
1 

Photogrammetry & Robotics Lab 

Bundle Adjustment – Part II 
Numerics of BA 

Cyrill Stachniss 
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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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Bundle Adjustment - Part I 
Short Reminder 
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Bundle Adjustment  
for Aerial Triangulation  
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Bundle Adjustment  
for Aerial Triangulation  

Image courtesy: Ackermann 
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Bundle Adjustment 

Least squares approach to estimating 
camera poses and 3D points 
 

Key idea: 
§  Start with an initial guess 
§  Project the estimated 3D points into 

the estimated camera images 
§  Compare locations of the projected 3D 

points with measured (2D) ones 
§  Adjust to minimize error in the images 
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Reprojection Error 

BA is a non-linear least squares 
approach 

scale 
factor 

projection matrix 
(w/ non-lin. calib.)  

3D point ij = point i  
observed 
in image j 

a=“arbitrary frame” 

corrections 

uncertainty 
in the image 
coordinates 

#points in  
image j 

#images 

project. 
params distortion img pix. 
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Unknown Parameters 

§  Non-linear least squares approach 
 

Unknowns: 
§  3D locations of new points 
§  1D scale factor 
§  6D exterior orientation 
§  5D projection parameters (interior o.) 
§  Non-linear distortion parameters  
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Eliminating the Scale Factors 

We can eliminate the per-point scale 
factor by using Euclidian coordinates  
(instead of homogenous coordinates) 

Example: ~13M unknowns reduce to ~3M unknowns 
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Setting Up and Solving the 
System of Normal Equations 
§  Standard procedure… 
§  With unknowns    and observations 
§  Setup the normal equations 
 
 
§  This yields the estimate 

unknowns observations 

unknowns observations 
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Part II 
Numeric of the 

Bundle Adjustment 
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We Cannot Solve the  
Linear System of BA in a 
Straightforward Manner   

 
Why? 
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We Cannot Solve the LS  
in a Straightforward Manner  

The linear system becomes too large 

Example 
§  20k images, 18 points per image 
§  Every point is observed on avg. 3 times 
§  120k points = 360k location parameters 
§  120k orientation parameters (6x20k) 
§  480k parameters from 720k observations 
§  Jacobian matrix: ~3.5x1011 elements 
§  Normal equation: ~2.3x1011 elements  
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Let’s Study a Small Example to 
Understand the Structure 

Setup 
§  3 stripes 
§  7 images per 

stripe 
§  60%/20% 

overlap 
§  21 images 
§  49 points 
§  4 full CPs 
§  45 new points 
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Image courtesy: Förstner 
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Configuration 
§  6 images with 6 points 
§  15 images with 9 points 
§  171 images points yield  

171 x2=342 observat. 
§  45 new points yield  

45 x3=135 unknowns 
§  21 x6=126 unknowns  

orientation parameters  
§  In sum 261 unknowns 
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Image courtesy: Förstner 
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Coefficient Matrix 

§  We have 
§  Let us split up 

§  This leads to 

6D orientation 
parameters (cams) 

3D point  
coordinates 



17 

Coefficient Matrix 

§  We have 
§  Thus, for every error equation 

§  Coefficient  
matrix  
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Coefficient Matrix 

§  Structure 

§  with 

  What follows from this structure?   
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Coefficient Matrix 

§  Structure 

§  with 

§  Sparse matrix: mostly 0 entries 
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Coefficient Matrix  
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Image courtesy: Förstner 
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For 3 stripes with  
7 images per stripe 
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Coefficient Matrix  

number of observations  
(points) per image 

number of times a 
point is observed 

#obs 
#pts #imgs 

For 3 stripes with  
7 images per stripe 
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Properties of C 

§  The matrix C consists of  
2x3 sub-matrices 

§  The sub-matrices connect  
image point     with  

§  1 non-zero 2x3 matrix per “row” in C 
§  The number of non-zero 2x3 matrices 

per “column” is the number of times 
the points     has been observed 
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Properties of B 

§  The matrix B consists of  
2x6 sub-matrices 

§  The sub-matrices connect  
and image point      and  
the      camera orientation  

§  1 non-zero 2x6 matrix per “row” in B 
§  The number of non-zero 2x6 matrices 

per “column” is the number of image 
points     in the     image   
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Submatrices B and C for the 
Normal Case (s. Photo 1 – P3P) 
§  The sub-matrices of B and C are the 

result of the linearization (Jacobians) 
§  See Photogrammetry I (P3P):  

§  and 



25 

Submatrices B and C  
for the General Case 
§  Computing the Jacobians for the 

general case is more demanding 
§  In practice, one uses math tools  
 

Two common ways: 
§  #1: Compute Jacobians analytically  
§  #2: Compute Jacobians numerically 

(done fully automatically) 
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Normal Matrix  

We also obtain a sparse normal matrix 
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Image courtesy: Förstner 
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Coefficient Matrix Example 

For 7 stripes with 15 images per stripe 
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Normal Matrix  

Again, we obtain a sparse normal matrix 
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Sparse Coefficient Matrix 

A: 3.3% non-zero 
N: 9.8% non-zero  
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Image courtesy: Förstner 
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Normal Matrix   

§  We assume a block-diagonal cov. 
matrix for the observations 

§  We obtain the normal matrix 
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Normal Matrix   

block-diagonal  
with 3x3 blocks 

block-diagonal  
with 6x6 blocks 

sparse matrix that 
reveals the connections 
of images and points; 
consist of 3x6 blocks 
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Normal Matrix   
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all images in which  
point i is observed 

all points that are  
observed in image j 
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Orientation Parameters Only 

§  If we want to compute the orientation 
parameters only, we proceed: 
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Orientation Parameters Only 

§  If we want to compute the orientation 
parameters only, we proceed: 
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Orientation Parameters Only 

§  If we want to compute the orientation 
parameters only, we proceed: 
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Orientation Parameters Only 

§  If we want to compute the orientation 
parameters only, we proceed: 
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Reduced Normal System 

§  The reduced normal system             is 
independent of the number of points 

§  The reduced system is still sparse 
§  Here, it is a 126x126 matrix 

(square matrix, size #obs by #obs) 
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(Reduced) Normal Matrix  
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Reduced Normal System 

§  The reduced normal system is 

§  with 
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Reduced Normal System 

§  The reduced normal system is 

§  with 

§  Solve                using a sparse solver 
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Obtaining 3D Points Given 

§  We had 

§  and solved for  
§  This directly leads to 

 

§  Thus, we can can compute the point 
coordinates given the orientations     : 



42 

Building the Normal Equation 
§  The full Jacobian/coefficient matrix A does 

not need to be constructed explicitly 
§  We directly construct N by 

 
§  and construct the reduced system 

§  Solve it with a sparse solver 
§  Compute the points coordinates  
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BA Without Control Points 

§  In case no control points are provided,  
the reference frame is not defined 

§  BA will only be able to correct the 
geometry up to a similarity transform 

     Problems? 
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BA Without Control Points 

§  In case no control points are provided,  
the reference frame is not defined 

§  BA will only be able to correct the 
geometry up to a similarity transform 

§  Normal equations with rank deficiency 
of 7 

§  Gauge-freedom  
§  We have to specify a datum  
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Datum Without Control Points 

§  Datum through additional constraints 
 
Constraints: 
§  The center of mass of the 3D points 

should not change (translation)  
§  No change in the main directions 

(rotation)  
§  No change in the average distance to 

the center of mass (scale) 
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Reference Frame 
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Reference Frame 
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Constraints 

§  Constraint can be expressed through  
a constraint matrix    with 

§  The Jacobian    is added and thus 
considered in the error minimization  
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Constraints 

§  We use 
§  Weight matrix    for the points   
§      is often the identity or an indicator 

function (to deactivate certain points) 
 translation rotation scale 
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A Remark on Outliers 

§  See BA – Part 1 lecture on how to 
reduce the risk of outlier observations 

§  Furthermore, we use robust kernels 
§  Instead of using a Gaussian noise 

model, consider a robustified version 
§  Reduce “penalty” far away from 0 
 

L1 norm Huber Blake-Zisserman 



51 

Robust Kernels 

Source: Barron, A General and Adaptive Robust Loss Function, CVPR 2019 

A robust kernel leads to weighted LS 
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BA Numerics Summary 

§  Bundle Adjustment = least squares 
solution to relative and absolute 
orientation considering uncertainties 

§  We have to solve a large system 
§  BA leads to sparse matrices 
§  Using sparse solvers is key 
§  Often sequential solution of orientation 

parameters first and then the point 
coordinates 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used images or 

videos. In case I made a mistake or missed someone, please 
let me know.  

§  The photogrammetry material heavily relies on the very well 
written lecture notes by Wolfgang Förstner and the 
Photogrammetric Computer Vision book by Förstner & Wrobel. 

§  Parts of the robotics material stems from the great 
Probabilistic Robotics book by Thrun, Burgard and Fox. 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de, 2014 


