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Motivation 
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Relative Orientation  

Last lecture 
Compute the essential matrix matrix 
given corresponding points using a 
direct method 
 

Today’s Lecture 
§  Compute the essential matrix given 

corresponding points with an iterative 
least squares approach 

§  Analyze the quality of our solution 
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Iterative Solution  
for the Relative Orientation  
from Corresponding Points 
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Reminder: Essential Matrix 

§  Essential matrix encodes the R.O. 
for a calibrated camera pair 

§  Often parameterized through 
 

§  Coplanarity constraint 

(parameterizations of dependent images)  
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Coplanarity Constraint for  
N Corresponding Points 
§  For each point pair, we can formulate 

the coplanarity constraint: 

§  Expressed for the parameterizations  
of dependent images: 
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Estimate the Essential Matrix  
(Here: Stereo Normal Case) 
§  Estimate    through least squares 
§  Coplanarity constraint directly 

yields an error function in the 
parameters of the R.O. 

§  Coplanarity constraint is non-linear  
in the parameters 

§  Thus, we need to iterate 
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Non-Linear Error Function 

§  Coplanarity constraint yields a  
non-linear error function 

Assumptions  
§  Approximately stereo normal case 
§  Classic photogrammetric parameteriz. 

of dependent images (                ,  
5 parameters for the R.O.) 
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Problem Statement 

Wanted: R.O. parameters 
(approximately stereo normal case) 
  

Given: 
§  Observed image coordinates 

§  Uncertainty of the observations 

§  Initial guess for the R.O. parameters  
parameters: 

simplified: 
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Towards the Linearized 
Observation Equations 
§  Starting point: 
§  Initial guess: 
§  Next goal: find the observation 

equation for the Gauss-Markov model: 

 

observation + correction =  coefficients times  
corrections in unknowns 
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Towards the Linearized 
Observation Equations 
§  Starting point: 
§  Initial guess: 
§  “How do variations in the parameters 

effect the function itself?” 

correction in x’ 

correction in x’’ 
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Basis 

§  Linearized equation for the basis 

§  This leads to the skew-symmetric  

2 unknowns 

correction in Sb 
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Rotation 

§  Linearized equation for the rotation 

§  Coplanarity constraint (~normal case) 

3 unknowns correction in R 
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Linearized Observation Equation 

§  The coplanarity constraint 

§  The linearized error function through 
the initial guess and total differential  
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Linearized Observation Equation 

change in x’’ 

change in Sb 

change in R 

change in x’ 

normal case 
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Linearized Observation Equation 

change in x’’ 

change in Sb 

change in R 

change in x’ 

normal case 
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Linearized Observation Equation 

for the stereo normal case 

x-parallax 

y-parallax 
y-parallax corr 
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Linearized Observation Equation 
Target py because this is the term  
to be zero (coplanarity constraint  

for stereo normal) 
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This Leads Us to 
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Gauss Markov Model 

GM: observation + GM: corrections = 
  

GM: coefficients  
times the corrections 

in the unknowns 



25 

Observation Equation  
Written Using Vectors 

coefficients  
times the corrections 

in the unknowns 
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For All Observations, We Obtain 
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Uncertainties 

§  Uncertainty in the y-parallax 
 
§  In case both coordinates are measured 

equally accurate 

§  Assuming no correlation between 
corresponding points 

n by n  
diagonal 
matrix 
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System of Normal Equations 

§  We computed the linearized error eqn 
§  We have the observation cov matrix  
§  This leads to the normal equations 

 
§  And thus the parameter corrections 

§  For the observations (y-parallaxes) 
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Summary so far 

§  Iterative least squares approach to 
estimate the relative orientation for 
calibrated cameras 

§  We used  the coplanarity constraint as 
our error function 

§  Linearization  
§  Yields GM model 
§  Setup of a linear system 
§  Solving it yields the corrections 



30 

Quality of the Result 
“How Good is a Solution?” 
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Precision, Trueness, Accuracy 
§  Precision (DE: Präzision) 

The closeness of agreement between 
independent test results obtained under  
the same conditions.  

§  Trueness (DE: Richtigkeit)  
The closeness of agreement between the 
average value obtained from a large series 
of measurements and the true value.   

§  Accuracy (DE: äußere Genauigk.) 
The closeness of agreement between a test 
result and the true value. 
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Precision, Trueness, Accuracy 

ISO5725-1 



33 

English vs. German 
§  Precision  

DE: Präzision   (or innere Genauigkeit, 
Wiederholgenauigkeit) 

§  Trueness 
DE: Richtigkeit 

§  Accuracy 
DE: äußere Genauigkeit 

§  Reliability 
DE: Zuverlässigkeit   

§  “Genauigkeit”… innere oder äußere? 
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Precision  
for the Relative Orientation 

§  Precision: How large is the influence 
of random noise on the result? 
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Precision & Reliability  
for the Relative Orientation 

§  Precision: How large is the influence 
of random noise on the result? 

§  Reliability: Can we detect 
measurement errors/outliers? 
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Precision 

§  To analyze the precision, we need the 
covariance matrix of the unknowns 

§  Theoretical precision 

§  Empirical precision 

§  Empirical and theoretical precision 
related through the variance factor 
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Variance Factor 

§  Computation of the variance factor  

§  Weighted sum of the squared 
corrections in the parallaxes after 
convergence 

§  Redundancy 
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Empirical Precision 

§  With a redundancy of R>30, we obtain 
realistic estimates of the precision of 
our unknown relative orientation 
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Correlation 

§  We can also compute the correlation 
of the parameters 

§  Large correlation values (=> +1/-1) 
between parameters can be a reason 
for instabilities of the solution 
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Reliability 

§  Covariance matrix of the corrections 

 
§        is smaller than 
§  Redundancy components      of 

observations are defined as 

§  Sum over all     gives the redundancy  
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Reliability 

§  Redundancy components      
tells which fraction of original errors 
we see in the residual parallaxes  
after the adjustment   

§  Small values for     indicate that 
outliers are hard to detect 
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Quality of the  
Relative Orientation  

for the Stereo Normal Case 
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Quality of the R.O. for the 
Stereo Normal Case 
§  Depends on the exact configuration 
§  Difficult in the general case 
§  Here: stereo normal case with Gruber 

points 

Image courtesy: Förstner 
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Assumptions 

§  Six corresponding points (Gruber 
points) in the overlapping area 

§  Image overlap: 60%  
§  Identical uncertainty in y-parallaxes 

(weight=1,            )   
§  Basis                (image scale number 

times image basis) 
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Image courtesy: Förstner 
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Image Coordinates 
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Image courtesy: Förstner 
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Coefficient Matrix 

point 1 

point 6 

… 
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Matrix of the Normal Equations  
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Covariance Matrix  

§  This directly yields the covariance 
matrix of the parameter through  
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Uncertainty in the Parameters 
standard deviation  
of the y-parallaxes 

scale number: 
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Discussion 

§  Impact of the pixel measurements  
         

“the more accurate one can measure  
the parallaxes, the better the result 
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Discussion 

§  Size of the scene and overlap  

“the larger the scene and the overlap,  
the better the result 
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Discussion 

“the spread of the points in the plane (b, d) 
strongly impacts roll and pitch” 
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§  Size of the scene and overlap  
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Discussion 

§  Camera constant 

“the smaller the camera constant (at 
identical images), the better the result 
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Discussion 

§  Scale number and the baseline  

image scale number: 

“the smaller the image scale number  
(or the larger the image scale),  
the better the resulting baseline 
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Discussion 

§  All quantities are proportional to 
§              increase with the scale number 
§  d strongly influences 

roll ( ) and pitch ( )  
§  If        , all quantities 

become more accurate 
with a larger basis 

§  The more the overlap 
is exploited, the better 
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Reliability 

§  Covariance matrix of the corrections 

§  and thus the redundancy components 



57 

Reliability 

§  Covariance matrix of the corrections 

§  and thus the redundancy components 

Low redundancy components! 
 

Gross errors in the y-parallaxes must  
be large compared to the standard deviation 
of the parallaxes in order to be detectable. 
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Double Points/12 Gruber Points 

Improving the result with 12 points 
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Double Points 

Improving the result with 12 points 
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no. points 

Furthermore: 
The more points we have, the  
easier we can detect outliers! 
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Double Points 

Covariance of the parallax corrections 
 
 
which leads to the redundancy 
components 
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Double Points 

Covariance of the parallax corrections 
 
 
which leads to the redundancy 
components 
 
 
 
 

Outliers are much easier to  
detect with Gruber “double” points! 
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Double Points 

Covariance of the parallax corrections 
 
 
which leads to the redundancy 
components 
 
 
 
 

Outliers are much easier to  
detect with Gruber “double” points! 

The more points we have, the  
easier we can detect outliers! 
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Summary 

§  Estimating the relative orientation 
using a least squares approach 

§  Solution for the normal stereo case 
(done without relinearizing) 

§  Statistically optimal solution 
§  Analysis of the solution based on 

Gruber points 
§  More points improve the results 
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Literature 

§  Förstner, Skript Photogrammetrie II,  
Chapter 1.3 

§  Förstner, Wrobel: Photogrammetric 
Computer Vision,  Ch. 12.3.6 & 3.3.3 
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Slide Information 
§  These slides have been created by Cyrill Stachniss as part of 

the Photogrammetry II course taught in 2014/15. 
§  The material heavily relies on the very well written scripts by 

Wolfgang Förstner and the (upcoming) Photogrammetric 
Computer Vision book by Förstner and Wrobl. 

§  I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

§  Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, please send me short email notice. 
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