input. We call this novel architecture Latent Space Visual Odometry (LS-VO). The experiments show that LS-VO achieves a
considerable increase in performances with respect to baselines, while the number of parameters of the estimation network only slightly increases.




Bag of (Visual) Words

Analogy to documents: The content of a
can be inferred from the frequency of
relevant words that occur in a document

r
object bag of “visual words”
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Bag of Visual Words

= Visual words = independent features

features

[Image courtesy: Fei-Fei Li]



Bag of Visual Words

= Visual words = independent features

= Construct a dictionary of
representative words

= Use only words from the dictionary

dictionary (‘codebook™)

[Image courtesy: Fei-Fei Li] g



Bag of Visual Words

= Visual words = independent features
= Words from the dictionary

= Represent the images based on a
histogram of word occurrences
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[Image courtesy: Fei-Fei Li]



Bag of Visual Words

= Visual words = independent features
= Words from the dictionary

= Represent the images based on a
histogram of word occurrences

= Image comparisons are performed
based on such word histograms
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From Images to Histograms
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Overview: Input Image

12



Overview: Extract Features

[Image courtesy: Olga Vysotska]
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Overview: Visual Words

[Image courtesy: Olga Vysotska] 14



Overview: No Pixel Values
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Overview: Word Occurrences
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Images to Histograms
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Where Do the
Visual Words Come Form?
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Dictionary

= A dictionary defines the list of words
that are considered

= The dictionary defines the x-axes
of all the word occurrence histograms

&
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Dictionary

= A dictionary defines the list of words
that are considered

= The dictionary defines the x-axes
of all the word occurrence histograms

= The dictionary must remain fixed

The dictionary is typically learned
from data. How can we do that?
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Extract Feature Descriptors
from a Training Dataset

Visual feature — | —

descriptor vectors
(e-g-, SIFT) & 7 \ 7 \\ Z/ \l J

[Partial image courtesy: Fei-Fei Li] 21



Feature Descriptors are Points
in a High-Dimensional Space
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Group Similar Descriptors

[Image courtesy: Fei-Fei Li]
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Clusters of Descriptors from
Data Forms the Dictionary
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K-Means Clustering
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K-Means Clustering

= Partitions the data into k clusters
= Clusters are represented by centroids
= A centroid is the mean of data points

Objective:

= Find the k cluster centers and assign
the data points to the nearest one,
such that the squared distances to the
cluster centroids are minimized
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K-Means Clustering for
Learning the BoVW Dictionary

= Partitions the features into k groups
= The centroids form the dictionary

= Features will be assigned to the
closest centroid (visual word)

Approach:

= Find k word and assign the features to
the nearest word, such that the
squared distances are minimized
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K-Means Clustering (Informally)

= Initialization: Choose k arbitrary
centroids as cluster representatives

= Repeat until convergence

= Assign each data point to the closest
centroic

= Re-compute the centroids of the
clusters based on the assigned data
points
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K-Means Algorithm

Initialize m;,i = 1,...,k, for example, to k£ random z!
Repeat

For all &t € X
4

1 if |le&t — m;|| = min; ||t — m.;
e |2 — | = min; |l — m,

0 otherwise

For all mzz_l ..... k

mi — ) b t/Z b;

until m; converge /

/ \

Re-compute the cluster Assign each data
means using the current point to the closest
cluster memberships cluster
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K-Means Example
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Summary K-Means

= Standard approach to clustering

= Simple to implement

= Number of clusters k must be chosen
= Depends on the initialization

= Sensitive to outliers

= Prone to local minima

We use k-means to compute
the dictionary of visual words
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K-Means for Building the
Dictionary from Training Data
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All Images are Reduced to
Visual Words
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All Images are Represented
by Visual Word Occurrences
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Every image turns into a histogram
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Bag of Visual Words Model

= Compact summary of the image content

= Largely invariant to viewpoint changes
and deformations

= Ignores the spatial arrangement

= Unclear how to choose optimal size of the
vocabulary

= Too small: Words not representative

of al
= TOO

Image regions
arge: Over-fitting
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How to Find Similar Images?
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Task Description
= Task: Find similar looking images

= Input:
= Database of images
= Dictionary
= Query image(s)

= Output:
= The N most similar database

images to the query image HE
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Image Similarity by Comparing
Word Occurrence Histograms
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How to Compare Histograms?

= Euclidean distance of two points?

= Angle between two vectors?

= Kullback Leibler divergence (KLD)?
= Something else?
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[Image courtesy: Olga Vysotska]
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Are All Words Expressive
for Comparing Histograms?

= Should all visual words be treated in
the same way?

= Text analogy: What about articles?
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Some Word are Less Expressive
Than Others!

= Words that occur in every image do
not help a lot for comparisons
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= Example: the “"green word” is useless

[Image courtesy: Olga Vysotska] 41




TF-IDF Reweighting

= Weight words considering the
probability that they appear

= TF-IDF = term frequency - inverse
document frequency

= Every bin is reweighted

T d N
log —
nd 7

lid =

bin normalize weight
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TF-IDF ‘o™ f/qv

n”&d N inverse
tig = — log — < gocumen
bin of 7‘ % Uz

word |
in image d

t;q: histogram bin of word ¢ for image d

e n,4: occurances of word ¢ in image d

e n,: number of word occurances in image d
e n,;: number of images that contain word ¢

e N: number of images
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Computing the TF-IDF (1)

:'- | ||
- w = " g
” 3 g0z AREOT
il H
||
1 1

[Image courtesy: Olga Vysotska] 44



Computing the TF-IDF (2)
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Reweighted Histograms
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Reweighted Histograms
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= Relevant words get higher weights

= Others are weighted down to zero
(those occurring in every image)

=

[Image courtesy: Olga Vysotska] 47



Comparing Two Histograms

bl

Options
= Euclidean distance of two points
= Angle between two vectors

[Image courtesy: Olga Vysotska] 4s



Comparing Two Histograms

bl

Options
» Fuclidean distance of two vectors
= Angle between two vectors

BoVW approaches often use the
cosine distance for comparisons

[Image courtesy: Olga Vysotska] 49



Cosine Similarity and Distance

= Cosine similarity considers the cosine
of the angle between vectors:

 x'y
x| ||y

cossim(x,y) = cos(f)

= We use the cosine distance

XTy

deos(X,¥) =1 — cossim(x,y) =1 —

= Takes values between 0 anc

|| [yl
1

(for vectors in the 1st quadrant)
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Example Comparing Histograms

= 4 Images
= Image 0 and image 3 are similar
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Example Comparing Histograms
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Example Comparing Histograms
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Images have a zero distance to themselves
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Example Comparing Histograms

] — 0 1 0.98 0
— 1 0 1 1
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Images 0 and 3 are highly similar
[Image courtesy: Olga Vysotska]
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Cost Matrix
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IF-IDF Actually Helps
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Euclidean vs. Cosine Distance

= Cosine distance ignores the length of
the vectors

= For vectors of length 1, the squared
Euclidean and the cosine distance only
differ by a factor of 2:
N
(

x—yl? = x-y) (x—y)
1 T

= X X—2XTy V'Y

as ||x|]|=|lyl| =1
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Comparison of Distance Metrics

Euclidean

cosine distance
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Comparison of Distance Metrics
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Similarity Queries

= Database stores TF-IDF weighted
histograms for all database images

Find similar images by
= Extract features from query image
= Assign features to visual words

= Build TF-IDF histogram for query
image

= Return N most similar histograms
from database under cosine distance
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Further Material

= Bag of Visual Words in 5 Minutes:

https://www.youtube.com/watch?v=a4cFONdc6nc

5 Minutes with Cyrill
Bag of Visual Words
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Further Material

= Jupyter notebook by Olga Vysotska:
https://github.com/ovysotska/in_simple_english/
blob/master/bag_of_visual_words.ipynb

| & c © & https://github.com/ovysotska/in_simple_english/blob/master/bag_of v e Pd m o & =

TF-IDF weighting

Let's assume we already have a bag of visual words for our images and we have 4 images that are represented through image
histograms. In the example below, image 0 and image 3 are similar to each other. Thus, we expect the matching algorithm to report
them as similar. Every reweighted word in the histogram can be computed using the TF-IDF formula given by

t

n N
= d)oe N

i e
ny n;

where

® ;4 - occurance of word j in a document (image) d;

* 11, total number of words in a document (/;

« 1; number of documents (images in the database) that contain the word ;
* N number of documents (images in the database)
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In the example above, image 0 contains 5 blue, 2 pink, 1 green, and no yellow or orange words. The image has in total 8 word

"id

5 . .
| occurances. With this information, we can compute the TF ikt We can observe that blue word occurs in all 4 images, whereas,

for example, the yellow word occurs only in one. Thus, we can compute the overall weighting 7; for all words in every histogram. We



Further Material

Bag of Visual Words in 5 Minutes:

https://www.youtube.com/watch?v=a4cFONdc6nc

Jupyter notebook by Olga Vysotska:
https://github.com/ovysotska/in_simple_english/
blob/master/bag_of_visual_words.ipynb

Sivic and Zisserman. Video Google:
A Text Retrieval Approach to Object Matching in
Videos, 2003:
http://www.robots.ox.ac.uk/~vgg/publications/
papers/sivic03.pdf

TF-IDF information:
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
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Summary

BoVW is an approach to compactly
describe images and compute similarities
between images

Based in a set of visual words

Images become histograms of
visual word occurrences

TF-IDF weighting for increasing the
influence of expressive words

Similarity = histogram similarity
Cosine distance
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