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Relative Orientation

Last lecture

Compute the essential matrix matrix
given corresponding points using a
direct method

Today’s Lecture

= Compute the essential matrix given
corresponding points with an iterative

least squares approach
= Analyze the quality of our solution



Iterative Solution
for the Relative Orientation
from Corresponding Points



Reminder: Essential Matrix

= Essential matrix encodes the R.O.
for a calibrated camera pair

E=R'S,R""

= Often parameterized through

(parameterizations of dependent images)
E=S,R'
= Coplanarity constraint

T
kX/ E ]CX// — O



Coplanarity Constraint for
N Corresponding Points

= For each point pair, we can formulate
the coplanarity constraint:

Al k.1 _
x,E "x, =0 n=1,...,N

= Expressed for the parameterizations
of dependent images:

b’V S, RT Fx” =0 n=1,..,N

*)



Estimate the Essential Matrix
(Here: Stereo Normal Case)

= Estimate E through least squares

= Coplanarity constraint directly
yvields an error function in the
parameters of the R.O.

= Coplanarity constraint is non-linear
INn the parameters

= Thus, we need to iterate




Non-Linear Error Function

= Coplanarity constraint yields a
non-linear error function

Assumptions
= Approximately stereo normal case

= Classic photogrammetric parameteriz.
of dependent images ( Bx = const.,
5 parameters for the R.0O.)



Problem Statement

Wanted: R.O. parameters B, R
(approximately stereo normal case)

Given:
= Observed image coordinates

(@, yn) = (Pan, Pyn) o () = (Fa, Pyn) n=1,... N
= Uncertainty of the observations .. ...
simplified:
)P pIT—y n=1, W IN y = O'2I
L

= Initial guess for the R.O. parameters

B®, R parameters:B® = [Bx,0,0]", R* = I3
10



Towards the Linearized
Observation Equations

= Starting point: *x'' S,RT x” =0
= [nitial guess: B® =[Bx,0,0]", R* = I3

= Next goal: find the observation
equation for the Gauss-Markov model:

: : coefficients times
observation + correction = ; !
correctio corrections in unknowns

11



Towards the Linearized
Observation Equations

= Starting point: *x'' S,RT x” =0
= Initial guess: B = [Bx,0,0]", R* = I;
= "How do variations in the parameters

effect the function itself?”
R [ dx’
Fx! = kx'o pdbxe=1| o | + | dv correction in x’
_ ¢ - L O -
B 37” 7 B dﬂj// 7
k!l — kytta +d kylla y// 4+ dy” correction in x”
C 0
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Basis

= | inearized equation for the basis

b =Db"+db =

0
dBy > unk
i dBZ UNKNOWNS

= This leads to the skew-symmetric S,

0
Sb:S§+dSb: 0
0

0
0

0 —dB; dBy |
-+ dBz 0 0
| —dBy 0 0

correction in S,
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Rotation

= Linearized equation for the rotation

0 dv  —d¢ |
RI=R"+dR"=13+S) =Il3+ | —ds 0  duw
| d¢ —dw 0

correction in R 3 unknowns

= Coplanarity constraint (~normal case)

4 ] o o )
0 —dBZ dBY 1 —dk dqb
k' | dBy 0 —Byx dk 1 —dw k<" =0
i —dBY BX 0 i —dqb dw 1

\_ i i J
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Linearized Observation Equation

= The coplanarity constraint

k /TSbRTk "

= The linearized error function through
the initial guess and total differential

kX/a’ng RaT kX//a,
d kX/a,TSgRaT kX//a
kX/aTSgRaTd kX//a
kX/aTdSbRaT kX//a,

kX/aTSZdRT kX//a

15



Linearized Observation Equation

kX/aTSZ, RaT kX//a 4+

d kX/angRaT kX//a 4+
SO RO e normal case
kX/aTdSbRaT k‘X//a, _l_ [CC/,y/,C] 0 0 _BX
kX,aTSZdRT k}X//CL — O\ . 0 BX 0 :
0 0 0
_ [dz’,dy’,0] | 0 0 —Bx
change in x’ 0 Bx 0 |
0 0 0
. 17 [xlaylac] 0 0 _BX
change in X 0 Bx O
0 —dBz dBy ]
: [2',y',c] | dBgz 0 0
change in S, 4By 0 0o
0 0 0 0 de  —do |
' .y, 0 0 —Bx —dk 0 dw
change in R 0 Bx 0 6 —dw 0

dx//
dy//

0
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Linearized Observation Equation

kX/aTSZLRaT kX//a 4+

k_taTcapal k_ Ila
d *x" Sy RY "x
kX/aTSZRaTd kX//a
kX/aTdSbRaT kX//a

kX,aTSZdRT kX//a

normal case

0O O 0 x"
[xlaylac] 0 0 _BX y” +
0 BX 0 C

+ o+

|
-
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Linearized Observation Equation

kX/aTSg,RaT kX//a

k_taTcapal k_ Ila
d *x" Sy RY "x
kX/aTSZRaTd kX//a
kX/aTdSbRaT kX//a

kX,aTSZdRT kX//a

_|_

+ o+

normal case

2",y ] [

= [2', ¢/, ]

0 O
0 O
0 Bx

I BX y//
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Linearized Observation Equation

kX/aTSg,RaT kX//a

k_taTcapal k_ Ila
d *x" Sy RY "x
kX/aTSZRaTd kX//a
kX/aTdSbRaT kX//a

kX,aTSZdRT kX//a

_|_

+ o+

normal case

0 0
[w’,y’,C][O 0

0 Bx

—BXC
- Bxy"

—y' Bxc+cBxy”
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Linearized Observation Equation

kX/aTSg,RaT kX//a 4+

k_taTcapal k_ Ila
d *x" Sy RY "x
kX/aTSgRaTd kX//a
kX/aTdSbRaT kX//a

kX,aTSZdRT k:X//a

normal case

0 0
[w’,y’,C][O 0

0 Bx

+ o+

|
-

—BXC
- Bxy"

= -y Bxc+cBxy"

' 4

=cBx((y" -

20



Linearized Observation Equation

0 0 0 z"
(«,y',¢)| 0 0 —Bx y” +
0 By 0 c |
0 0 0 2" ]
da’,dy’,0) | 0 0 — ! +
0 Bx
0

2,y',e)] 0 0 +
0 Bx i
[ 0 —dBz dB 1[1'"
(2,4, ¢) dBy 0 0 y” +
—dBy 0 0 c |
o 0 0 0 0 de  —d¢ x:/’
w8 | [ LE 7] - Bx(y —
// /
+cBx (dy” — dy
1/
—cdBy (2" — x
) )
—dBz(z'y" —2"y')

+Bxdw (yy" + ¢*) — BXchBXdFL =

y-paral
y-paral
X-para

0

for the stereo normal case v ~ v”

ax Py
ax corr

lax p,
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Linearized Observation Equation

Target p, because this is the term
to be zefo (coplanarity constraint

By (' — "y for stereo normal)

+Bxdw (v'y" + ) — Bxdoy'z" —cBxdsz” = 0

cb <
+CBX

—cdByp;

+dBzy'p,
Bxdw (y'y" + ¢*)
—Bxdoy'z"
—cBxdr x”

|
-

22



This Leads Us to

cBxpy
+cBxdp,
—cdByp,
+dBzy pa
+Bxdw (y'y" + ¢*)
_Bxdoy'z" ‘
—cBxdkz” = 0
g p pe Y y'y"
d = “ dBy — ==~ Z.dB, — +cld
py + py BX Y BX C z ( C )
y’x”
+ do + 2" dk
C
\_
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Gauss Markov Model

cBxp,

+cBxdp,
—cdByp,
+dBzy pe

+Bxdw (y'y" + ¢*)

—Bngby’x” ‘
—cBxdkz” = 0

( y/y// \
d = +c | dw
Py + dpy BX C ( C )
/ //
”d/{,
'\ )
GM: observation + GM: corrections = GM: coefficients

times the corrections
in the unknowns
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Observation Equation
Written Using Vectors

/ /. .1
Pz qpy — P2 Y B, - (yy +c) du

Dy T dpy

BX BX C C
y/ /!
+ do + 2" dk
C
- D 17 )
Bx dBy
Pz Y
y/xll d¢
C
i ZB” | . (i/:l: =
N ~~ - AT
aT
T " coefficients
a, \x times the corrections

in the unknowns
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For All Observations, We Obtain

Al, +v, = a'Ax #[Al—l—v = AA:U]
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Uncertainties

= Uncertainty in the y-parallax

2 2 9
Op,. = Oy T Oyn

= In case both coordinates are measured
equally accurate

Op, = \/5 Oy

= Assuming no correlation between
corresponding points

5 n by n
— ) <€— diagonal
le Dlag(gpyn ) matrix

27



System of Normal Equations

= We computed the linearized error egn
= We have the observation cov matrix
= This leads to the normal equations

A" TA Ax =AY A

= And thus the parameter corrections
Az = (ATS A TTATE AL

= For the observations (y-parallaxes)

D=AAx — Al or v, =a,Ax—Al,

28



Summary so far

= Jterative least squares approach to
estimate the relative orientation for
calibrated cameras

= We used the coplanarity constraint as
our error function

= Linearization

= Yields GM model

= Setup of a linear system

= Solving it yields the corrections

29



Quality of the Result
“"How Good is a Solution?”

30



Precision, Trueness, Accuracy

= Precision (DE: Prazision)
The closeness of agreement between

independent test results obtained under
the same conditions.

= Trueness (DE: Richtigkeit)
The closeness of agreement between the
average value obtained from a large series
of measurements and the true value.

= Accuracy (DE: auBBere Genauigk.)
The closeness of agreement between a test
result and the true value.

31



Precision, Trueness, Accuracy

O

Increasing Trueness _—»

y
\
S

Increasing Precision —> ISO5725-1 32



English vs. German

= Precision
DE: Prazision (or innere Genauigkeit,
Wiederholgenauigkeit)

* Trueness
DE: Richtigkeit
= Accuracy
DE: auB3ere Genauigkeit
= Reliability
DE: Zuverlassigkeit
= “"Genauigkeit”... innere oder aul3ere?

33



Precision
for the Relative Orientation

= Precision: How large is the influence
of random noise on the result?

34



Precision & Reliability
for the Relative Orientation

= Precision: How large is the influence
of random noise on the result?

= Reliability: Can we detect
measurement errors/outliers?

35



Precision

= To analyze the precision, we need the
covariance matrix of the unknowns

= Theoretical precision
Yoz = (AL TA)T!
= Empirical precision
s = 02¥as = 05(ATE LA
t

= Empirical and theoretical precision
related through the variance factor

36



Variance Factor

= Computation of the variance factor
0
~2

0g = —

R

= Weighted sum of the squared
corrections in the parallaxes after
convergence

Q=2 5,'0=>)» 9,5, Uy,
= Redundancy "
R = N — #unknowns = N — 5

37



Empirical Precision

= With a redundancy of R>30, we obtain
realistic estimates of the precision of
our unknown relative orientation

AN ——1~
Zl

- (Y U
o I Te—1 a\—1
rr — N — 5 (A le A)
N’
Ch
4 — — —)
0, =\ Xlmz O0p, =\ 253 0o =\ 2.3,
L 05 =\ Yaza Or =\ Laszs y

38



Correlation

= We can also compute the correlation
of the parameters

P T N

L4 L 4

= Large correlation values (=> +1/-1)
between parameters can be a reason
for instabilities of the solution

39



Reliability
= Covariance matrix of the corrections
Yo, =Y — AY AT

= 2 v 1S smaller than X

= Redundancy components 7, of
observations are defined as

2
Un,

n — 6071
o= e 0]

= Sum over all 7, gives the redundancy

RzZrn

40



Reliability

= Redundancy components r, =0, o, °
tells which fraction of original errors
we see in the residual parallaxes v,
after the adjustment

Av,, = —r,, Al,

= Small values for 7, indicate that
outliers are hard to detect

41



Quality of the
Relative Orientation
for the Stereo Normal Case

42



Quality of the R.O. for the
Stereo Normal Case

= Depends on the exact configuration
= Difficult in the general case

= Here: stereo normal case with Gruber
points

3 4 3 4 3 4
O O O o |0 O
d

1b2¢ 1 2|1 2
O O O o |0 O
-

5 6 5 6|15 6
O O O ol |0 O

Image courtesy: Forstner 43



Assumptions

= Six corresponding points (Gruber
points) in the overlapping area

= Image overlap: 60%

= [dentical uncertainty in y-parallaxes
(weight=1, o9 = 0p,)

= Basis Bx = M bx (image scale number
times image basis)

3 4 3 4 3 4
o 0 o O] |O

d
1b2¢ 1201 2
o (@) o] 1|0 o

5 6 5 6|15 6
o o o ol o o

Image courtesy: Forstner 44



Image Coordinates

y//

x//

—d

—b

/

Y

x/

@) ZOH \O O

@) —O o

Gruber point

Image courtesy: Forstner 45



Coefficient Matrix

/ /.1
Pz Pz Y vy
tdp, = 22aB, - 22 Z4B, - Te)dw
Py T Py Bx Y Byxyc Z (c C)

I/

yx
C

do + 2" dk

_|_

X
b
B_ O C O O
X
bbb,
A Bx Bxc ¢ C
Bx Bxc ¢
Bx Bx c C c
b bd d? )
B Bo o ?—I—C 0 0 point 6
| Dx X J



Matrix of the Normal Equations

ATA =

c 0 b
c 0 0
2
d——i—c bd b
c c
d2
— +c 0 0
c
2
d——i—c _bd b
c c
d2
— +tc 0 0
c
6 -2
Bx?
b(3c*+2d?)
BXc
g b7
Bx

9 b(3c;—|—2 d2)
X C

0

9 3 cA42d*+4d?c?
C2

b2
0 3 Bx
b2 d?
—2 Br 0
0 b(3 242 d2)
2 bd” 0
0 3 b2
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Covariance Matrix

= This directly yields the covariance
matrix of the parameter through

iggg = Jg(ATA)_l

[ | Bx?(9c*+8d*+12d%c?) (3c*+2d*)Bx c

12 b2 d4 0 o i bd4 0
0 3 0 3 i
:O'(Q) _l(302—|—2d2)BXc 0 §i 0
4 bd4 4 d4
0 Sl 0 S
_ % lg_g 0 0




Uncertainty in the Parameters

BameiA . - standard deviation
pRteEeel 0 e 0 s of the y-parallaxes
0 1B 0 e 0
:0_(2) _%(362+§di2)BXc 0 %2_2 0 0 O-O - O-py - \/§O-y/
0 R 0 o 0
-3 0 0 0

i) scale number:M ~ Bx /b

‘ V9c* + 8d4 + 12d2¢2

0 By = M Oy’

d2/6

oB, = Mg Oy
3 c

W = N\ g@ o

op = \/5% Oy
2 1

O = —==— Oy

V3 b 49



Discussion

= Impact of the pixel measurements

V9ct + 8d4 + 12d2c2
0By = M Oy’

d?/6
we = M3
3

C

O¢p — \/5@
2 1
o = =plov]

“the more accurate one can measure
the parallaxes, the better the result

50



Discussion

= Sjze of the scene and overlap
V9ct + 8d* + 12d2c2

op, = M NG o
C
= M /
I L
_ /3¢ id
RS 7 b8
C
oy = \/§ay, 56
2 1
. (3

“the larger the scene and the overlap,
the better the resuit



Discussion

= Sjze of the scene and overlap

3 4
3 c © © ;
0] = O 4
i 243 éb%i
C -
0'¢ = \/ia'y/ (5) g

“the spread of the points in the plane (b, d)
strongly impacts roll and pitch”
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Discussion

= Camera constant

+ 8d4 + 12d4c?
O-BY — M\/@ d2\/6 iO-y/
_
O'BZ = dO'y/
3
0w p— —O'y/
2 d?
op = \/iay/
2 1
Ok = —_— 0,/
V3b Y

“the smaller the camera constant (at

identical images), the better the resuilt



Discussion

= Scale number and the baseline

0B+ Oy’

@\/904 + 8d4 + 12d?c2
d2v/6

C
9Bz = d Ty

image scale number: M ~ Bx /b

“the smaller the image scale humber
(or the larger the image scale),
the better the resulting baseline
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Discussion

= d strongly influences ..,
roll (w) and pitch (¢)
= If b = d, all quantities ..
become more accurate o,
with a larger basis b o

= The more the overlap
\is exploited, the better

= M

ﬂ\ll quantities are proportional to apy,\

" 0By, 0B, INCcrease with the scale number

V9c4 4+ 8d4 + 12d2¢2

d2v/6

C
ME O'y/

3 c

22 Y
c

2— Ty

bd

2 1
_O-y,

V3

Oy’

/
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Reliability

= Covariance matrix of the corrections

5 —AY AT

56



Reliability

= Covariance matrix of the corrections

1111’11W
2 N & @ 6

2 f

6

Low redundancy components!
Av,, = —r,, Al,
Gross errors in the y-parallaxes must

be large compared to the standard deviation
of the parallaxes in order to be detectable.

12 ’
= and thus th@?‘r uchy CO ponents

57



Double Points/12 Gruber Points

Improving the result with 12 points

3 4
o o
d

ol
o o

-

5 6

o o
33 44
©
1,1 2,2
b o
55 6,6
b

3 4 3 4
O O O O
1 2111 2
O O O O
5 6|15 6
O O O O
3.3 44° 33 44
00 00 00 00
1,17 227 |1,1° 2,2
00 00 00 00
55 6,67 5,5 606
00 00 00 00
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Double Points

Improving the result with 12 points

3 4 3 4 3 4
o o (o] (@] o

d
1b2i 1201 2
o o (0] ol |O o

-
3 I 1
» 22 (12) = 523,;3;(6)
33 44 33 44’33 44 T T
o0 (ee) (ee] (e6e] (o] (ee)
L 22 L 22] g 22 -
no. points
5,5 6,67 5,5 6,611(5,5 6,6°
(o] () (@] (ee] (o] ()
Furthermore:
[ |

The more points we have, the
easier we can detect outliers!
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Double Points

Covariance of the parallax corrections

T, (12) = [ o ] - [ p ] >0 (12)(AT AT)

which leads to the redundancy

components

7
n:171/7272/ T?’L:E n:373,7"‘76?6/

Trn =

60



Double Points

Covariance of the parallax corrections

T, (12) = [ o ] - [ p ] T, (12)(AT AT)
which leads to the redundancy
components

7
n:171/7272/ T?’L:E n:373,?"‘76?6/

2

i »
Outliers are much easier to

detect with Gruber “"double” points!
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Double Points

The more points we have, the
easier we can detect outliers!
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Summary

= Estimating the relative orientation
using a least squares approach

= Solution for the normal stereo case
(done without relinearizing)

= Statistically optimal solution

= Analysis of the solution based on
Gruber points

= More points improve the results
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Literature

= Forstner, Skript Photogrammetrie 11,
Chapter 1.3

= FOorstner, Wrobel: Photogrammetric
Computer Vision, Ch. 12.3.6 & 3.3.3
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the Photogrammetry II course taught in 2014/15.

The material heavily relies on the very well written scripts by
Wolfgang Forstner and the (upcoming) Photogrammetric
Computer Vision book by Forstner and Wrobl.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, please send me short email notice.

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-bonn.de
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