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Photogrammetry & Robotics Lab 

Intro to Neural Networks 
Part 2: Learning 

Cyrill Stachniss 

The slides have been created by Cyrill Stachniss.  
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5 Minute Preparation for Today 

https://www.ipb.uni-bonn.de/5min/ 
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In Part 1, We Discussed 
 
§  What are neurons and neural networks 
§  Activations, weights, biases 
§  Multi-layer perceptron (MLP) 
§  MLP for simple image classification 

input output 

“5” 

classifier 
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Part 2 
Learning the Parameters 
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How to Make the Network 
Compute What We Want? 
§  Neural network is a recipe for 

performing a set of computations 
§  Structure and parameters are the 

design choices 
§  How to set them? 
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Network Parameters 

Given a network structure, weights and 
biases tell the network what to do 

output 

input 

weights biases 

params = weights &  biases 
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What Means “Learning”? 

§  NN are functions 
§  The weights and biases 

determine what this 
function computes 

§  Learning = determining parameters so 
that the network does what we want 

§  Parameters are estimated by providing 
labeled examples (training data) 
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Our Handwritten Digit Network 

raw 
pixels 

simple  
patterns 

combined 
patterns 

patterns 
to digits 

[Image courtesy: Nielsen] 
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Parameters Encode Features 

raw 
pixels 

simple  
patterns 

combined 
patterns 

patterns 
to digits 

[Image courtesy: Nielsen] 

Compared to several other classifiers, 
the network parameters also include  

the feature computations. Thus,  
NNs can also learn the features! 
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Many Parameters 

Such networks have many parameters! 

128 64 10 
64x10 128x64 784x128 = 109.386 

    parameters 
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Training Through Labeled Data 
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Training Through Labeled Data 

0: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

We want to have an approach  
that estimates the parameters 

by only providing examples  
of labeled data points! 
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Exploiting Training Examples 

“0” 
“1” 
“2” 
“3” 
“4” 
“5” 
“6” 
“7” 
“8” 
“9” 

0 
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2 
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Loss Function  

§  We define a loss (= cost) function over 
all weights and biases of the network 

 
 
§  Computed using training data 
§  Input to   are the network parameters  

 
§  Output is the error of the network with 

these parameters on the training data  
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Loss Function  

data  
point 

network with 
parameters  

label network 
output 

Compare output layer to the true label 
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Loss Over All Examples 

We need to evaluate the performance of 
the network over all examples 

{(   , 5), (   , 2), (   , 2), (   , 9), (   , 8), ... 

loss = all examples, avg. squared(NN(input) – label) 
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The Parameters We Want 

§  Parameter    that minimize the sum of 
avg. squared losses over all examples 

§  The squared loss is only one possible 
loss, several other options available 

§  Goal: Find the parameter vector     
for the labeled training set 
given the loss  
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Let’s Start... 

§  Initialize parameters randomly 
§  See how well it performs (bad!) 
§  How to improve the parameters so 

that the loss decreases? 

1 dim high 
dimensional 

(109.386 dim) 

That’s complex! 



20 

Loss Minimization  
using Gradient Descent 
§  Our problem looks like a non-linear 

least squares problem 
§  We have a lot of parameters, which 

makes using GN computationally tricky 
§  Gradient descent is a better way to 

perform the minimization 
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Gradient Descent in 1D 

find  
this 

random 
start 

How to move? 
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Gradient Descent in 1D 

gradient 

find  
this 

How to move? 
Exploit the gradient 
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Gradient Descent in 1D 

gradient 

find  
this 

Strategy: 
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Gradient Descent in 1D 
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Gradient Descent in 1D 

tells us in which direction to go 
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Gradient Descent in 1D 

Step by step: 
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Gradient Descent in 1D 

§  First derivative of loss: 
§  Learning rate (small value): 

Gradient descent works by 
§                      
§ while (!converged) 
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Gradient Descent in 1D 

Step by step: 

GD only finds local minima 
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Gradient Descent in 2D  

§  We can do the same in 2D 
§  Gradients are direction vectors 
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Gradient Descent in 2D  

§  We can do the same in 2D 
§  Gradients are direction vectors 
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Meaning of the Gradient Vector 

§  Some dimensions are more important 
than others to reduce the loss 

§  Gradient indicates which change leads 
to the fastest reduction of the loss 

 

 
changes in      

and     have the  
same relevance 
to reduce loss 

changes in    are  
more relevant  

than changes in   
to reduce loss 
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Gradient Descent in Higher 
Dimensional Spaces  
§  Same situation as before, but the 

gradient vector has more dimensions 
§  Update rule 

In our classification example, all these  
vectors have 109.386 dimensions! 
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Keep in Mind... 
parameters are weights and biases 

total loss is the averaged  
loss of all examples 

difference between  
what we get and  

what we want 

We need to adjust the  
parameters to minimize  

the total loss! 
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Gradient Over All Examples 

§  Loss function sums over all examples 

§  This means for the gradient 

We need to sum over all training  
examples and compute all gradients  

whenever we perform a single GD step! 
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Two Challenges 

1. How to optimize the process if we 
have a lot of training examples? 

2. How to compute the gradients for 
complex and nested functions? 

 
We need to perform these operations  

often, so we need to be able to  
execute them efficiently! 
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1: Handling Large Training Sets 

1st trick: Compute a gradient only on  
a small, sampled subset of examples 

0: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
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1: Handling Large Training Sets 

1st trick: Compute a gradient only on  
a small, sampled subset of examples 

0: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

= mini-batch to be used 
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1: Stochastic Gradient Descent 

§  1st trick: Compute a gradient only on  
a small, sampled subset of examples 

§  We sample a mini-batch in each 
step of gradient descent  

§  Use only mini-batch     to compute  

§  This approximates the real gradient 
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1: Stochastic Gradient Descent 

Approximate down-hill steps but much 
faster to compute 
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2: Computing the Gradient 

§  2nd trick: Compute        step by step 
§  Neuron activations are chains of 

activation functions and matrix-vector 
multiplications 

§  Many connections between the neurons 
§  Computing this 109.386 dimensional 

gradient can be tricky... 
 

backpropagation algorithm 
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2: Backpropagation 

§  The idea is to break down the gradient 
computation into smaller steps 

§  Key ingredients of backpropagation: 

chain rule 

local variables 
along paths  

through the NN 
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Backpropagation 
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Computational Graph 

§  Directed graph 
§  Nodes contain mathematical 

operations 
§  Edges encode input/output values 
§  Example: 
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Function and Corresponding 
Computational Graph 
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Evaluating the Function 

2 

2 

-3 -1 

4 

-4 

forward pass 
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Add Local Variables 

2 

2 

-3 -1 

4 
-4 

forward pass 
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Computing the Gradient 

§  With the forward pass, we evaluate 
the function at a given point 

§  Next: compute the gradient of the 
function at the given point 

§  We can do this by traversing the graph 
backwards 

§  At each note, we compute the local 
derivative of the function w.r.t. the 
local inputs 
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Gradient At Point [2, -3, 2] 

2 

2 

-3 -1 

4 
-4 

backward pass 
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For a Single Node (Chain Rule) 

assume to 
be given 

to be 
computed 

to be 
computed 
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For a Single Node (Chain Rule) 
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For a Single Node (Chain Rule) 
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For a Single Node (Chain Rule) 
-1 

4 

-4 

1 

-1 
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For a Single Node (Chain Rule) 
-1 

4 

-4 

1 

-1 

4 
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Backward Pass 

2 

2 

-3 -1 

4 
-4 

1 

function  
to derive 

known 
variable to  
derive for 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backpropagation (Backprop) 

§  Approach is called backpropagation 
and computes the gradient of any 
function expressed as such a graph 

§  Combines chain rule and local 
variables for the graph nodes 

§  Recursively traverses the graph 
§  Can be used for computing both, 

numerical and analytical gradient 
computation 
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Example for One Neuron 

sigmoid activation 
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Example for One Neuron with 
Two Incoming Activations  
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Forward Pass 

2 

-1 

-3 

-2 

-3 
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Forward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backward Pass 
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Backpropagation for a Single 
Neuron with Sigmoid Activ. 
§  The example illustrated that we can 

compute the gradient for a neuron 
§  We can also model the sigmoid using a 

single node (“sigmoid gate”) 
4 

1 -1 0.37 1.37 0.73 

1 -0.53 -0.53 0.2 -0.2 
-3 
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Backpropagation from Neuron 
to Neuron 
§  Recursive application from neuron to 

neuron through the layers 
§  For multiple outgoing edges, we need 

to compute the sum of gradients 

§  Backpropagation also generalizes 
directly to multivariate function 
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Neural Networks As 
Computation Graphs 
§  We can use BP for computing the 

gradient of the loss function 
§  We add a loss layer 

neural network loss layer 
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Quadratic Loss for 
Backpropagation 

parameters 

training data 
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Backpropagation (Backprop) 

§  BP allows us to compute gradients  
of nested and complex functions 

§  Combines chain rule and local 
variables 

§  Recursive traversal of the network 
§  Forward pass computes the 

linearization point for the gradient 
§  Backward pass computes the gradient 
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Learning a Neural Network 

Repeat until convergence 
1. Sample mini-batch from training data 
2. Run backprop to compute gradient  

for SGD using mini-batch 
 

3. Execute SGD step to find better 
parameters reducing the loss 

 
Return parameter vector 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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input output 

hidden 
(as MLP) convolutions 

and pooling 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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Convolutional Neural Networks  

In image-related learning tasks, CNNs 
play an important role 
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features 
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end-to-end learning 
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What Is “Deep Learning”? 

“Learning neural networks  
with many hidden layers” 

Definition: #hidden layers > 2 

Very deep networks today  
have up to 150 hidden layers 

(still growing...) 
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Summary – Part 2  
 
§  Leaning multi-layer perceptrons 
§  Parameters are the weights and biases 
§  Learning = estimate weights & biases 
§  Minimization of a loss (cost) function 
§  Gradient descent for parameter 

optimization 
§  Backpropagation to compute gradients 
§  End-to-end: no manual features 
§  CNN for image processing 
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Literature & Resources 
§  Online Book by Michael Nielsen, Chapter 1:  

http://neuralnetworksanddeeplearning.com/chap1.html 

§  Nielsen, Chapter 1, Python3 code:  
https://github.com/MichalDanielDobrzanski/DeepLearningPython 

§  MNIST database:  
§  http://yann.lecun.com/exdb/mnist/  

§  Grant Sanderson, Neural Networks 
https://www.3blue1brown.com/  

§  Online book by Deisenroth, Faisal, Ong: 
Mathematics for Machine Learning  
https://mml-book.github.io/ 

§  Alpaydin, Introduction to Machine Learning 
§  Standford AI Lectures by Li et al. 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used 

images or videos. In case I made a mistake or missed 
someone, please let me know.  

§  Huge thank you to Grant Sanderson (3blue1brown) for  
his great educational videos that influenced this lecture. 

§  Thanks to Michael Nielsen for his free online book & code as 
well as to Fei-Fei Li et al. for the Stanford AI lectures. 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss,  cyrill.stachniss@igg.uni-bonn.de 


