Photogrammetry & Robotics Lab

Direct Solutions for Computing
Fundamental and Essential
Matrix

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.



5 Minute Preparation for Today

5 Minutes with Cyrill
8 Point Algorithm

https://www.ipb.uni-bonn.de/5min/



Motivation
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Topics of Today

Compute the

= Fundamental matrix
given corresponding points

= Essential matrix
given corresponding points

= Rotation matrix and basis
given an essential matrix



Computing the
Fundamental Matrix
Given Corresponding Points



Fundamental Matrix

» The fundamental matrix F is

= It encodes the relative orientation
for two uncalibrated cameras

= Coplanarity constraint through F

=
x Fx" = 0



Fundamental Matrix

The fundamental matrix F can directly
be computed if we know the

= K' K" calibration matrices

= R R" viewing direction of the cameras
=S, baseline

= or the projection matrices P, P”

How to compute F given ONLY
corresponding points in images?



Problem Formulation

= Given: N corresponding points
@,y ), (2", 9y" ) with n=1,...,N

= Wanted: fundamental matrix F



Fundamental Matrix
From Corresponding Points

= For each point, we have the
coplanarity constraint

X,;I;FX;; =0 n=1,..,N



Fundamental Matrix
From Corresponding Points

= For each point, we have the
coplanarity constraint

-
x' Fx' =0 n=1,..,N
" Or
(Fi1 Fio F13\_ !
!y 1] | [Fo1 Fao  Fos Yo
\F31 F32 F33)| [ 1

unknowns!
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What is the Issue here?

= In standard least squares problems,
we have a vector of unknowns

= Here, the matrix elements of F are
the unknowns

Question:
How to turn the unknown matrix
elements into a vector of unknowns?
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Linear Dependency

= Linear function in the unknowns F;;
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Linear Dependency

= Linear function in the unknowns F;;

§ T ()T
Fi1 Fio  Fis

25, Yn) 1] Fay  Fog yr | =0
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Linear Dependency

= Linear function in the unknowns F;;
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Linear Dependency

= Linear function in the unknowns F;;

//

F11 Zl?n
[‘/E;’uy;’ml] F21 y;{ =0
- F31 — - 1 —

/! ./ /! ./ !/ /!l 1/ /! ./ !/ / /
[xnxn7xnyn7xnﬂynxn7ynynvynﬂxnvynv 1] |

[Fy1, Fo1, F31, Fia, Fao, F3o, Fi3, Foz, F33]' =0
n=1,.... N
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Linear Dependency

= Linear function in the unknowns F;;

@y ——>[T0T TYrs Tors Yn s YnYrs Yns Ty Yy 1] -
f —>[Fi1, Fo1, F31, Fia, Fag, F39, Fi3, Fag, F33]' =0
n=1...N

4

a'f =0 n=1,..,N
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Using the Kronecker Product

= Linear function in the unknowns F;;

/// /7,7

al—é[ﬁlfgﬁlj%’ﬂf%y%’ n?yn n?ynyn7yn7 naynal]'
f —>[Fi1, Fo1, F31, Fia, Fag, F39, Fi3, Fag, F33]' =0
n=1...N

4

x'®x' )'vecF= a] £ =0 n=1,..,.N
—~—
(x} ®x,)T veck

(it holds in general: x'Fy = (y ® x) ' vecF ) -



Linear System From All Points

= We directly obtain a linear system if

we consider all N points
a_,,,E f =0 n=1,.. N
~

(x/’®@x, )T veck

Y

_ T
A= | a,

m Af =0




Solving the Linear System

= Singular value decomposition solves

At =0

= and thus provides a solution for
f = [F11, Fo1, Fs1, Fla, Fao, F3o, Fi3, Fbs, F33]'

= SVD: f is the right-singular vector
corresponding to a singular value of A
that is zero
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How Many Points Are Needed?

= The vector £ has 9 dimensions

W Af =0
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How Many Points Are Needed?

= The vector £ has 9 dimensions

W Af =0

= Matrix A has at most rank 8
= We need 8 corresponding points
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More Than 8 Points...

= In reality: noisy measurements

= With more than 8 points, the matrix A
will become reqgular (but should not!)

= Use the singular vector f of A that
corresponds to the smallest singular
value is the solution f — F
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Singular Vector

= Use the singular vector f of A that
corresponds to the smallest singular
value is the solution f — F

A=UDV'
V

=RIeN

9x%x9 f

[~

N x9 N x N N x9
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8-Point Algorithm 1st Try

function F = F_from_point_pairs(xs, xXss)

[oN e R NTwr o N o e ey N o e
HOXE, XSS O NXS homologous SOLNT CoCrdinaTes
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axs tuncgamental matrix

: 3 . S
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for n =1 : size(xs, 1)
A(n, :) = kron(xss(n, :), xs(n, :));
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8-Point Algorithm 1st Try

© 0w N O Ok W N K
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function F

= F_ fronlpoint _pairs (xs,
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size(xs, 1)

= kron(xss(n, :), xs(n,

T T SRR R S,
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~ singular vector of the
smallest singular value

Not necessarily a matrix of rank 2

(but F should have: rank(F)=2)
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Enforcing Rank 2

= We want to enforce a matrix F with
rank(F) = 2

= | should approximate our computed
matrix F as close a possible

What to do?
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Enforcing Rank 2

= We want to enforce a matrix F with
rank(F) = 2

= | should approximate our computed
matrix F as close a possible

» Use a second SVD (this time of F)
F = UD*VT = Udiag(Dy1, Da2, 0)V"
with svd(F) = UDV'T
and D11 > Doy > D33
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8-Point Algorithm

function F = F_from_point_pairs (xs, XSS

Q o~y ¢ e e AT« o2 - o~ ] g e g - . e e e - 3
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2 . w3 tuncdamental maty
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size(xs, 1)
= kron(xss(n, :), xs(n, :))
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11 [U, D, V] = svd(A);
12
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8-Point Algorithm

function F = F_from_point_pairs (xs, XSS
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11 [U, D, V] = svd(A);
12
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14 Fa = reshape(V(:, 9), 3, 3);
15

16 % svd decomposition of F

17 [Ua, Da, Va] = svd(Fa);

18

19 % algebraically best F, singularx

20 F = Ua % diag([Da(l, 1), Da(2, 2), 0]) = Va';




Well-Conditioned Problem

= Example image 12MPixel camera

4000

[ 1800 °

» » 1400

3000

1

= Jll-conditioned, numerically instable

- 1800 | new 0.9
1400 m) coordinate mp 0.7

1 _ system 1 _




Conditioning/Normalization
to Obtain a Well-Conditioned
Problem

= Normalization of the point coordinates
substantially improves the stability

= Transform the points so that the
center of mass of all points is at (0,0)

= Scale the image so that the x and y
coordinated are within [-1,1]
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Conditioning/Normalization

= Define T : Tx = x so that coordinates
are zero-centered and in [-1,1]

= Determine fundamental matrix F from
the transformed coordinates

X

al Fx"’

(T_l}/\(,)TF(T_l}A{//)
}A(/T —TF —1}2//

A /T Fx"’

= Obtain essential matrix F through

=

F
F

T-'FT!
TTFT
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Singularity — Points on a Plane

= If all corresponding points lie on a
plane, then rank(A) < 8

= Numerically instable if points are close
to a plane @

Images from the “"Fundamental Matrix Song” Video by D. Wedge
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Singularity — No Translation

= The projection centers of both
cameras are identical: X o = X~

= This happens if the translation of the
camera is zero between both images

. ®e SCene

e £

cam?2
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Summary so far

= Estimating the fundamental matrix
from N pairs of corresponding points

= Direct solution of N>7 points based on
solving a homogenous linear system
("8-Point Algorithm™)
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Computing the
Fundamental Matrix
Given 7 Corresponding Points
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Direct Solution with 7 Points

= We know that the fundamental matrix
has seven degrees of freedom

= There exists a direct solution for 7 pts

The solution itself is more complex,
so just the idea should matter here
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Direct Solution with 7 Points

= We know that the fundamental matrix
has seven degrees of freedom

= There exists a direct solution for 7 pts
= [dea: 2-dimensional null space of A
= Matrix F must fulfill f = Af; + (1 — \)f5

t )

vectors spanning
the null space

38



Direct Solution with 7 Points

= We know that the fundamental matrix
has seven degrees of freedom

= There exists a direct solution for 7 pts
= [dea: 2-dimensional null space of A
= Matrix F must fulfill f = Af; + (1 — \)f5

= We also know that the determinant of
the 3x3 matrix must be zero: |F| =0

= Can be combined to an equation of
degree 3 m up to three solutions
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Direct Solution with 7 Points

= We know that the fundamental matrix
has seven degrees of freedom

= There exists a direct solution for 7 pts
= Exploit
= 2-dimensional null space of A
= Determinant of the 3x3 matrix must be
zero:|F| =0
= Can be combined to an equation of
degree 3 mp up to three solutions
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Summary so far

= Estimating the fundamental matrix
from N pairs of corresponding points

= Direct solution of N>7 points based on
solving a homogenous linear system
("8 point algorithm™)

= [dea for a direct solution with 7 points
(up to 3 solutions)
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Let’'s Do the Same for the
Essential Matrix

42



Reminder: Essential Matrix

= Essential matrix = “fundamental
matrix for calibrated cameras”

E=R'S,R"'

= Often parameterized through

(general parameterization of dependent images)

E=S,R'
= Coplanarity constraint for calibrated

cameras T %

43



Essential Matrix
from 8+ Corresponding Points

= For each point, we have the
coplanarity constraint

Al k.1 _
x,E "x, =0 n=1,..

LN
= Note: Same equation as for the
fundamental matrix but for the
points in the camera c.s.

Remember: *x’' = (K)~1x/
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Essential Matrix
from 8+ Corresponding Points

= For each point, we have the
coplanarity constraint

-
"' E*x!=0 n=1,..,N
" Or
 FEn Eis Eiz || k2
[P, Pyl ]| Eai Eaa  Eag k@/ff{
B3y B3 Ezz || '




As for the Fundamental Matrix...

 Ey Eiy Eiz | [ Fal
[kf/ ky;wc/] Eo1  Eoy  Eog Ry | =0

n?

1 function E = E_from_point_pairs(xs, XxXsSs)

N

Q. e < ~ NTwsr = . A T, o~ o~ o I P BN -3
% X8, ®s8s: Nx3 homologous point coordinates, N > 7

%5 R ax3 egsential matrix

ey vy A e
Lent Matiixd

for n =1 : size(xs, 1) - -
A(n, :) = kron(xss(n, :), xs((n, :)); b“lld matI‘IX A

end |

© 0w N O Uk~ W

Q. < TOFY Yy 3 S NP i TIEN ey TR Oy @ e SN Y —
10 T OSinguLiay vaiue Qeconmposition v —

11 [U, D, V] = svd(A); |
12

|

Which constraints to consider? 46

2, o~ o~} e —~ e}y ~
13 % select the gsinglar vect

% ctor
14 E = reshape(V(:, 9), 3, 3)';




Constraints

= For the fundamental matrix, we
enforced the rank(F) = 2 constraint

F=UDV'=U

Dyy 0 0]
0 Dy O

0 0 0

VT

= For the essential matrix, both non-
zero singular values are identical

4 d 0 0 | '100'\

E=U|0 d O|lVi=U|l0 1 0]V'
0 0 0] 'T‘ 0 0 0

\_ homogenous y

More details: Forstner, Skript Photogrammetrie II, Sect 1.2.3
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8-Point Algorithm for the
Essential Matrix

function E = E_from_point_pairs(xs, xss)

[T, e s NTw 2 ey T oy R PR, I R T N 7
% X8, xss: Nx3 homologous point coordinates, N > 7
% E 3x3 egssential matrix

Q

% coefficient matrix
for n =1 : size(xs, 1)

A(n, :) = kron(xss(n, :), xs(n, :)); build matrix A

end

© 0 N O ok~ W N K

o)

% singular value decomposition SOIVe Ae=0
[U, D, V] = svd(A);

I e e
w N = O

% approximate E, possibly regular build matrix Ea
Ea = reshape(V(:, 9), 3, 3);

!
[G1EN'SN

Q. e J o " LI S £
% ogva gecompoesition of
£

[Ua, Da, Va

=
&)

compute SVD of Ea

18 |

191 % algebraically best E, singular, se build matrix E from Ea
E = Ua » diag([1l, 1, 0]) » Va'; by imposing constraints

48
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Conditioning/Normalization
to Obtain a Well-Conditioned
Problem (As Done Before)

= As for the 8-Point algorithm for the
fundamental matrix, normalization of
the point coordinates is essential

= Transform the points so that the
center of mass of all points is at (0,0)

= Scale the image so that the x and y
coordinated are within [-1,1]
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Conditioning/Normalization

» Define T : Tx = x so that coordinates

are zero-centered and in [-1,1]

= Determine essential matrix E f
transformed coordinates

k /TEk 7

(-I——l kf(/>TE(T_1 kf(//)

POy _ ~

k / T TET 1ICX//
T/\

k A~ / Ek ~ 1

-om the

= Obtain essentlal matrix E through

E:
» £ -

T 'ET™!
T'ET
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Properties of the Essential Mat.

= Homogenous
= Singular:|E| =0 (determinant is zero)
= Two identical non-zero singular values

E=U v’

O O =
O = O
o OO

= As a result of the skew-sym. matrix:

2EE'E —tr (EE')E= 0
3 X3

51



5-Point Algorithm
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5-Point Algorithm

= Proposed by Nister in 2003/2004

= Standard solution today to obtaining
the direct solution

= Solving a polynomial of degree 10
= 10 possible solutions

= Often used together RANSAC

= RANSAC proposes correspondences

= Evaluate all 5-point solutions based on
the other corresponding points
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5-Point Algorithm

= More details in the script by Forstner
"Photogrammetrie II”, Ch 1.2

= Stewenius, Engels, Nistér: “Recent
Developments on Direct Relative
Orientation”, ISPRS 2006

= Li and Hartley: “Five-Point Motion
Estimation Made Easy”
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Computing the
Orientation Parameters
Given the Essential Matrix
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Compute Basis and Rotation
Given E

= In short: E — Sz, R

Question: Is there a unique solution?
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The Solution We Want...
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Multiple Solutions from Math...

We only know b up to a scalar.
So we can multiply it by -1...
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Multiple Solutions from Math...

kX//
O/ » O//
We only know b up to a scalar.
So we can multiply it by -1...
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Multiple Solutions from Math

1
\
\
1
1
\
1
1
1
\
1

~
~
~
~
~
~
~
~
~
~
~
~
~
\\
~

~
~
~
~
~
~
~
~
~
\\
~

We can also rotate the
(second) camera by PI

~
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1/

from Math...

Or do both...

ions
)"

le Solut
kX

\\
L d
L d
-
-
\\
L e
X< o)
p ~
-
- -~ o
\\
R =2
- -~
\\
— - Q
-
\\\ \\\\\ S
P - X
e -
- - 2
\\ ‘\\‘
- -
PR -
\\\\\
-
“
\‘ ‘\“
- -
-~ -
- -

-
-
-
‘\
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Four Possible
Math...

k.1
O//
kX/ b
O/
O//
kX//
kX/ b
O/

Solutions from

S
N
~
~
~
N
N
N
~
S
\5
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One Solution from Physics...

/
O The only physically plausible
solution that that the point are

in front of both cameras.
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Algebraic Solution

for Obtaining the Basis and Rotation
Matrix Given the Essential Matrix
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Solution by Hartley & Zisserman
= We know that 0
E=U 0

/

rotation
matrices

O =
O = O

X
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Solution by Hartley & Zisserman

= We know that 1 0 0]
E=U|0 1 0| V'
flossT
rotation
matrices
_ 0 1 0 0 -1 0
= Define z=1| -1 0 o w=1|1 0 0
0 0 0 0 0 1
skew-sym. mat rotation mat
1 0 0]
= Sothat zw=|0 1 o0
0 0 O




1

-1 0 O

Solution by Hartley & Zisserman

U

> =

N
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Solution by Hartley & Zisserman

1 0 0
E = Ulo 1 0| V'
0 0 0
0 1 0ol]o =1 0]
- Ul =1 0 0 1 0 o |V’
0 0 O0||l0 0 1
7 W
— yzutuwv’
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Solution by Hartley & Zisserman

uzu'uwv’
N——

/

uzu' uwv’
N—_— e ——

Ss R
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Four Possibilities to Define Z, W

0
1
0

1
-1 0 0
0

=/ZW

o O O

o — O

— O O
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Yields Four Solutions

E = uzu'uwyv'
S——

5 R

2 solutions for Sg 2 solutions for R
Sp=UzU" S =vuz'U" R{=UWV' R} =UW"V'

» El=uzUu" uwv?’
E2=yuz'U" uwv?’

4 solutions

EP=vuzUu" uw'v'
Er=yuz'u" uw'vT
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Solution by Hartley & Zisserman

= Compute the SVD of E: UDV'" = svd(E)
= Normalize U,V by U= U|U|,V = V|V
= Compute the four solutions
Sp=UzU" SL=U0Z'U" R{=UWV' Ry=UW'V'
= Test for which solutions all points are
in front of both cameras

= Return the physically plausible
configuration
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Summary (1)

= Algorithms to compute the relative
orientation from image data

= Allow us to estimate the camera
motion (except of the scale)

= Direct solutions
= F from N>7 points ("8-Point Algorithm”)
= E from N>7 points ("8-Point Algorithm™)

= E from N=5 points ("Nister’s 5-Point
Algorithm™)
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Summary (2)

Direct solutions
Extracting S, R from E
Not statistically optimal

Often used in combination with
RANSAC for identifying in/outliers

Direct solutions & RANSAC serves as
initial guess for iterative solutions

Subsequent refinement using least
squares only based on inlier points

74



Literature

= FOorstner, Wrobel: Photogrammetric
Computer Vision, Ch. 12.3.1-12.3.3

= Hartley: In Defence of the 8-point
Algorithm

= Stewenius, Engels, Nistér: Recent
Developments on Direct Relative
Orientation, ISPRS 2006
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Slide Information

= The slides have been created by Cyrill Stachniss as part of the
photogrammetry and robotics courses.

= ] tried to acknowledge all people from whom I used images or
videos. In case I made a mistake or missed someone, please
let me know.

= The photogrammetry material heavily relies on the very well
written lecture notes by Wolfgang Forstner and the
Photogrammetric Computer Vision book by Forstner & Wrobel.

= Parts of the robotics material stems from the great
Probabilistic Robotics book by Thrun, Burgard and Fox.

= If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de, 2014 76



