Photogrammetry & Robotics Lab

Convolutional Neural Networks

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.
I took a lot of inspiration from lectures given by Justin Johnson
and Fei-Fei Li.

5 Minute Preparation for Today

https://www.ipb.uni-bonn.de/5min/

NN Part 1 on MLPs

= What are neurons and neural networks
= Activations, weights, biases

= Multi-layer perceptron (MLP)

= MLP for simple image classification

nput m output

‘ \\5[’

NN Part 2 on Training NNs

= Training multi-layer perceptrons
= Parameters are the weights and biases

= Learning/training NNs means
estimating the weights and biases

= Minimization of a loss function

= Stochastic gradient descent for
parameter optimization

= Backpropagation to compute gradients
= End-to-end: no manual features

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

LN N
9% A
U NATINA
5 X 20 OAHBNIY &
3 o N TN a q ~
2 O 0 XK RO 8
C >< O O AN "‘\ =
Y A Yy Y V/’“\V/‘ <
o (L0 W8
X0

«~ L[Image courtesy: van Veen]

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

wya AV,

\/\/

- L[Image courtesy: van Veen]

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

| end-to-end learning

\

< [Image courtesy: van Veen]

The Good Old MLP’s Input...

An image consists
of individual pixels.

pixel intensities

Each pixel is an
intensity value.

The Good Old MLP’s Input...

g 1 T2 T4

OOEEm0Ono -
Oom0OO0Om0O -
Ti | An image consists

of individual pixels.

We have N+1 such
intensity values.

The Good Old MLP’s Input...

g 1 T2 T4

OOEEE0O0 -

ORCOO0O0O0m0O i i

i . X0
L1
xN

Arrange all the
intensity values

ina N+1 dim vector.
10

The Good Old MLP’s Input...

g 1 T2 T4

Arrange all the
intensity values

ina N+1 dim vector.
11

The Good Old MLP’s Input...

g 1 T2 T4

Arrange all the
intensity values

ina N+1 dim vector.
12

The Good Old MLP’s Input...

g 1 T2 T4

OO

This vector is
the input layer
of our network!

13

The Good Old MLP’s Input...

g 1 T2 T4

OoEEEoE— -E | O
OEO00@ED - I:I O

Problem: the approach

destroys the spatial information
as it ignores the locations
of the pixels in the image!

14

CNNs Overcome this Problem

= CNNs maintain the 2D image structure
= Neighborhoods are maintained

= Network layers can learn features
that also encode spatial information

= Convolutions are local operators
(see lecture on local operators)

= CNNs use convolutions & subsampling
(called pooling)

15

Convolutions

16

Let’'s Start With the Input

height

17

Let’'s Start With the Input
channels/depth

4

height

Convolution Using a Kernel

image

kernel

19

Convolution Using a Kernel

image

kernel

(] = W; T;

IR RN

/ 1 value pixel
kernel ihtensities

weights

AT
NN \
\. R
= B

A

|] :
= ‘
,.l'
- - »Q
— w1 %
i

20

Convolution Using a Kernel

21

Convolution Using a Kernel

4

<——— This iIs the
output (image)
of a convolution!

example for
blurring through
a convolution

v
a)

22

Sizes

height

] 1 value

23

Sizes

height

] 1 value

kernel size: 3 x5 x5 =175
- dot product of 75 dim. vectors

24

Sizes

256

/252

_/252

1 kernel size: 3 x5 x5 =175
- dot product of 75 dim. vectors

number of such dot products:
(256 — 4) X (256 — 4) = 63.5k ,

5

We Can Use Multiple Kernels

1 input 4 kernels 4 outputs

activation maps
3XWxH 4x 3x5x5 4x 1x(W-4)x(H-4)

26

Sizes

Size of the activation map depends on
= Sjze of the input (W, H)
= Kernel size (K)

W' 'xH =(W-K+1)x (H—-K+1)

output size input size and kernel size

27

Padding

= Convolutions slightly shrink the image

= We can solve this by creating a border
around the input image

Zero wrap clamp mirror

Image courtesy: Szelinsky

CNNs often use zero-padding .

Sizes

Size of the activation map depends on
= Sjze of the input (W, H)

= Kernel size (K)

= Padding (P)

W' xH =(W-K+1+2P)x (H—-K+1+2P)

29

Tensor

= VVector is a 1 dimensional array
= Matrix is a 2-dimensional array
= VVoxelgrid is a 3-dimensional array

Tensor = generalization of the “array”

(matrix) concept with a flexible number
of dimensions /0

[Image courtesy: A. Kriesch] 30

Each Layer is a Tensor

/]

2/

27

V

3D tensor

3xWxH

UL

4D tensor

[N)k3xKxK

1ivi%g

4D tensor

[NK1xW'xH’

31

Convolutional Layer Parameters

/‘ bias vector W/"
1 11
|

convolutional |

layer
input activation
map
kernel weights

Stacking Convolutional Layers

i bias vector W/"
1 ||
|

convolutional |

layer
input (as the activation
output from map
previous layer) /

kernel weights

Stacking Convolutions

= For such linear shift-invariant kernels,
we know that concatenations of
convolutions are again a convolution

f*(gl*---*gn):f*g

= Multiple layers can be combined into a
single convolution

= Property breaks when introducing
non-linear activation function

34

Stacking Convolutions Layers
With Activation Functions

4

V

conv

4
V

1 Conv

/]

V

Pooling

36

Pooling

= Besides convolutions, CNNs also use
pooling layers

= Pooling combines multiple values into
a single value to reduce the tensor
sizes and combine information

= Prominent examples are:

10

23

8

35

=

35

10

23

max-pooling

8

35

=

19

avg-pooling

37

Stride

= Stride defines by how many pixels we
shift the filter forward each step

= Larger stride reduces overlaps and
makes the resulting image smaller

+1 +1 +1
—> = ->

stride=1

38

Stride

= Stride defines by how many pixels we
shift the filter forward each step

= Larger stride reduces overlaps and
makes the resulting image smaller

+1
—_— -

+2

31

2

3

2

13

44

33

1

0

1

stride=2

39

Max Pooling Example

Size tells us how many values to combine and
stride define by how much to shift the mask

d 7

max pooling
with size 2x2 p—

and stride 2 /

W x H 2 X 2 W/2x H/2

Max Pooling Example

2 X 2
31 2 | 3 34
44 33| 1 |45
2 |13 2 1|7
12 3 | 8 (22| 9 |88
22 88 0| 2
1 933/ 3 4 4

W x H

=

33|

W/2x H/2

Max Pooling Example

35|44

stride=2
—
10 23 3 (34
8 35 1 |45
13 2 1|7
12 3 | 8 (22| 9 |88
2288 0 2
19 33 34 4

W x H

W/2x H/2

42

Max Pooling Example

stride=2

—

10

23

31

2

35

44

33

13

2

35

12

22

88

w[s3]

22

88

0

33

3

2 N | O | =

W x H

W/2x H/2

43

Max Pooling Example

35|44 |45

10 23 /31| 2 | 3 34
8 35/44|33| 1 (45
2 1 |7
8 22 9 88

22 88 0 2
19333 4 |4

W x H

W/2x H/2

44

Max Pooling Example

35|44 |45

13 22|88

388 BBE

10 23 /31| 2 | 3 34

8 |35/44 /33| 1 45
13 2 1 |7

12/ 3 | 8 (22 9 88

22 88 0

19 33| 3

W x H

W/2x H/2

45

Max Pooling Example

102331 2 | 3 |34
8 35/44|33| 1 45 35|44 |45
1310121117/ => |13/22|88
12/ 3 | 8 22| 9 |88 8833 4
22|88 3 | 0 | 2
stride and size
1 9333 | 4 | 4 determine the

output size

Receptive Field

= Stacking multiple pooling operations
reduces W, H of the activation maps

= Elements in deeper layer are impacted
by larger areas of the inputs

N
~
~

~

- [Image courtesy: A. Dertat]

47

Normalization

48

Training CNNs

= Similar to MLPs, CNNs are trained
using SDG and backpropagation

= Large number of parameters need to
be determined

= Fairly large training sets are needed
(end-to-end vs. given features)

49

SGD & Backpropagation
for Training Neural Networks

5 Minutes with Cyrill
Gradient Descent

https://youtu.be/4F0_V_0002Q

5 Minutes with Cyrill

Backpropagation

https://youtu.be/eAIAZIv2mO0Os

50

Normalization

= The first CNNs used convolutional and
nooling layers in the first part

= Hard to train

= Normalizing the layers makes SGD
converge faster

= Normalization of means and variance
= Somewhat unclear why it helps

= Different normalization approaches
(batch, layer, instance, ...)

51

The First CNN
[LeCun et al. 1989]

52

LeNet-5 by LeCun et al., 1989

= First convolutional network
= Proposed by Yann LeCun et al.
= Recognition of handwritten digits

= Qutperformed all other networks
(at that time)

= 5 |layers: 2 convolutional and 3 fully
connected ones

S0H/qU&

53

LeNet-5 by LeCun et al.

= 5 |layers: 2 convolutional and 3 fully
connected ones

= Each convolutional layer combines:
convolutions, pooling, activation fct.

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 S2: f. maps C5: layer .
6@14x14 II— B35 Felayer OUTPUT

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

[Image courtesy: LeCun et al.] 54

LeNet-5 by LeCun et al.

LeNet
Image: 28 (height) x 28 (width) x 1 (channel)

V
Convolution with 5x5 kernel+2padding:28x28x6

\, sigmoid
Poolwith 2x2 average kernel+2 stride: 14x14x6
\/
Convolution with 5x5 kernel (no pad):10x10x16
\, sigmoid
Pool with2x2 average kernel+2 stride: 5x5x16
\ flatten
Dense: 120 fully connected neurons
\, sigmoid
Dense: 84 fully connected neurons
., sigmoid
Dense: 10 fully connected neurons

A
Output: 1 of 10 classes

[Image courtesy: Wikipedia] 55

LeNet-5 by LeCun et al.

60

input layer
padding \\

convolution

pooling

convolution

pooling —
fully connected layer
fully connected layer

[Image generated with TensorSpace.js] 56

LeNet-5 by LeCun et al.

60

input layer
padding \\

convolution

pooling

convolution

pooling —

PP
fully connected layer ?’ - f
fully connectM
eutput layer

[Image generated with TensorSpace.js] 57

LeNet-5 by LeCun et al.

60

input layer
PAS) PAS \\Nzg

[Image generated with TensorSpace.js] 58

LeNet-5 by LeCun et al.

60

padding
32x32

32

[Image generated with TensorSpace.js] 59

LeNet-5 by LeCun et al.

60

28 convolution

8 \|J

E 6x28x28

1

s

[Image generated with TensorSpace.js] 60

LeNet-5 by LeCun et al.

pooling
+ 6x14x14

[Image generated with TensorSpace.js] 61

LeNet-5 by LeCun et al.

60

convolution

/ 16x10x10

[Image generated with TensorSpace.js] 62

LeNet-5 by LeCun et al.

60

pooling

/ 16X5x5

[Image generated with TensorSpace.js] 63

LeNet-5 by LeCun et al.

60

fully connected layer —

[Image generated with TensorSpace.js] 64

LeNet-5 by LeCun et al.

60

fully connected layer \

[Image generated with TensorSpace.js] 65

LeNet-5 by LeCun et al.

60

fully connected _
output layer

[Image generated with TensorSpace.js] 66

LeNet-5 by LeCun et al.

60

classification
part (MLP)

[Image generated with TensorSpace.js] 67

LeNet-5 by LeCun et al.

spatial
feature

classification
part (MLP)

[Image generated with TensorSpace.js] 68

LeNet-5 by LeCun et al.

iInput
image

[Image generated with TensorSpace.js] 69

LeNet-5 by LeCun et al.

iInput
image

activations

[Image generated with TensorSpace.js] /70

LeNet-5 by LeCun et al.

iInput
image

activations

[Image generated with TensorSpace.js] /1

LeNet-5 by LeCun et al.

iInput
image

activations

[Image generated with TensorSpace.js] 72

CNNs Today

= CNNs are the standard approach for
image-based tasks

= Networks also also used for other
inputs (e.g., point clouds)

= A large number of architectures have
been proposed

/73

LeNet-5 (1989)

Layer o -
Digit image LeNet 5

CONV 1
CONV 2

avg avg
pool pool FC b FC -
— — — —— —» >0y
s=1 s=2 s=1 s§s=2 softmax
10 labels

32x32x1 28x28x6 14X14 X6 10X10X16 5X5x16 120 84

= The first CNN out there
= Used for character recognition

[Image courtesy: A. Dertat] 74

AlexNet (2012)

227 3
CONV Overlapping Overlapping
11x11, Max POOL CONV Max POOL oy CONV
stride=4, 3x3, 96 5x5,pad=2 3x3, 2564 4 3x3,pad=1
96 kernels stride=2 256 kernels stride=2 S 384 kemels
R B e — ? —_— - £ —_—
1" (227-11y4 +1 |8 (55-3)2 +1 PR £217o=221;-5y1 27 (=2:53y2 1 A (.113+=2'13.3y1
' =55) =27 13
= | R \
227
e [O] [0
@l CONV AT CONV Max POOL
3x3,pad=1 384 4 28 3x3 pad=1 256 AT 33 256 O
384 kernels 256kemels A A stride=2
(13+2:1-3y1 g 3213y A (13-3y2 +1 FC| : | FC| ° :
+1 =13 p o +1 =13 ‘->”~ =6 . .
' - O o [©
" 9216 O ()| 1000
Softmax

13

4096 4096

= Conceptually similar to LeNet-5
= Larger and deeper architecture

[Image courtesy: A. Dertat]

75

VGG-16/19 (2014)

¥ ¥

3x3 2D Convolution
224 x 224 x 8 224 x 224 x 64

3x3 2D Convolution
224 x 224 x 64

2D Max Pooling
112x 112 x 64

= Stacks elements from AlexNet using

¥

3x3 2D Convolution
112 x12x128

3x3 2D Convolution
112 x 112 x 128

2D Max Pooling
56 x 56 x 128

\Z

3x3 2D Convolution
56 x 56 x 256

3x3 2D Convolution
56 x 56 x 256

3x3 2D Convolution
56 x 56 x 256

2D Max Pooling

28 x 28 x 256

smaller filters
= 16/19 layers

= 138M parameters (16 layer version

[Image courtesy: A. Dertat] 76

17—

¥

3x3 2D Convolution
28 x 28 x 512

3x3 2D Convolution
28 x 28 x 512

3x3 2D Convolution
28 x 28 x 512

2D Max Pooling

14 x 14 x 512

1

2

3x3 2D Convolution
14 x 14 x 512

3x3 2D Convolution
14 x 14 x 512

3x3 2D Convolution
14 x 14 x 512

2D Max Pooling

7x7x512

¥

Flatten
25088

Dense
4096

Dropout
4096

Dense
4096

Dropout
4096

Dense
1000

CAR

(]
Target

ResNet (2015)

152 layers

= Very deep network

» Consists of residual blocks

fg=134,63)

50 layers

fg=13.4,238]

101 layers

152 layers

ofg=138,36,3]

000L' 2
*
Lood Sav
A

8402 ‘AUOD XL
Z2LS "AUOCD gX¢
ZLS "AUOD XL

e —

pr—

8Y0Z *AUOD X}
ZLS *AUOD £XE
ZLS *AUOD IXL

8Y0Z *AUOD X}
Z2LS "AUOD £X¢
2/2LS *AUOD X1

pZOoL *AUOD |X}
962 ‘AUOD £XE
9GZ *AUOD X}
4

 apse—

201 *AUOD LX)
952 ‘AUOD £XE
9GZ *AUOD LX)

YZ0L “AUOD XL
952 ‘AUOD £XE
2/9G2C "AUOD X}

ZLS *AUOD LX)
821 ‘AUOD £XE
821 "AUOD XL
e

fr—

ZLS *AUOD LX)}
821 *AUOD £XE
821 *AUOD |X|

ZIS "AUOD LX)
821 'AUOD EXE
2824 "AUOD XL

962 "AU0D LX)
P9 "AU0D £XE
v9 ‘AUOD X1

e —

—

952 *MU0D X)L
P9 ‘AUOD £XE
¥9 *AUOD LX)

A
!

i
9GZ *AUOD XL
PO ‘AU0D £XE
P9 “AUOD XL
-

Zhood xom

I
CIv9 "AUOD XL

ofsl3] blocks

LS

ofsl2] blocks

LS

ofsl1] blocks

SIS

(f_\'foi blocks

9EITS

LS

: A. Dertat] 77

[Image courtesy

Convolutional Neural Networks

)

X 0 -0
L el D eaiml
3 D IR K 3

— O XX X XY o

— NP i AN S/ NS0
= X 20O ONORZA 3
AT Y ‘ { o

L N Y

X 0O

(

[Image courtesy: van Veen]

N
00]

Convolutional Neural Networks

N/AN

\/) _\‘z/

\/\/

input

[Image courtesy: van Veen]

N
O

CNN Summary

= This lecture was a brief overview on
convolutional neural networks (CNNs)

= Standard tool today for vision tasks

= Layers combining convolutional blocks,
pooling, and normalization

= Classification layers at the end

» End-to-end trainable networks
(input image to output)

80

Literature & Resources

Goodfellow, Bengio, Courville: "Deep Learning”
https://www.deeplearningbook.org/

Online Book by Michael Nielsen, Chapter 1:

http://neuralnetworksanddeeplearning.com/chapl.html

Online book by Deisenroth, Faisal, Ong:

Mathematics for Machine Learning
https://mml-book.github.io/

Alpaydin, Introduction to Machine Learning
UMich NN Lecture by Johnson
Standford AI Lectures by Li et al.

81

Slide Information

The slides have been created by Cyrill Stachniss as part of the

photogrammetry and robotics courses.

I tried to acknowledge all people from whom I used
images or videos. In case I made a mistake or missed
someone, please let me know.

I took a lot of inspiration from lectures given by Justin
Johnson (UMich, Stanford) and Fei-Fei Li (Stanford).

If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de

82

