
1

Photogrammetry & Robotics Lab

Convolutional Neural Networks

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.
I took a lot of inspiration from lectures given by Justin Johnson
and Fei-Fei Li.

2

5 Minute Preparation for Today

https://www.ipb.uni-bonn.de/5min/

3

NN Part 1 on MLPs

§  What are neurons and neural networks
§  Activations, weights, biases
§  Multi-layer perceptron (MLP)
§  MLP for simple image classification

input output

“5”

classifier

4

NN Part 2 on Training NNs

§  Training multi-layer perceptrons
§  Parameters are the weights and biases
§  Learning/training NNs means

estimating the weights and biases
§  Minimization of a loss function
§  Stochastic gradient descent for

parameter optimization
§  Backpropagation to compute gradients
§  End-to-end: no manual features

5

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

6

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

classifier feature
computation

features

7

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

classifier feature
computation

features

end-to-end learning

8

The Good Old MLP’s Input...

An image consists
of individual pixels.

Each pixel is an
intensity value.

image

pixel intensities

9

The Good Old MLP’s Input...

An image consists
of individual pixels.

We have N+1 such
intensity values.

10

The Good Old MLP’s Input...

Arrange all the
intensity values

in a N+1 dim vector.

11

The Good Old MLP’s Input...

Arrange all the
intensity values

in a N+1 dim vector.

12

The Good Old MLP’s Input...

Arrange all the
intensity values

in a N+1 dim vector.

13

The Good Old MLP’s Input...

This vector is
the input layer
of our network!

14

The Good Old MLP’s Input...

Problem: the approach
destroys the spatial information

as it ignores the locations
of the pixels in the image!

15

CNNs Overcome this Problem

§  CNNs maintain the 2D image structure
§  Neighborhoods are maintained
§  Network layers can learn features

that also encode spatial information
§  Convolutions are local operators

(see lecture on local operators)
§  CNNs use convolutions & subsampling

(called pooling)

16

Convolutions

17

Let’s Start With the Input

width

height

18

Let’s Start With the Input

width

height

channels/depth

depth=1

depth=3

19

Convolution Using a Kernel

image

kernel

1

1

20

Convolution Using a Kernel

image

kernel

kernel
weights

pixel
intensities

1 value

1

1

21

Convolution Using a Kernel

22

Convolution Using a Kernel

This is the
output (image)

of a convolution!

example for
blurring through
a convolution

23

Sizes

width

height

3

3

1 value

24

Sizes

width

height

3

3

1 value

5

5

kernel size:
à dot product of 75 dim. vectors

25

Sizes

256

256

3

3

1

252

252

number of such dot products:

kernel size:
à dot product of 75 dim. vectors

5

5

26

We Can Use Multiple Kernels

1 input 4 kernels 4 outputs
activation maps

3xWxH 4x 3x5x5 4x 1x(W-4)x(H-4)

27

Sizes

Size of the activation map depends on
§  Size of the input (W, H)
§  Kernel size (K)

output size input size and kernel size

28

Padding

§  Convolutions slightly shrink the image
§  We can solve this by creating a border

around the input image

CNNs often use zero-padding

Image courtesy: Szelinsky

29

Sizes

Size of the activation map depends on
§  Size of the input (W, H)
§  Kernel size (K)
§  Padding (P)

30

Tensor

§  Vector is a 1 dimensional array
§  Matrix is a 2-dimensional array
§  Voxelgrid is a 3-dimensional array

Tensor = generalization of the “array”
(matrix) concept with a flexible number
of dimensions

,

[Image courtesy: A. Kriesch]

31

Each Layer is a Tensor

3D tensor 4D tensor 4D tensor

3xWxH Nx3xKxK Nx1xW’xH’

32

Convolutional Layer Parameters

input

convolutional
layer

kernel weights

bias vector

activation
map

33

Stacking Convolutional Layers

input (as the
output from

previous layer)

convolutional
layer

kernel weights

bias vector

activation
map

34

Stacking Convolutions

§  For such linear shift-invariant kernels,
we know that concatenations of
convolutions are again a convolution

§  Multiple layers can be combined into a
single convolution

§  Property breaks when introducing
non-linear activation function

35

Stacking Convolutions Layers
With Activation Functions

conv conv

36

Pooling

37

Pooling

§  Besides convolutions, CNNs also use
pooling layers

§  Pooling combines multiple values into
a single value to reduce the tensor
sizes and combine information

§  Prominent examples are:

10 23

8 35

10 23

8 35
35 19

max-pooling avg-pooling

38

Stride

§  Stride defines by how many pixels we
shift the filter forward each step

§  Larger stride reduces overlaps and
makes the resulting image smaller

10 23 31 2 3

8 35 44 33 1

2 13 0 2 1

stride=1

+1 +1 +1

39

Stride

§  Stride defines by how many pixels we
shift the filter forward each step

§  Larger stride reduces overlaps and
makes the resulting image smaller

10 23 31 2 3

8 35 44 33 1

2 13 0 2 1

stride=2

+1 +2 +2

40

Max Pooling Example

max pooling
with size 2x2
and stride 2

Size tells us how many values to combine and
stride define by how much to shift the mask

41

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35

42

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35 44

stride=2

43

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35 44 45

stride=2

44

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35 44 45

13

45

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35 44 45

13 22 88

88 33 4

46

Max Pooling Example

10 23 31 2 3 34

8 35 44 33 1 45

2 13 0 2 1 7

12 3 8 22 9 88

22 88 3 0 2 0

1 9 33 3 4 4

35 44 45

13 22 88

88 33 4

stride and size
determine the

output size

47

Receptive Field

§  Stacking multiple pooling operations
reduces W, H of the activation maps

§  Elements in deeper layer are impacted
by larger areas of the inputs

[Image courtesy: A. Dertat]

48

Normalization

49

Training CNNs

§  Similar to MLPs, CNNs are trained
using SDG and backpropagation

§  Large number of parameters need to
be determined

§  Fairly large training sets are needed
(end-to-end vs. given features)

50

SGD & Backpropagation
for Training Neural Networks

https://youtu.be/4F0_V_0OO2Q

https://youtu.be/eAIAZIv2m0s

51

Normalization

§  The first CNNs used convolutional and
pooling layers in the first part

§  Hard to train
§  Normalizing the layers makes SGD

converge faster
§  Normalization of means and variance
§  Somewhat unclear why it helps
§  Different normalization approaches

(batch, layer, instance, ...)

52

The First CNN
[LeCun et al. 1989]

53

LeNet-5 by LeCun et al., 1989

§  First convolutional network
§  Proposed by Yann LeCun et al.
§  Recognition of handwritten digits
§  Outperformed all other networks

(at that time)
§  5 layers: 2 convolutional and 3 fully

connected ones

54

LeNet-5 by LeCun et al.

§  5 layers: 2 convolutional and 3 fully
connected ones

§  Each convolutional layer combines:
convolutions, pooling, activation fct.

[Image courtesy: LeCun et al.]

55

LeNet-5 by LeCun et al.

[Image courtesy: Wikipedia]

56

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input layer

padding

convolution

pooling

convolution

pooling

fully connected layer

fully connected layer

57

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input layer

padding

convolution

pooling

convolution

pooling

fully connected layer

fully connected layer

output layer

58

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input layer
28x28

59

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

padding
32x32

60

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

convolution
6x28x28

61

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

pooling
6x14x14

62

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

convolution
16x10x10

63

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

pooling
16x5x5

64

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

fully connected layer

65

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

fully connected layer

66

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

fully connected
output layer

67

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

classification
part (MLP)

68

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

classification
part (MLP)

spatial
feature
part

69

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input
image

activations

result

70

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input
image

activations

result

71

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input
image

activations

result

72

LeNet-5 by LeCun et al.

[Image generated with TensorSpace.js]

input
image

activations

result

73

CNNs Today

§  CNNs are the standard approach for
image-based tasks

§  Networks also also used for other
inputs (e.g., point clouds)

§  A large number of architectures have
been proposed

74

LeNet-5 (1989)

§  The first CNN out there
§  Used for character recognition

[Image courtesy: A. Dertat]

75

AlexNet (2012)

§  Conceptually similar to LeNet-5
§  Larger and deeper architecture

[Image courtesy: A. Dertat]

76

VGG-16/19 (2014)

§  Stacks elements from AlexNet using
smaller filters

§  16/19 layers
§  138M parameters (16 layer version)

[Image courtesy: A. Dertat]

77

ResNet (2015)

§  Very deep network:152 layers
§  Consists of residual blocks

[Image courtesy: A. Dertat]

78

Convolutional Neural Networks

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

79

Convolutional Neural Networks

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

classifier feature
computation

features

end-to-end learning

80

CNN Summary

§  This lecture was a brief overview on
convolutional neural networks (CNNs)

§  Standard tool today for vision tasks
§  Layers combining convolutional blocks,

pooling, and normalization
§  Classification layers at the end
§  End-to-end trainable networks

(input image to output)

81

Literature & Resources
§  Goodfellow, Bengio, Courville: “Deep Learning”

https://www.deeplearningbook.org/

§  Online Book by Michael Nielsen, Chapter 1:
http://neuralnetworksanddeeplearning.com/chap1.html

§  Online book by Deisenroth, Faisal, Ong:
Mathematics for Machine Learning
https://mml-book.github.io/

§  Alpaydin, Introduction to Machine Learning
§  UMich NN Lecture by Johnson
§  Standford AI Lectures by Li et al.

82

Slide Information
§  The slides have been created by Cyrill Stachniss as part of the

photogrammetry and robotics courses.
§  I tried to acknowledge all people from whom I used

images or videos. In case I made a mistake or missed
someone, please let me know.

§  I took a lot of inspiration from lectures given by Justin
Johnson (UMich, Stanford) and Fei-Fei Li (Stanford).

§  If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de

