Photogrammetry & Robotics Lab

RANSAC -
Random Sample Consensus

Cyrill Stachniss



5 Minute Preparation for Today

5 Minutes with Cyrill
> RANSAC
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Notre-Dame: SIFT All Matches
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Notre-Dame: SIFT Inliers




Fitting Example: Ground Plane
From Aerial Laser Scans




Fitting Example: Ground Plane
From Aerial Laser Scans




RANSAC

RANdom SAmple Consensus
[Fischler & Bolles 81]



RANdom SAmple Consensus

= Trial-and-error approach

= Approach to deal with high fractions of
outliers in the data

= Key idea: Find the best partition of
points in inlier set and outlier and
estimate the model from the inlier set

= Standard approach for fitting in the
presence of outliers



RANSAC Algorithm

1.Sample the number of data points
required to fit the model

2.Compute model parameters using
the sampled data points

3.Score by the fraction of inliers within
a preset threshold of the model

Repeat 1-3 until the best model is
found with high confidence
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1. Sample the number of data points required to fit
the model

2. Compute model parameters using the samples

3. Score by the fraction of inliers within a preset
threshold of the model

Repeat 1-3 until the best model is found

Illustration by Savarese 11



® 0
RANSAC ® °. °

Line fitting example

1. Sample the number of data points required to fit
the model (here: 2 points)

2. Compute model parameters using the samples

3. Score by the fraction of inliers within a preset
threshold of the model

Repeat 1-3 until the best model is found
Illustration by Savarese 12



RANSAC

Line fitting example

1. Sample the number of data points required to fit
the model (here: 2 points

2. Compute model parameters using the samples

3. Score by the fraction of inliers within a preset
threshold of the model

Repeat 1-3 until the best model is found
Illustration by Savarese 13



RANSAC

Line fitting example

#inliers: 4 O

1. Sample the number of data points required to fit
the model (here: 2 points)

2. Compute model parameters using the samples

3. Score by the fraction of inliers within a preset
threshold of the model

Repeat 1-3 until the best model is found
Illustration by Savarese 14
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Line fitting example

#inliers: 12 .-
///k‘ ’
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1. Sample the numberof data points required to fit
the model (here: 2 points)

2. Compute model parameters using the samples

3. Score by the fraction of inliers within a preset
threshold of the model

Repeat 1-3 until the best model is found
ustration by Savarese 15



RANSAC Example: Translation
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extracted features correspondences
Slide courtesy: Snavely/Efros 16



RANSAC Example: Translation

select random match
Slide courtesy: Snavely/Efros 17



RANSAC Example: Translation

count inliers (0)
Slide courtesy: Snavely/Efros 18



RANSAC Example: Translation

select another random match
Slide courtesy: Snavely/Efros 19



RANSAC Example: Translation
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count inliers (4)
Slide courtesy: Snavely/Efros 20



RANSAC Example: Translation

Repeat N times: select match, count inliers
Slide courtesy: Snavely/Efros 21



RANSAC Example: Translation

Return translation with the most inliers
Slide courtesy: Snavely/Efros 22



Feature-Based Alignment
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Feature-Based Alighmen

= Extract features
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Feature-Based Alignment
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= Extract features
= Compute putative matches
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eature-Based Alighment

= Extract features
= Compute putative matches
= | oop:

= Hypothesize transformation T

= Verify transformation (search for
other matches consistent with 7)
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eature-Based Alighment

= Extract features
= Compute putative matches
= | oop:

= Hypothesize transformation T

= Verify transformation (search for
other matches consistent with 7)
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Feature-Based Alignment

= Extract features
= Compute putative matches
= | oop:

= Hypothesize transformation T

= Verify transformation (search for
other matches consistent with 7)
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Notre-Dame: Harris Keypoints




Notre-Dame: Keypoint Matches
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Notre-Dame: After RANSAC
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How Often Do We Need to Try?
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

How many trials to we need?
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers

l—-p=1—(1—¢)°

p(fail once) = do not select only inliers

36



How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers

l—p=(1-(1-¢°)"

p(fail T times) = select at least one
outlier in all T trials
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers

l—-p=(1-(1-¢)"

$

log(1 —p) = T'log(1 — (1 —¢€)°)
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers
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Required Number of Trials

p | s
0,1

0,5

0,75

0,9

0,95

0,99
0,999
0,9999

y U W MM = = = N

0,1 Qutlier Ratio

00 O B W NN =W

W o~ U W w k= =

00 & W KN = = WU

[
[

1

(=

e I« TS - S TR

11
17
22

15

- P

10
13
20
30
40

20

11
18
24
36
54
72

40



Required Number of Trials
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Required Number of Trials
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Required Number of Trials

p | s 2
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Number of Sampled Points (s)
Matter

= Estimation algorithms require different
numbers of sampled points

= 8-point vs. 5-point algorithm (Nister)

= The small s, the better, especially with
high outlier ratios
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How to Choose the Parameters?

= Number of sampled points s
(minimum number needed to fit the model)

= Qutlier ratio e (e=#outliers/#datapoints)

= Number of trials T
Choose T so that, with probability p, at least
one random sample set is free from outliers

= Distance threshold 6
Choose 8 so that a good point with noise is
likely (e.g., prob=0.95) within threshold
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RANSAC: Pros and Cons

Pros
= Robustly deal with outliers

= Works well for 1 to roughly 10 parameters
(depending on the number of outliers)

= Easy to implement and understand

Cons

= Computational time grows quickly with
fraction of outliers and number of
parameters needed to fit the model

= Not good for getting multiple fits
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Common RANSAC Applications

= Finding point correspondences

= Estimating fundamental matrix
(relating two views)

= Visual odometry

= Computing a homography
(e.g., image stitching)

= Laser scan matching
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Summary

= RANSAC - the standard tool for model
fitting with outliers

= Trial-and-error approach

“"RANSAC In 30 seconds”
= Guess inliers
= Compute model given guess

= Score the model by testing the data
points and model for consistency

= Repeat
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