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Photogrammetry & Robotics Lab 

Some Math Basics 

Cyrill Stachniss 

The slides have been created by Cyrill Stachniss.  
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Motivation 

§  We use several concepts from math  
§  Goal: Provide a short reminder for few 

things that we will use on our way 

Brief, informal, incomplete, and 
unordered set of explanations 
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Motivation 

§  We use several concepts from math  
§  Goal: Provide a short reminder 
§  Topics 

§  Solving  Ax=b  
§  Solving  Ax=0 using SVD 
§  Least squares with Gauss Newton 
§  Skew-symmetric matrix 
§ Derivative of rotation matrices 
§ Homogenous coordinates (own lecture) 
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System of Linear Equations 
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Linear Equation System: Ax=b 

Three cases: 
§  A is squared and has full rank 
§  A is overdetermined 
§  A is underdetermined 
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Solving Ax=b, w/ Exact Solution 

§  A is a square matrix with full rank 
§  Best-case situation, unique solution 
§  Can be solved in many ways... 
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Solving Ax=b, w/ Exact Solution 

§  A is a square matrix with full rank 
§  Best-case situation, unique solution 
§  Can be solved through   

§ Gauss elimination 
§  Inversion of    : 
§ Cholesky decomposition 

with lower triangular matrix 
and then solving            and 

§ QR decomposition 
§ Conjugate gradients 
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Solving Ax=b, A overdetermined 

§  Common real-world situation 
§  No exact solution exists 
§  We aim at finding minimizing 

instead of solving          : 

§  Ordinary least squares approach  
§  Solution can be obtained through 
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Solving Ax=b,  
A underdetermined 
§  Infinitively many solutions exist  

(or no solution if inconsistent)  
§  Not enough information available 
§  Approach: Find     which solves  

and minimizes 
§  Solution  
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Homogenous System 
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Homogenous System: Ax=0 

§  Find a solution          fulfilling   
§  Means system is underdetermined 
§  There exists a null space of A called       

           and all    fulfilling            are 
elements of it 

§  A’s rank deficiency defines the 
dimensionality of the null space 
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Eigenvalues 

§  For a squared matrix, we have 

§  Which impact does this have on the 
Eigenvalues of    ? 
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Eigenvalues 

§  For a squared matrix, we have 

§  Which impact does this have on the 
Eigenvalues of    ? 

§  There are             non-zero 
Eigenvalues 

§  There are                   Eigenvalues 
that are zero 
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Eigenvector 

§  For each Eigenvector    holds 
§  Thus, for those with Eigenvalue 0 we 

have 
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Eigenvector 

§  For each Eigenvector    holds 
§  Thus, for those with Eigenvalue 0 we 

have 
§  Result: all Eigenvectors corresponding 

to an Eigenvalue of 0 solve 
§  The same holds for all linear 

combinations of these Eigenvectors  
§  These Eigenvectors form 
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Eigenvector & Singular Vectors 

§  If    is square, real, symmetric and has 
non-negative Eigenvalues, then 
Eigenvalues equal to singular values 

§  Singular vectors and values also 
defined for non-square matrices 

§  We can use SVD to compute the 
singular values and vectors  
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Singular Value Decomposition 

§  SVD decomposes a matrix A into 

= 
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Singular Values 

§  SVD decomposes a matrix A into 

§     is a diagonal matrix of singular 
values sorted from large to small 

§         are orthogonal matrices  

= 
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Singular Vectors 

§  SVD decomposes a matrix A into 

§  D stores the corresponding singular 
vectors to the values 

= 



20 

Singular Vectors 

§  SVD decomposes a matrix A into 

§  Math libraries often returns     not  
§  The last column of     stores the vector 

corresponding to the smallest value 

= 
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Solution to Ax=0 via SVD 

§  Decompose A using SVD: 
§  Check of the smallest singular value in 

D is zero: 
§  If so, the last column of     is a 

non-trivial solution    to 
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Solution to Ax=0 via SVD 

§  Decompose A using SVD: 
§  Check of the smallest singular value in 

D is zero: 
§  If so, the last column of     is a  

non-trivial solution    to 
§  If not, there is no non-trivial 

solution (i.e., only the trivial exists) 
§  However, the last column of     

represents the vector that minimizes  
       under the constraint      
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Least Squares 
(an non-Geodetic view) 
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Least Squares in 5 Minutes 

https://www.youtube.com/watch?v=87S82fh4rI4 
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Graphical Explanation 

state 
(unknown) 

predicted  
measurements 

real 
measurements 
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Error Function 
§  Error     is typically the difference between 

the predicted and actual measurement  
  

§  We assume that the error has zero mean 
and is normally distributed  

§  Gaussian error with information matrix 
§  The squared error of a measurement 

depends only on the state and is a scalar 
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Linearizing the Error Function 

§  Approximate the error functions 
around an initial guess x via Taylor 
expansion 

§     is the Jacobian 
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Gauss-Newton 

Iterate the following steps: 
§  Linearize around x and compute for 

each measurement 

§  Compute the terms for the linear 
system 

§  Solve the linear system 
  

§  Updating state 
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Skew-Symmetric Matrices 
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Skew-Symmetric Matrices 

§  A skew-symmetric matrix is a matrix   
   for which holds  
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Skew-Symmetric Matrices 

§  A skew-symmetric matrix is a matrix   
   for which holds 

§     has zeros on the main diagonal 
§    
§    
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Skew-Symmetric Matrices in 3D 

§  In     we can express the cross product 
through a skew-symmetric matrix 
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Skew-Symmetric Matrices in 3D 

§  In     we can express the cross product 
through a skew-symmetric matrix 
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Derivative of a Rotation Matrix 
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Derivative of a Rotation Matrix 

§  Skew-symmetric matrices are useful 
to formulate the derivative of a 
rotation matrix 

§  For any rotation matrix    holds  

§  Consider a rotation by    around x-axis 

§  Then, we have 
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Derivative of a Rotation Matrix 

§  Compute derivative (chain rule) 
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Derivative of a Rotation Matrix 

§  Compute derivative (chain rule) 

§  Exploiting                  leads us to 
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Derivative of a Rotation Matrix 

§  Rewrite 

§  as 
§  This directly leads to              , which 

is a skew-symmetric matrix 
§  We can now exploit the fact that 
                 is a skew-symmetric matrix 
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Derivative of a Rotation Matrix 

§  We have 

§  So   
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Derivative of a Rotation Matrix 

   

with the unit vector  
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Derivative of a Rotation Matrix 

§  This means 
§  and thus 

§  The derivative of a rotation matrix 
is the skew-symmetric matrix      
times the rotation matrix itself 
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The Same for x,y,z Axes 

§  We can repeat the same to x, y, z and 
obtain 

 
§  and even for an arbitrary rot. axis 
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Infinitesimal Small Rotations 

§  Similarly, we can also approximate an 
infinitesimally small rotation by 

§  Thus, 
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Summary 

This lecture was a brief and informal 
reminder of concepts we will need 
§  Solving  Ax=b  
§  Solving  Ax=0 using SVD 
§  Least squares with Gauss Newton 
§  Skew-symmetric matrics 
§  Derivative of a rotation matrix 
§  Own lecture: Homogenous coordinates 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used 

images or videos. In case I made a mistake or missed 
someone, please let me know.  

§  The photogrammetry material heavily relies on the very well 
written lecture notes by Wolfgang Förstner and the 
Photogrammetric Computer Vision book by Förstner & Wrobel. 

§  Parts of the robotics material stems from the great 
Probabilistic Robotics book by Thrun, Burgard and Fox. 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss,  cyrill.stachniss@igg.uni-bonn.de 


