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Photogrammetry & Robotics Lab 

Convolutional Neural Networks 

Cyrill Stachniss 

The slides have been created by Cyrill Stachniss. 
I took a lot of inspiration from lectures given by Justin Johnson 
and Fei-Fei Li. 
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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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NN Part 1 on MLPs 

§  What are neurons and neural networks 
§  Activations, weights, biases 
§  Multi-layer perceptron (MLP) 
§  MLP for simple image classification 

input output 

“5” 

classifier 
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NN Part 2 on Training NNs  

§  Training multi-layer perceptrons 
§  Parameters are the weights and biases 
§  Learning/training NNs means 

estimating the weights and biases 
§  Minimization of a loss function 
§  Stochastic gradient descent for 

parameter optimization 
§  Backpropagation to compute gradients 
§  End-to-end: no manual features 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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The Good Old MLP’s Input... 

An image consists  
of individual pixels. 

Each pixel is an 
intensity value. 

image 

pixel intensities 



9 

The Good Old MLP’s Input... 

An image consists  
of individual pixels. 

We have N+1 such 
intensity values. 
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The Good Old MLP’s Input... 

Arrange all the 
intensity values 

in a N+1 dim vector. 
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The Good Old MLP’s Input... 

Arrange all the 
intensity values 

in a N+1 dim vector. 
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The Good Old MLP’s Input... 

Arrange all the 
intensity values 

in a N+1 dim vector. 
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The Good Old MLP’s Input... 

This vector is  
the input layer 
of our network! 
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The Good Old MLP’s Input... 

Problem: the approach  
destroys the spatial information  

as it ignores the locations  
of the pixels in the image! 
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CNNs Overcome this Problem 

§  CNNs maintain the 2D image structure 
§  Neighborhoods are maintained 
§  Network layers can learn features  

that also encode spatial information 
§  Convolutions are local operators 

(see lecture on local operators) 
§  CNNs use convolutions & subsampling 

(called pooling) 
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Convolutions 
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Let’s Start With the Input 

width 

height 
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Let’s Start With the Input 

width 

height 

channels/depth 

depth=1 

depth=3 
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Convolution Using a Kernel 

image 

kernel 

1 

1 
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Convolution Using a Kernel 

image 

kernel 

kernel  
weights 

pixel 
intensities 

1 value 

1 

1 
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Convolution Using a Kernel 
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Convolution Using a Kernel 

This is the  
output (image)  

of a convolution! 

example for  
blurring through 
a convolution 
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Sizes 

width 

height 

3 

3 

1 value 
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Sizes 

width 

height 

3 

3 

1 value 

5 

5 

kernel size: 
à dot product of 75 dim. vectors 
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Sizes 

256 

256 

3 

3 

1 

252 

252 

number of such dot products: 

kernel size: 
à dot product of 75 dim. vectors 

5 

5 
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We Can Use Multiple Kernels 

1 input 4 kernels 4 outputs 
activation maps 

3xWxH  4x 3x5x5 4x 1x(W-4)x(H-4) 
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Sizes 

Size of the activation map depends on 
§  Size of the input (W, H) 
§  Kernel size (K) 

output size input size and kernel size 
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Padding 

§  Convolutions slightly shrink the image 
§  We can solve this by creating a border 

around the input image 

CNNs often use zero-padding 

Image courtesy: Szelinsky 



29 

Sizes 

Size of the activation map depends on 
§  Size of the input (W, H) 
§  Kernel size (K) 
§  Padding (P) 
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Tensor 

§  Vector is a 1 dimensional array 
§  Matrix is a 2-dimensional array 
§  Voxelgrid is a 3-dimensional array 

Tensor = generalization of the “array” 
(matrix) concept with a flexible number 
of dimensions  

, 

[Image courtesy: A. Kriesch] 
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Each Layer is a Tensor 

3D tensor 4D tensor 4D tensor 

3xWxH  Nx3xKxK Nx1xW’xH’ 
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Convolutional Layer Parameters  

input 

convolutional 
layer 

kernel weights 

bias vector 

activation  
map 
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Stacking Convolutional Layers 

input (as the  
output from  

previous layer) 

convolutional 
layer 

kernel weights 

bias vector 

activation  
map 
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Stacking Convolutions 

§  For such linear shift-invariant kernels, 
we know that concatenations of 
convolutions are again a convolution 

§  Multiple layers can be combined into a 
single convolution 

§  Property breaks when introducing  
non-linear activation function 
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Stacking Convolutions Layers 
With Activation Functions 

conv conv 
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Pooling 
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Pooling 

§  Besides convolutions, CNNs also use 
pooling layers 

§  Pooling combines multiple values into 
a single value to reduce the tensor 
sizes and combine information 

§  Prominent examples are: 

10 23 

8 35 

10 23 

8 35 
35 19 

max-pooling avg-pooling 
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Stride 

§  Stride defines by how many pixels we 
shift the filter forward each step 

§  Larger stride reduces overlaps and 
makes the resulting image smaller 

10 23 31 2 3 

8 35 44 33 1 

2 13 0 2 1 

stride=1 

+1   +1   +1 
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Stride 

§  Stride defines by how many pixels we 
shift the filter forward each step 

§  Larger stride reduces overlaps and 
makes the resulting image smaller 

10 23 31 2 3 

8 35 44 33 1 

2 13 0 2 1 

stride=2 

+1          +2          +2 
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Max Pooling Example 

max pooling 
with size 2x2 
and stride 2 

Size tells us how many values to combine and 
stride define by how much to shift the mask 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 44 

stride=2 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 44 45 

stride=2 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 44 45 

13 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 44 45 

13 22 88 

88 33 4 
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Max Pooling Example 

10 23 31 2 3 34 

8 35 44 33 1 45 

2 13 0 2 1 7 

12 3 8 22 9 88 

22 88 3 0 2 0 

1 9 33 3 4 4 

35 44 45 

13 22 88 

88 33 4 

stride and size  
determine the 

output size  
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Receptive Field 

§  Stacking multiple pooling operations 
reduces W, H of the activation maps 

§  Elements in deeper layer are impacted 
by larger areas of the inputs  

[Image courtesy: A. Dertat] 
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Normalization 
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Training CNNs 

§  Similar to MLPs, CNNs are trained 
using SDG and backpropagation 

§  Large number of parameters need to 
be determined 

§  Fairly large training sets are needed 
(end-to-end vs. given features) 
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SGD & Backpropagation  
for Training Neural Networks 

https://youtu.be/4F0_V_0OO2Q 

https://youtu.be/eAIAZIv2m0s 
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Normalization 

§  The first CNNs used convolutional and 
pooling layers in the first part 

§  Hard to train 
§  Normalizing the layers makes SGD 

converge faster 
§  Normalization of means and variance 
§  Somewhat unclear why it helps 
§  Different normalization approaches 

(batch, layer, instance, ...) 
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The First CNN 
[LeCun et al. 1989] 
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LeNet-5 by LeCun et al., 1989 

§  First convolutional network 
§  Proposed by Yann LeCun et al. 
§  Recognition of handwritten digits 
§  Outperformed all other networks  

(at that time) 
§  5 layers: 2 convolutional and 3 fully 

connected ones 
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LeNet-5 by LeCun et al. 

§  5 layers: 2 convolutional and 3 fully 
connected ones 

§  Each convolutional layer combines: 
convolutions, pooling, activation fct. 

[Image courtesy: LeCun et al.] 
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LeNet-5 by LeCun et al. 

[Image courtesy: Wikipedia] 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input layer 

padding 

convolution 

pooling 

convolution 

pooling 

fully connected layer 

fully connected layer 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input layer 

padding 

convolution 

pooling 

convolution 

pooling 

fully connected layer 

fully connected layer 

output layer 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input layer 
28x28 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

padding 
32x32 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

convolution 
6x28x28  
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

pooling 
6x14x14 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

convolution 
16x10x10  
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

pooling 
16x5x5 



64 

LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

fully connected layer 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

fully connected layer 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

fully connected 
output layer 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

classification 
part (MLP) 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

classification 
part (MLP) 

spatial 
feature 
part 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input  
image 

activations 

result 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input  
image 

activations 

result 



71 

LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input  
image 

activations 

result 
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LeNet-5 by LeCun et al. 

[Image generated with TensorSpace.js] 

input  
image 

activations 

result 
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CNNs Today 

§  CNNs are the standard approach for 
image-based tasks 

§  Networks also also used for other 
inputs (e.g., point clouds) 

§  A large number of architectures have 
been proposed 
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LeNet-5 (1989) 

§  The first CNN out there 
§  Used for character recognition 

[Image courtesy: A. Dertat] 
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AlexNet (2012) 

§  Conceptually similar to LeNet-5 
§  Larger and deeper architecture 

[Image courtesy: A. Dertat] 
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VGG-16/19 (2014) 

§  Stacks elements from AlexNet using 
smaller filters 

§  16/19 layers 
§  138M parameters (16 layer version) 

[Image courtesy: A. Dertat] 
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ResNet (2015) 

§  Very deep network:152 layers 
§  Consists of residual blocks 

[Image courtesy: A. Dertat] 
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Convolutional Neural Networks  
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CNN Summary   

§  This lecture was a brief overview on 
convolutional neural networks (CNNs) 

§  Standard tool today for vision tasks 
§  Layers combining convolutional blocks, 

pooling, and normalization 
§  Classification layers at the end 
§  End-to-end trainable networks  

(input image to output) 
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Literature & Resources 
§  Goodfellow, Bengio, Courville: “Deep Learning” 

https://www.deeplearningbook.org/ 

§  Online Book by Michael Nielsen, Chapter 1:  
http://neuralnetworksanddeeplearning.com/chap1.html 

§  Online book by Deisenroth, Faisal, Ong: 
Mathematics for Machine Learning  
https://mml-book.github.io/ 

§  Alpaydin, Introduction to Machine Learning 
§  UMich NN Lecture by Johnson  
§  Standford AI Lectures by Li et al. 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used 

images or videos. In case I made a mistake or missed 
someone, please let me know.  

§  I took a lot of inspiration from lectures given by Justin 
Johnson (UMich, Stanford) and Fei-Fei Li (Stanford). 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss,  cyrill.stachniss@igg.uni-bonn.de 


