Photogrammetry & Robotics Lab

Iterative Solution for the Relative Orientation

Cyrill Stachniss

Motivation

Image courtesy: Collins 2

Table of Contents

Iterative Solution for Computing the Relative Orientation

- 1. Iterative solution for computing the relative orientation from corresponding points
- 2. Quality of the iterative solution
- **3.** Quality of the relative orientation solution using Gruber points

Relative Orientation

Last lecture

Compute the essential matrix matrix given corresponding points using a **direct method**

Today's Lecture

- Compute the essential matrix given corresponding points with an iterative least squares approach
- Analyze the quality of our solution

Iterative Solution for the Relative Orientation from Corresponding Points

Reminder: Essential Matrix

 Essential matrix encodes the R.O. for a calibrated camera pair

$$\mathsf{E} = \mathsf{R}'\mathsf{S}_b\mathsf{R}''^\mathsf{T}$$

Often parameterized through

(parameterizations of dependent images)

$$\mathsf{E} = \mathsf{S}_b \mathsf{R}^\mathsf{T}$$

Coplanarity constraint

$${}^{k}\mathbf{x'}^{\mathsf{T}}\mathsf{E} \; {}^{k}\mathbf{x''} = 0$$

Coplanarity Constraint for N Corresponding Points

 For each point pair, we can formulate the coplanarity constraint:

$${}^{k}\mathbf{x'}_{n}^{\mathsf{I}} \mathsf{E} {}^{k}\mathbf{x}_{n}^{\prime \prime} = 0 \qquad n = 1, ..., N$$

 Expressed for the parameterizations of dependent images:

$${}^{k}\mathbf{x'}_{n}^{\mathsf{T}} \mathsf{S}_{b} \mathsf{R}^{\mathsf{T}} {}^{k}\mathbf{x}_{n}^{\prime\prime} = 0 \qquad n = 1, ..., N$$

Estimate the Essential Matrix (Here: Stereo Normal Case)

- Estimate E through least squares
- Coplanarity constraint directly yields an error function in the parameters of the R.O.
- Coplanarity constraint is non-linear in the parameters
- Thus, we need to iterate

Non-Linear Error Function

 Coplanarity constraint yields a non-linear error function

Assumptions

- Approximately stereo normal case
- Classic photogrammetric parameteriz.
 of dependent images (B_X = const.,
 5 parameters for the R.O.)

Problem Statement

Wanted: R.O. parameters *B*, *R* (approximately stereo normal case)

Given:

- Observed image coordinates $(x'_n, y'_n) := ({}^k x'_n, {}^k y'_n) \qquad (x''_n, y''_n) = ({}^k x''_n, {}^k y''_n) \qquad n = 1, \dots, N$
- Uncertainty of the observations simplified: $\Sigma_{x'x'}$ $\Sigma_{x''x''}$ n = 1, ...N $\Sigma_{xx} = \sigma^2 I$
- Initial guess for the R.O. parameters B^a, R^a parameters: $B^a = [B_X, 0, 0]^T, R^a = I_3$

Towards the Linearized Observation Equations

- Starting point: ${}^{k}\mathbf{x'}^{\mathsf{T}} \mathsf{S}_{b} \mathsf{R}^{\mathsf{T}} {}^{k}\mathbf{x''} = 0$
- Initial guess: $B^a = [B_X, 0, 0]^T, R^a = I_3$
- Next goal: find the observation equation for the Gauss-Markov model:

observation + correction = coefficients times corrections in unknowns

Towards the Linearized Observation Equations

- Starting point: ${}^{k}\mathbf{x'}^{\mathsf{T}} \mathsf{S}_{b} \mathsf{R}^{\mathsf{T}} {}^{k}\mathbf{x''} = 0$
- Initial guess: $B^a = [B_X, 0, 0]^T, R^a = I_3$
- "How do variations in the parameters effect the function itself?"

$${}^{k}\mathbf{x}' = {}^{k}\mathbf{x}'^{a} + d {}^{k}\mathbf{x}'^{a} = \begin{bmatrix} x' \\ y' \\ c \end{bmatrix} + \begin{bmatrix} dx' \\ dy' \\ 0 \end{bmatrix} \text{ correction in } \mathbf{x}'$$
$${}^{k}\mathbf{x}'' = {}^{k}\mathbf{x}''^{a} + d {}^{k}\mathbf{x}''^{a} = \begin{bmatrix} x'' \\ y'' \\ c \end{bmatrix} + \begin{bmatrix} dx'' \\ dy'' \\ 0 \end{bmatrix} \text{ correction in } \mathbf{x}''$$

Basis

Linearized equation for the basis

$$\mathbf{b} = \mathbf{b}^{a} + d\mathbf{b} = \begin{bmatrix} B_{X} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ dB_{Y} \\ dB_{Z} \end{bmatrix} 2 \text{ unknowns}$$

This leads to the skew-symmetric S_b

$$S_b = S_b^a + dS_b = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -B_X \\ 0 & B_X & 0 \end{bmatrix} + \begin{bmatrix} 0 & -dB_Z & dB_Y \\ dB_Z & 0 & 0 \\ -dB_Y & 0 & 0 \end{bmatrix}$$

correction in S_b

Rotation

Linearized equation for the rotation

$$R^{\mathsf{T}} = R^{a\mathsf{T}} + \mathrm{d}R^{\mathsf{T}} = I_3 + S_{\mathrm{d}r}^{\mathsf{T}} = I_3 + \begin{bmatrix} 0 & \mathrm{d}\kappa & -\mathrm{d}\phi \\ -\mathrm{d}\kappa & 0 & \mathrm{d}\omega \\ \mathrm{d}\phi & -\mathrm{d}\omega & 0 \end{bmatrix}$$

correction in R 3 unknowns

Coplanarity constraint (~normal case)

$${}^{k}\mathbf{x'}^{\mathsf{T}}\begin{bmatrix} 0 & -\mathrm{d}B_{Z} & \mathrm{d}B_{Y} \\ \mathrm{d}B_{Z} & 0 & -B_{X} \\ -\mathrm{d}B_{Y} & B_{X} & 0 \end{bmatrix}\begin{bmatrix} 1 & -d\kappa & d\phi \\ d\kappa & 1 & -d\omega \\ -d\phi & d\omega & 1 \end{bmatrix}^{\mathsf{T}} {}^{k}\mathbf{x''} = 0$$

The coplanarity constraint

$${}^{k}\mathbf{x'}^{\mathsf{T}} \mathsf{S}_{b} \mathsf{R}^{\mathsf{T}} {}^{k}\mathbf{x''} = 0$$

 The linearized error function through the initial guess and total differential

$${}^{k}\mathbf{x}^{\prime a\mathsf{T}}\mathsf{S}_{b}^{a}R^{a\mathsf{T}} {}^{k}\mathbf{x}^{\prime\prime a} +$$

$$\mathrm{d}^{k}\mathbf{x}^{\prime a\mathsf{T}}\mathsf{S}_{b}^{a}R^{a\mathsf{T}} {}^{k}\mathbf{x}^{\prime\prime a} +$$

$${}^{k}\mathbf{x}^{\prime a\mathsf{T}}\mathsf{S}_{b}^{a}R^{a\mathsf{T}} \mathrm{d}^{k}\mathbf{x}^{\prime\prime a} +$$

$${}^{k}\mathbf{x}^{\prime a\mathsf{T}}\mathrm{d}\mathsf{S}_{b}R^{a\mathsf{T}} {}^{k}\mathbf{x}^{\prime\prime a} +$$

$${}^{k}\mathbf{x}^{\prime a\mathsf{T}}\mathrm{d}\mathsf{S}_{b}R^{a\mathsf{T}} {}^{k}\mathbf{x}^{\prime\prime a} +$$

 $cB_X(y''-y')$ Target p_y because this is the term to be zero (coplanarity constraint $+cB_X(\mathrm{d}y''-\mathrm{d}y')$ $-c \,\mathrm{d}B_V(x''-x')$ for stereo normal) $-\mathrm{d}B_Z(x'y''-x''y')$ $+B_X \mathrm{d}\omega \left(y'y''+c^2\right) - B_X \mathrm{d}\phi \, y'x'' - cB_X \mathrm{d}\kappa \, x'' \quad = \quad 0$ $cB_X p_y$ $+cB_X \mathrm{d}p_y$ $-c \, \mathrm{d}B_{\mathbf{Y}} p_{\mathbf{r}}$ $+ dB_Z y' p_r$ $+B_X \mathrm{d}\omega \left(y'y''+c^2\right)$ $-B_X \mathrm{d}\phi \, y' x''$ $-cB_X \mathrm{d}\kappa \, x'' \quad = \quad 0$

This Leads Us to

$$cB_X p_y$$

$$+cB_X dp_y$$

$$-c dB_Y p_x$$

$$+dB_Z y' p_x$$

$$+B_X d\omega (y'y'' + c^2)$$

$$-B_X d\phi y' x''$$

$$-cB_X d\kappa x'' = 0$$

$$p_{y} + dp_{y} = \frac{p_{x}}{B_{X}} dB_{Y} - \frac{p_{x}}{B_{X}} \frac{y'}{c} dB_{Z} - \left(\frac{y'y''}{c} + c\right) d\omega$$
$$+ \frac{y'x''}{c} d\phi + x'' d\kappa$$

Gauss Markov Model

Observation Equation Written Using Vectors

For All Observations, We Obtain

Uncertainties

• Uncertainty in the y-parallax

$$\sigma_{p_{y_n}}^2 = \sigma_{y'_n}^2 + \sigma_{y''_n}^2$$

 In case both coordinates are measured equally accurate

$$\sigma_{p_{y_n}} = \sqrt{2} \; \sigma_{y'}$$

 Assuming no correlation between corresponding points

$$\Sigma_{ll} = \operatorname{Diag}(\sigma_{p_{y_n}}^2) \longleftarrow \operatorname{diagona}_{\mathsf{matrix}}^{\mathsf{n by n}}$$

System of Normal Equations

- We computed the linearized error eqn
- We have the observation cov matrix
- This leads to the normal equations

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{ll}^{-1}\boldsymbol{A}\;\Delta\boldsymbol{x}=\boldsymbol{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{ll}^{-1}\Delta\boldsymbol{l}$$

And thus the parameter corrections

$$\widehat{\Delta \boldsymbol{x}} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{ll}^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{ll}^{-1} \Delta \boldsymbol{l}$$

For the observations (y-parallaxes)

$$\widehat{\boldsymbol{v}} = A\widehat{\Delta \boldsymbol{x}} - \Delta \boldsymbol{l} \quad \text{or} \quad \widehat{\boldsymbol{v}}_n = \boldsymbol{a}_n\widehat{\Delta \boldsymbol{x}} - \Delta \boldsymbol{l}_n$$

Summary so far

- Iterative least squares approach to estimate the relative orientation for calibrated cameras
- We used the coplanarity constraint as our error function
- Linearization
- Yields GM model
- Setup of a linear system
- Solving it yields the corrections

Quality of the Result "How Good is a Solution?"

Precision, Trueness, Accuracy

Precision (DE: Präzision)

The closeness of agreement between independent test results obtained under the same conditions.

Trueness (DE: Richtigkeit)

The closeness of agreement between the average value obtained from a large series of measurements and the true value.

 Accuracy (DE: äußere Genauigk.) The closeness of agreement between a test result and the true value.

Precision, Trueness, Accuracy

English vs. German

- Precision
 DE: Präzision (or innere Genauigkeit, Wiederholgenauigkeit)
- Trueness
 DE: Richtigkeit
- Accuracy
 DE: äußere Genauigkeit
- Reliability
 DE: Zuverlässigkeit
- Genauigkeit"... innere oder äußere?

Precision for the Relative Orientation

• Precision: How large is the influence of random noise on the result?

Precision & Reliability for the Relative Orientation

• Precision: How large is the influence of random noise on the result?

 Reliability: Can we detect measurement errors/outliers?

Precision

- To analyze the precision, we need the covariance matrix of the unknowns
- Theoretical precision

$$\Sigma_{\widehat{x}\widehat{x}} = (A^{\mathsf{T}}\Sigma_{ll}^{-1}A)^{-1}$$

Empirical precision

$$\widehat{\Sigma}_{\widehat{x}\widehat{x}} = \widehat{\sigma}_0^2 \Sigma_{\widehat{x}\widehat{x}} = \widehat{\sigma}_0^2 (A^{\mathsf{T}} \Sigma_{ll}^{-1} A)^{-1}$$

 Empirical and theoretical precision related through the variance factor

Variance Factor

Computation of the variance factor

$$\widehat{\sigma}_0^2 = \frac{\Omega}{R}$$

 Weighted sum of the squared corrections in the parallaxes after convergence

$$\Omega = \widehat{\boldsymbol{v}}^{\mathsf{T}} \boldsymbol{\Sigma}_{ll}^{-1} \widehat{\boldsymbol{v}} = \sum_{n} \widehat{\boldsymbol{v}}_{n}^{\mathsf{T}} \boldsymbol{\Sigma}_{l_{n} l_{n}}^{-1} \widehat{\boldsymbol{v}}_{n}$$

Redundancy

R = N -#unknowns = N - 5

Empirical Precision

 With a redundancy of R>30, we obtain realistic estimates of the precision of our unknown relative orientation

Correlation

 We can also compute the correlation of the parameters

$$\rho_{x_i x_j} = \frac{\Sigma_{\widehat{x}_i \widehat{x}_j}}{\sigma_{x_i} \sigma_{x_j}}$$

 Large correlation values (=> +1/-1) between parameters can be a reason for instabilities of the solution

Reliability

Covariance matrix of the corrections

$$\Sigma_{vv} = \Sigma_{ll} - A \Sigma_{\widehat{x}\widehat{x}} A^{\mathsf{T}}$$

- Σ_{vv} is smaller than Σ_{ll}
- Redundancy components r_n of observations are defined as

$$r_n = \frac{\sigma_{v_n}^2}{\sigma_{l_n}^2} \in [0, 1]$$

• Sum over all r_n gives the redundancy

$$R = \sum r_n$$

Reliability

• Redundancy components $r_n = \sigma_{v_n}^2 \sigma_{l_n}^{-2}$ tells which fraction of original errors we see in the residual parallaxes v_n after the adjustment

$$\Delta v_n = -r_n \ \Delta l_n$$
Small values for r_n indicate that outliers are hard to detect

Quality of the Relative Orientation for the Stereo Normal Case

Quality of the R.O. for the Stereo Normal Case

- Depends on the exact configuration
- Difficult in the general case
- Here: stereo normal case with Gruber points

Image courtesy: Förstner 43

Assumptions

- Six corresponding points (Gruber points) in the overlapping area
- Image overlap: 60%
- Identical uncertainty in y-parallaxes (weight=1, $\sigma_0 = \sigma_{p_y}$)
- Basis B_X = M b_X (image scale number times image basis)

3	4	3	4	
0	0	0	0	
1	2 °	10	20	
5 0	6 °	5 °	6 °	

Image courtesy: Förstner 44

Image Coordinates

Gruber point	x'	y'	x''	y''
1	0	0	-b	0
2	b	0	0	0
3	0	d	-b	d
4	b	d	0	d
5	0	-d	-b	-d
6	b	-d	0	-d

Image courtesy: Förstner 45

Coefficient Matrix

$$p_{y} + dp_{y} = \frac{p_{x}}{B_{X}} dB_{y} - \frac{p_{x}}{B_{X}} \frac{y'}{c} dB_{Z} - \left(\frac{y'y''}{c} + c\right) d\omega + \frac{y'x''}{c} d\phi + x'' d\kappa$$

$$A = - \begin{bmatrix} \frac{b}{B_{X}} & 0 & c & 0 & b \\ \frac{b}{B_{X}} & 0 & c & 0 & 0 \\ \frac{b}{B_{X}} & -\frac{bd}{B_{X}c} & \frac{d^{2}}{c} + c & \frac{bd}{c} & b \\ \frac{b}{B_{X}} & -\frac{bd}{B_{X}c} & \frac{d^{2}}{c} + c & 0 & 0 \\ \frac{b}{B_{X}} & \frac{bd}{B_{X}c} & \frac{d^{2}}{c} + c & -\frac{bd}{c} & b \\ \frac{b}{B_{X}} & \frac{bd}{B_{X}c} & \frac{d^{2}}{c} + c & 0 & 0 \end{bmatrix}$$

$$point 6$$

Matrix of the Normal Equations

$$A = - \begin{bmatrix} \frac{b}{B_X} & 0 & c & 0 & b \\ \frac{b}{B_X} & 0 & c & 0 & 0 \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & \frac{bd}{c} & b \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & -\frac{bd}{c} & b \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 6\frac{b^2}{B_X{}^2} & 0 & 2\frac{b(3c^2+2d^2)}{B_X{}c} & 0 & 3\frac{b^2}{B_X} \\ 0 & 4\frac{b^2d^2}{B_X{}^2c^2} & 0 & -2\frac{b^2d^2}{B_X{}c^2} & 0 \\ 2\frac{b(3c^2+2d^2)}{B_X{}c} & 0 & 2\frac{3c^4+2d^4+4d^2c^2}{c^2} & 0 & \frac{b(3c^2+2d^2)}{c} \\ 0 & -2\frac{b^2d^2}{B_X{}c^2} & 0 & 2\frac{b^2d^2}{c^2} & 0 \\ 3\frac{b^2}{B_X} & 0 & \frac{b(3c^2+2d^2)}{c} & 0 & 3b^2 \end{bmatrix}$$

47

Covariance Matrix

 This directly yields the covariance matrix of the parameter through

$$\begin{split} \widehat{\Sigma}_{\widehat{x}\widehat{x}} &= \sigma_0^2 (A^{\mathsf{T}} A)^{-1} \\ &= \sigma_0^2 \begin{bmatrix} \frac{1}{12} \frac{B_X^2 \left(9 \, c^4 + 8 \, d^4 + 12 \, d^2 c^2\right)}{b^2 d^4} & 0 & -\frac{1}{4} \frac{\left(3 \, c^2 + 2 \, d^2\right) B_X \, c}{b d^4} & 0 & -\frac{1}{3} \frac{B_X}{b^2} \\ & 0 & \frac{1}{2} \frac{B_X^2 c^2}{b^2 d^2} & 0 & \frac{1}{2} \frac{B_X c^2}{b^2 d^2} & 0 \\ & -\frac{1}{4} \frac{\left(3 \, c^2 + 2 \, d^2\right) B_X \, c}{b d^4} & 0 & \frac{3}{4} \frac{c^2}{d^4} & 0 & 0 \\ & 0 & \frac{1}{2} \frac{B_X c^2}{b^2 d^2} & 0 & \frac{c^2}{b^2 d^2} & 0 \\ & -\frac{1}{3} \frac{B_X}{b^2} & 0 & 0 & 0 & \frac{2}{3} \frac{1}{b^2} \end{bmatrix} \end{split}$$

Uncertainty in the Parameters

standard deviation

scale number: $M \approx B_X/b$

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

Impact of the pixel measurements

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

"the more accurate one can measure the parallaxes, the better the result

Size of the scene and overlap

"the larger the scene and the overlap, the better the result

Size of the scene and overlap

$$\sigma_{\omega} = \sqrt{\frac{3}{2} \frac{c}{d^2}} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$S = \frac{3}{4}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{d^2} \sigma_{y'}$$

$$S = \frac{3}{4}$$

"the spread of the points in the plane (b, d) strongly impacts roll and pitch"

1

2

Camera constant

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

"the smaller the camera constant (at identical images), the better the result

Scale number and the baseline

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$
$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

image scale number: $M \approx B_X/b$

"the smaller the image scale number (or the larger the image scale), the better the resulting baseline

- All quantities are proportional to $\sigma_{p_{y'}}$
- $\sigma_{B_Y}, \sigma_{B_Z}$ increase with the scale number
- d strongly influences $\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}}$ roll (ω) and pitch (ϕ) $\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$
- If b = d, all quantities $\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$ become more accurate $\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$ with a larger basis b $\sigma_{\kappa} = \frac{2}{\sqrt{2}} \frac{1}{b} \sigma_{y'}$
- The more the overlap is exploited, the better

6

Reliability

Covariance matrix of the corrections

$$\Sigma_{vv} = \sigma_0^2 \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & | & -\frac{1}{6} & \frac{1}{6} & | & -\frac{1}{6} & \frac{1}{6} \\ -\frac{1}{3} & \frac{1}{3} & | & \frac{1}{6} & -\frac{1}{6} & | & \frac{1}{12} & -\frac{1}{12} \\ -\frac{1}{3} & \frac{1}{3} & | & \frac{1}{6} & -\frac{1}{6} & | & \frac{1}{12} & -\frac{1}{12} \\ -\frac{1}{6} & \frac{1}{6} & | & \frac{1}{12} & -\frac{1}{12} & | & \frac{1}{12} & -\frac{1}{12} \\ \frac{1}{6} & -\frac{1}{6} & | & -\frac{1}{12} & \frac{1}{12} & | & \frac{1}{12} & \frac{1}{12} \\ -\frac{1}{6} & \frac{1}{6} & | & \frac{1}{12} & -\frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{6} & -\frac{1}{6} & | & -\frac{1}{12} & \frac{1}{12} & | & -\frac{1}{12} & \frac{1}{12} \\ \frac{1}{6} & -\frac{1}{6} & | & -\frac{1}{12} & \frac{1}{12} & | & -\frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & -\frac{1}{12} & \frac{1}{12} & | & -\frac{1}{12} & \frac{1}{12} \\ \frac{1}{6} & -\frac{1}{6} & | & -\frac{1}{12} & \frac{1}{12} & | & -\frac{1}{12} & \frac{1}{12} \\ \end{array} \right)$$

and thus the redundancy components

$$r_1 = r_2 = \frac{1}{3}$$
 $r_3 = r_4 = r_5 = r_6 = \frac{1}{12}$

Reliability

Covariance matrix of the corrections

Double Points/12 Gruber Points

Improving the result with 12 points

Improving the result with 12 points

Furthermore: The more points we have, the easier we can detect outliers!

Covariance of the parallax corrections

$$\Sigma_{vv}(12) = \begin{bmatrix} \Sigma_{ll} & \mathbf{0} \\ \mathbf{0} & \Sigma_{ll} \end{bmatrix} - \begin{bmatrix} A \\ A \end{bmatrix} \Sigma_{xx}(12)(A^{\mathsf{T}} A^{\mathsf{T}})$$

which leads to the redundancy components

$$r_n = \frac{2}{3}$$
 $n = 1, 1', 2, 2'$ $r_n = \frac{7}{12}$ $n = 3, 3', \dots, 6, 6'$

Covariance of the parallax corrections

$$\Sigma_{vv}(12) = \begin{bmatrix} \Sigma_{ll} & \mathbf{0} \\ \mathbf{0} & \Sigma_{ll} \end{bmatrix} - \begin{bmatrix} A \\ A \end{bmatrix} \Sigma_{xx}(12)(A^{\mathsf{T}} A^{\mathsf{T}})$$

which leads to the redundancy components

 $r_n = \frac{2}{3}$ n = 1, 1', 2, 2' $r_n = \frac{7}{12}$ $n = 3, 3', \dots, 6, 6'$ **Outliers are much easier to detect with Gruber "double" points!**

Covariance of the parallax corrections

 $\Sigma_{vv}(12) = \begin{bmatrix} \Sigma_{ll} & \mathbf{0} \\ \mathbf{0} & \Sigma_{ll} \end{bmatrix} - \begin{bmatrix} A \\ A \end{bmatrix} \Sigma_{xx}(12)(A^{\mathsf{T}} A^{\mathsf{T}})$

The more points we have, the easier we can detect outliers!

detect with Gruber "double" points!

Summary

- Estimating the relative orientation using a least squares approach
- Solution for the normal stereo case (done without relinearizing)
- Statistically optimal solution
- Analysis of the solution based on Gruber points
- More points improve the results

Literature

- Förstner, Skript Photogrammetrie II, Chapter 1.3
- Förstner, Wrobel: Photogrammetric
 Computer Vision, Ch. 12.3.6 & 3.3.3

Slide Information

- These slides have been created by Cyrill Stachniss as part of the Photogrammetry II course taught in 2014/15.
- The material heavily relies on the very well written scripts by Wolfgang Förstner and the (upcoming) Photogrammetric Computer Vision book by Förstner and Wrobl.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, please send me short email notice.

Cyrill Stachniss, 2014 cyrill.stachniss@igg.uni-bonn.de