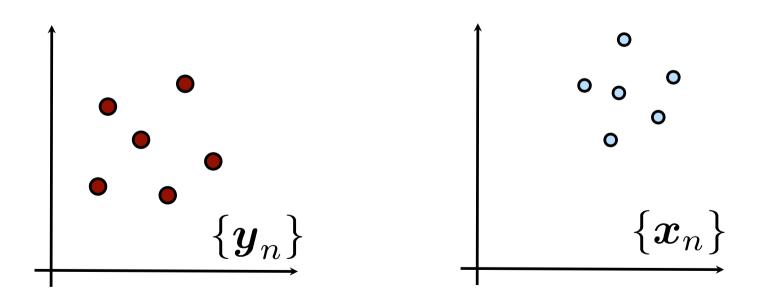
Photogrammetry & Robotics Lab

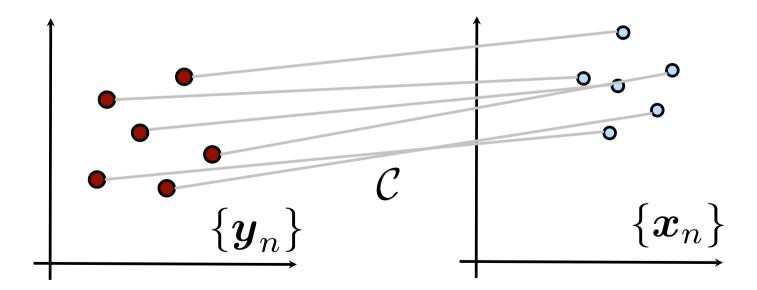
Absolute Orientation Problem: Derivation of the Solution

Cyrill Stachniss

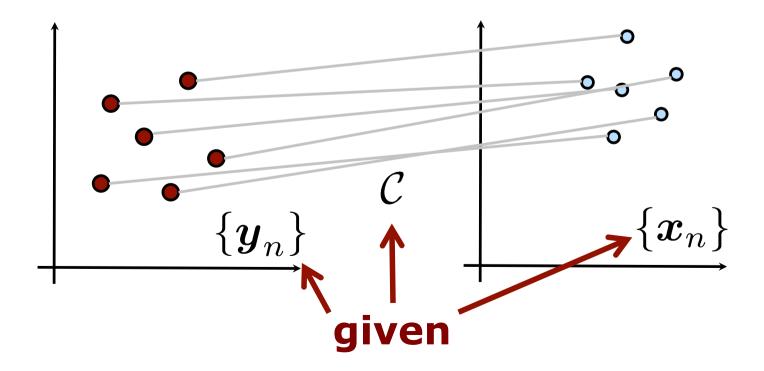
5 Minute Preparation for Today

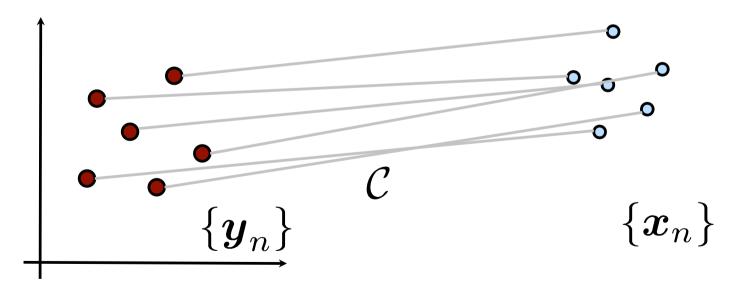
https://www.ipb.uni-bonn.de/5min/



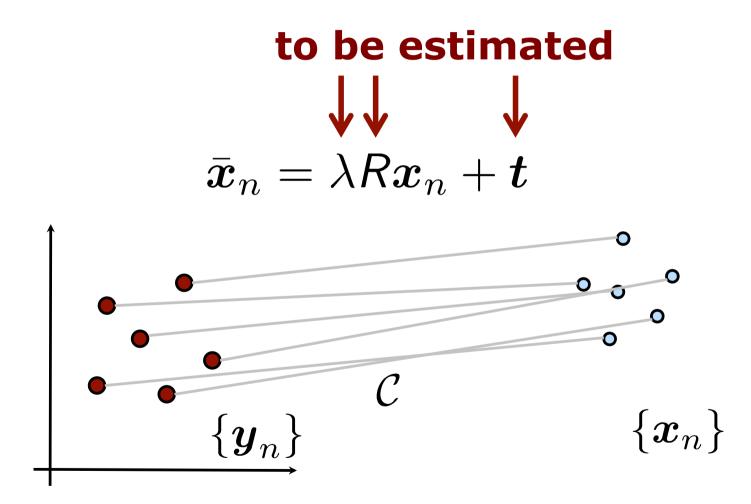


4

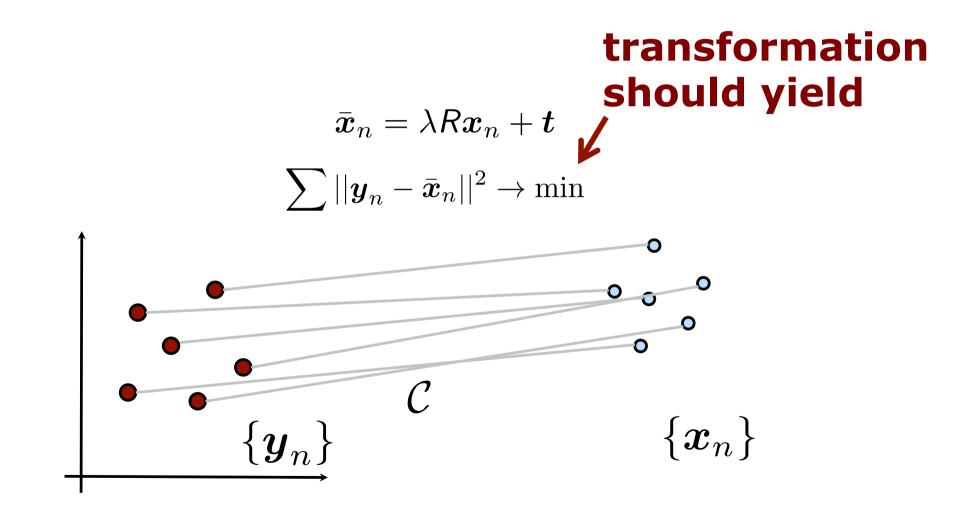


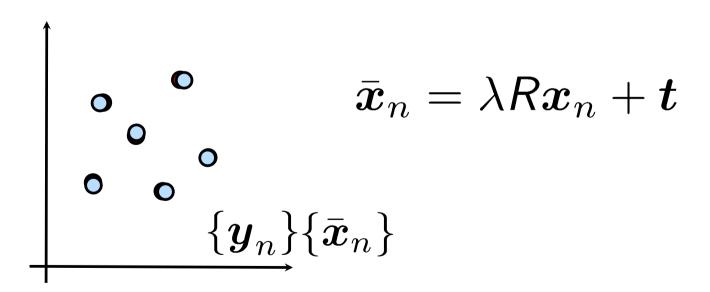


6



7





Absolute Orientation

Find the similarity transform

$$\bar{\boldsymbol{x}}_n = \lambda \boldsymbol{R} \boldsymbol{x}_n + \boldsymbol{t}$$

- that transforms a set of points $\{ oldsymbol{x}_n \}$
- so that the points $\{\bar{x}_n\}$ will be as close as possible to the point set $\{y_n\}$
- Known correspondences
- Minimize the squared error

$$\sum ||m{y}_n - ar{m{x}}_n||^2 o \min$$

Why is That Relevant?

For camera data

- Camera pairs can only compute a 3D model defined up to a similarity transform (photogrammetric model)
- A.O. anchors the model

For LiDARs / point clouds

 A.O. is a key ingredient of the iterative closest point algorithm (ICP)

Example: Absolute Orientation Used on Image Data

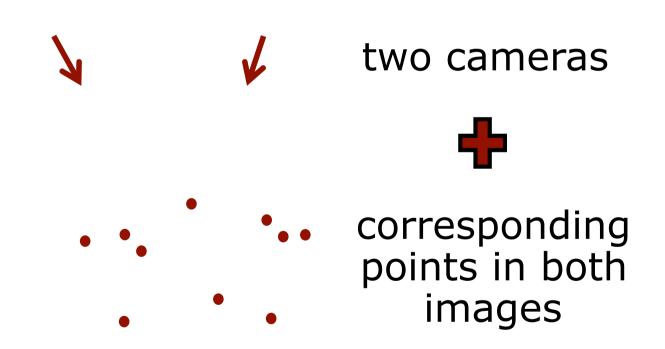
Absolute Orientation

 A similarity transform maps the photogrammetric model into the object reference frame

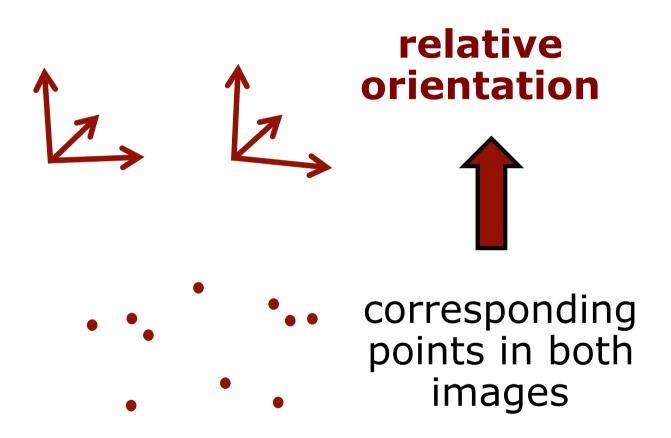
$$^{o}\boldsymbol{X}_{n} = \lambda R^{m}\boldsymbol{X}_{n} + \boldsymbol{T}$$

7 DoF for the similarity transform (3 rotation, 3 translation, 1 scale)
Control points are required (3+)

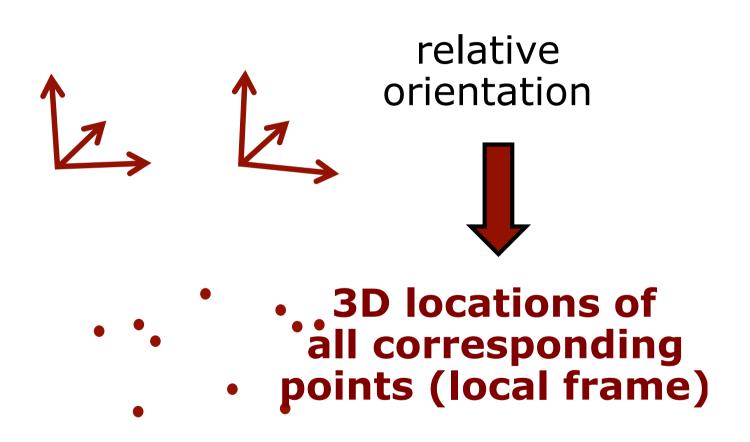
Relative Orientation



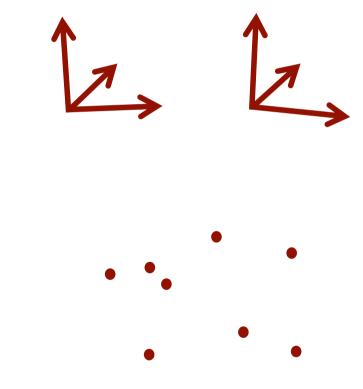
Relative Orientation



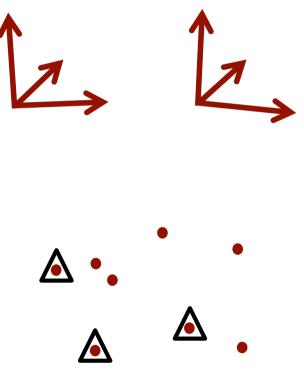
Triangulation

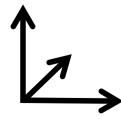


Photogrammetric Model



Object Reference Frame





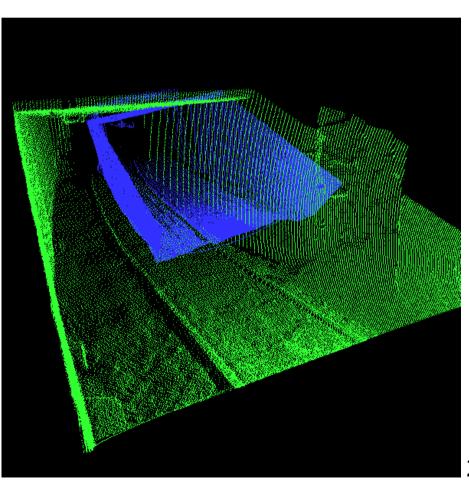
Example: Absolute Orientation Used on Point Cloud Data

Point Cloud Registration (ICP)

Find the rigid body transform

 $ar{x}_n = Rx_n + t$

- to transform one point cloud or surface into the other
- Equal scale



Problem Definition

Given corresponding points:

$$\boldsymbol{y}_n, \boldsymbol{x}_n \qquad n=1,\ldots,N$$

and weights (optional):

$$p_n \qquad n=1,\ldots,N$$

Find the parameters λ, R, t of the similarity transform so that

$$ar{m{x}}_n = \lambda R m{x}_n + m{t} \qquad n = 1, \dots, N$$

so that the squared error is minimized

$$\sum ||\boldsymbol{y}_n - \bar{\boldsymbol{x}}_n||^2 p_n o \min$$

Derivation of a Direct Solution to the Absolute Orientation Problem

Use Local Coordinate System

- We use local coordinates defined by the point set $\{ \boldsymbol{y}_n \}$
- We set the origin as weighted mean of $\{ \boldsymbol{y}_n \}$ computed by

$$\boldsymbol{y}_0 = \frac{\sum \boldsymbol{y}_n \, p_n}{\sum p_n}$$

so that we minimize

$$\sum ||\boldsymbol{y}_n - \boldsymbol{y}_0 - \lambda R \boldsymbol{x}_n - \boldsymbol{t} + \boldsymbol{y}_0||^2 p_n \to \min$$
does not change the problem

Rewrite Translation Vector

Start with
$$ar{m{x}}_n = \lambda R m{x}_n + m{t}$$

- and use the shift of the origin $ar{m{x}}_n m{y}_0 = \lambda R m{x}_n + m{t} m{y}_0$
- to rewrite the translation vector $\bar{x}_n - y_0 = \lambda R(x_n + \underline{R}^{\top} t - R^{\top} y_0)$
- Introduce a new variable x_0 :

$$ar{oldsymbol{x}}_n - oldsymbol{y}_0 = \lambda R(oldsymbol{x}_n - oldsymbol{x}_0)$$

• with $oldsymbol{x}_0 = R^ op oldsymbol{y}_0 - R^ op oldsymbol{t}$

Rewrite Scale Term

- Start with $\bar{\boldsymbol{x}}_n \boldsymbol{y}_0 = \lambda R(\boldsymbol{x}_n \boldsymbol{x}_0)$
- Divide both sides by $\lambda^{\frac{1}{2}}$
- This leads to

$$\lambda^{-\frac{1}{2}}(\bar{\boldsymbol{x}}_n - \boldsymbol{y}_0) = \lambda^{\frac{1}{2}} R(\boldsymbol{x}_n - \boldsymbol{x}_0)$$

unknowns parameters to determine

• Goal: Find parameters such that $\sum ||m{y}_n - ar{m{x}}_n||^2 \, p_n o \min$

Define Objective Function

- Minimize the fct. $\Phi(\boldsymbol{x}_0,\lambda,R)$
- defined by

$$\Phi(\boldsymbol{x}_{0},\lambda,R) = \sum \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right]^{\top} \\ \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right] p_{n}$$

Minimizes a weighted squared error

How to minimize this function?

Minimize Objective Function

Minimize the objective function

$$\Phi(\boldsymbol{x}_{0},\lambda,R) = \sum \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right]^{\top} \\ \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right] p_{n}$$

By

- Computing the first derivatives
- Setting derivatives to zero
- Solving the remaining equation(s)

Rearrange the Terms

Rearrange the objective function

$$\Phi(\boldsymbol{x}_{0},\lambda,R) = \sum \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right]^{\top} \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right] p_{n}$$

$$\Phi(\boldsymbol{x}_0, \lambda, R) = \sum \lambda^{-1} (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$

+ $\sum \lambda (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$
- $2 \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top R(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$

_

Rearrange the Terms

Rearrange the objective function

$$\Phi(\boldsymbol{x}_{0},\lambda,R) = \sum \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right]^{\top} \left[\lambda^{-\frac{1}{2}}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})-\lambda^{\frac{1}{2}}R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})\right] p_{n}$$

$$= \mathbf{to}$$

$$\Phi(\boldsymbol{x}_{0},\lambda,R) = \sum \lambda^{-1}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0})^{\top}(\boldsymbol{y}_{n}-\boldsymbol{y}_{0}) p_{n} \leftarrow \text{no } \boldsymbol{x}_{0}, R$$
$$+ \sum \lambda(\boldsymbol{x}_{n}-\boldsymbol{x}_{0})^{\top}(\boldsymbol{x}_{n}-\boldsymbol{x}_{0}) p_{n} \leftarrow \text{no } R$$
$$-2 \sum (\boldsymbol{y}_{n}-\boldsymbol{y}_{0})^{\top} R(\boldsymbol{x}_{n}-\boldsymbol{x}_{0}) p_{n} \leftarrow \text{no } \lambda$$

Solve w.r.t. x_0

Derivative with respect to $oldsymbol{x}_0$

Compute first derivative of

$$\Phi(\boldsymbol{x}_0, \lambda, R) = \sum \lambda^{-1} (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$
$$+ \sum \lambda (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$
$$-2 \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top R(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

• with respect to $oldsymbol{x}_0$

$$\frac{\partial \Phi(\boldsymbol{x}_0, \lambda, R)}{\partial \boldsymbol{x}_0} = -2 \sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n + 2 \sum R^{\top}(\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$

Set Derivative to Zero

• Set first derivative to zero: $\frac{\partial \Phi}{\partial x_0} = 0$

$$0 = -2\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n + 2\sum \boldsymbol{R}^{\top}(\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$

This simplifies to

$$\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n = R^{\top} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$

Set Derivative to Zero

• Set first derivative to zero: $\frac{\partial \Phi}{\partial x_0} = 0$

$$0 = -2\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n + 2\sum \boldsymbol{R}^{\top}(\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$

• This simplifies to $\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n = R^{\top} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$

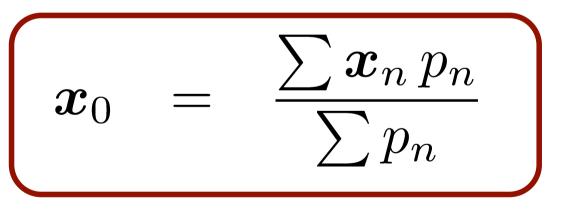
equals zero as $oldsymbol{y}_0$ is the weighted mean of $oldsymbol{y}_n$

$$\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n = 0$$

Unknown $oldsymbol{x}_0$ is the Weighted Mean of the Points to Transform

• As
$$\sum \lambda(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n = 0$$

- We obtain $\sum x_n p_n \sum x_0 p_n = 0$
- This leads to



The optimal value for x_0 is the weighted mean of the points x_n

Solve w.r.t. λ

Derivative with respect to λ

Compute first derivative of

$$\begin{split} \Phi(\boldsymbol{x}_0,\lambda,R) &= \sum \lambda^{-1}(\boldsymbol{y}_n-\boldsymbol{y}_0)^\top (\boldsymbol{y}_n-\boldsymbol{y}_0) \, p_n \\ &+ \sum \lambda (\boldsymbol{x}_n-\boldsymbol{x}_0)^\top (\boldsymbol{x}_n-\boldsymbol{x}_0) \, p_n \\ &- 2 \sum (\boldsymbol{y}_n-\boldsymbol{y}_0)^\top R(\boldsymbol{x}_n-\boldsymbol{x}_0) \, p_n \end{split}$$

- with respect to λ

$$\frac{\partial \Phi(\boldsymbol{x}_0, \lambda, R)}{\partial \lambda} = -\lambda^{-2} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n \\ + \sum (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

Set Derivative to Zero

• Set first derivative to zero: $\frac{\partial \Phi}{\partial \lambda} = 0$

$$0 = -\lambda^{-2} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$
$$+ \sum (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

Directly leads to

$$\lambda = \sqrt{\frac{\sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n}{\sum (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n}}$$

Solve w.r.t. R

Compute R That Minimizes Φ

• Only the 3rd term of Φ depends on R

$$\Phi(\boldsymbol{x}_0, \lambda, R) = \sum \lambda^{-1} (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n$$
$$+ \sum \lambda (\boldsymbol{x}_n - \boldsymbol{x}_0)^\top (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$
$$-2 \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top R(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

So we need to find R that maximizes

$$R^* = \operatorname{argmax}_{R} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top R(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

with $R^\top R = I$

Exploit Information So Far

Given we know x_0 , compute reduced coordinates as

$$oldsymbol{a}_n = (oldsymbol{x}_n - oldsymbol{x}_0) \ oldsymbol{b}_n = (oldsymbol{y}_n - oldsymbol{y}_0)$$

This leads from

• to

$$R^* = \underset{R}{\operatorname{argmax}} \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top R(\boldsymbol{x}_n - \boldsymbol{x}_0) p_n$$

$$R^* = \underset{R}{\operatorname{argmax}} \sum \boldsymbol{b}_n^\top R \boldsymbol{a}_n p_n$$

Rewrite Using the Trace

We can directly rewrite

$$egin{aligned} & \mathcal{R}^* = rgmax \sum oldsymbol{b}_n^ op \mathcal{R} oldsymbol{a}_n \, p_n \ & \mathcal{R} \end{aligned}$$

using the trace as

$$R^* = \operatorname*{argmax}_{R} \operatorname{tr}(RH)$$

with the cross covariance matrix

$$H = \sum (\boldsymbol{a}_n \boldsymbol{b}_n^{\top}) p_n$$

• Goal: Find R that maximizes tr(RH)

Maximization Using SVD

- To find R that maximizes tr (RH), we can exploit the SVD
- SVD gives us

 $\operatorname{svd}(H) = UDV^{\top}$

with

$$U^{\top}U = I$$
 $V^{\top}V = I$ $D = \operatorname{diag}(d_i)$

Maximization Using SVD

Let's see what happens if we set

$$R = V U^{\top}$$

Then, we obtain tr (RH) = tr (V U^TUDV^T) = tr (VDV^T)
and can rewrite this as tr (VDV^T) = tr (VD^{1/2}D^{1/2}V^T)

Maximization Using SVD

Given that D is diagonal, we get

$$\operatorname{tr}\left(VD^{\frac{1}{2}}D^{\frac{1}{2}}V^{\top}\right) = \operatorname{tr}\left(VD^{\frac{1}{2}}(D^{\frac{1}{2}}V)^{\top}\right)$$

- and with the definition $A = VD^{\frac{1}{2}}$ $\operatorname{tr}(RH) = \operatorname{tr}(AA^{\top})$
- with A being a positive definite matrix, details see: Arun et al (1987)

Exploit Schwarz Inequality

For every pos. definite matrix A holds

$$\operatorname{tr} \left(A A^{\top} \right) \geq \operatorname{tr} \left(R' A A^{\top} \right)$$

for any rotation matrix R'

- Result of the Schwarz inequality
- This means $\operatorname{tr}(RH) = \operatorname{tr}(AA^{\top}) \ge \operatorname{tr}(R'AA^{\top}) = \operatorname{tr}(R'RH)$

any other rotation matrix

• Thus, our choice $R = V U^{\top}$ was optimal as it maximizes the trace

Proof that
$$\operatorname{tr}\left(AA^{\top}\right) \geq \operatorname{tr}\left(R'AA^{\top}\right)$$

Lemma: For any positive definite matrix AA^{t} , and any orthonormal matrix B,

 $\operatorname{Frace}(AA') \geq \operatorname{Trace}(BAA').$

Proof of Lemma: Let a_i be the *i*th column of A. Then

Trace
$$(BAA^{t})$$
 = Trace $(A^{t}BA)$
= $\sum_{i} a_{i}^{t}(Ba_{i}).$

But, by the Schwarz inequality,

10.25

$$a_i^t(Ba_i) \le \sqrt{(a_i^t a_i)(a_i^t B^t Ba_i)} = a_i^t a_i.$$

Hence, Trace $(BAA^t) \le \Sigma_i a_i^t a_i = \text{Trace } (AA^t).$ Q.E.D.
Let the SVD of H be:

See: Arun et al (1987) "Least-Squares Fitting of Two 3D Point Sets." IEEE T-PAMI 9(5), 698–700.

optional

Optimal *R*

$\hfill \hfill \hfill$

$$R = V U^{\top}$$

• with
$$\operatorname{svd}(H) = UDV^{\top}$$

• and
$$H = \sum (\boldsymbol{a}_n \boldsymbol{b}_n^\top) p_n$$

Unique Solution?

- SVD provides the decomposition $svd(H) = UDV^{\top}$
- The matrices U, V are 3 by 3 matrices
- U, V are rotation matrices
- Diagonal matrix $D = Diag(d_1, d_2, d_3)$
- Only if $\mathrm{rank}(H)=3$, the rotation minimizing Φ is unique

Translation Vector

- Based on x_0 and R , we obtain the translation vector t of our transform
- Starting from

$$\boldsymbol{x}_0 = \boldsymbol{\mathsf{R}}^{ op} \boldsymbol{y}_0 - \boldsymbol{\mathsf{R}}^{ op} \boldsymbol{t}$$

directly leads to

$$t = y_o - Rx_0$$

We Derived the Solution for the **Absolute Orientation Problem**

- Scale: $\lambda = \sqrt{\frac{\sum (\boldsymbol{y}_n - \boldsymbol{y}_0)^{\mathsf{T}} (\boldsymbol{y}_n - \boldsymbol{y}_0) p_n}{\sum (\boldsymbol{x}_n - \boldsymbol{x}_0)^{\mathsf{T}} (\boldsymbol{x}_n - \boldsymbol{x}_0) p_n}}$ Rotation: $R = VU^{\top}$ Translation: $t = y_0 - Rx_0$

• with
$$\boldsymbol{y}_0 = \frac{\sum \boldsymbol{y}_n p_n}{\sum p_n}$$
 $\boldsymbol{x}_0 = \frac{\sum \boldsymbol{x}_n p_n}{\sum p_n}$

 $H = \sum (\boldsymbol{x}_n - \boldsymbol{x}_0) (\boldsymbol{y}_n - \boldsymbol{y}_0)^\top p_n \quad \operatorname{svd}(H) = U D V^\top$

Note: Two Different Variants...

- There are two (sometimes confusing) variants of the problem formulation
- Variant 1:

$$H = \sum (\boldsymbol{x}_n - \boldsymbol{x}_0)(\boldsymbol{y}_n - \boldsymbol{y}_0)^\top p_n \quad R = \boldsymbol{V}\boldsymbol{U}^\top$$

Variant 2:
$$H = \sum (\boldsymbol{y}_n - \boldsymbol{y}_0)(\boldsymbol{x}_n - \boldsymbol{x}_0)^\top p_n \quad R = \boldsymbol{U}\boldsymbol{V}^\top$$

Both are equivalent!

Summary

- Solving the absolute orientation problem is key in photogrammetry and point cloud processing
- Computes the similarity transforms between two point sets
- Direct solution that minimizes the squared error
- Efficient to implement
- Effective and popular approach