
1

Photogrammetry & Robotics Lab

Intro to Neural Networks
Part 2: Learning

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.

2

5 Minute Preparation for Today

https://www.ipb.uni-bonn.de/5min/

3

5 Minute Preparation for Today

https://www.ipb.uni-bonn.de/5min/

4

In Part 1, We Discussed

§  What are neurons and neural networks
§  Activations, weights, biases
§  Multi-layer perceptron (MLP)
§  MLP for simple image classification

input output

“5”

classifier

5

Part 2
Learning the Parameters

6

How to Make the Network
Compute What We Want?
§  Neural network is a recipe for

performing a set of computations
§  Structure and parameters are the

design choices
§  How to set them?

7

Network Parameters

Given a network structure, weights and
biases tell the network what to do

output

input

weights biases

params = weights & biases

8

What Means “Learning”?

§  NN are functions
§  The weights and biases

determine what this
function computes

§  Learning = determining parameters so
that the network does what we want

§  Parameters are estimated by providing
labeled examples (training data)

9

Our Handwritten Digit Network

raw
pixels

simple
patterns

combined
patterns

patterns
to digits

[Image courtesy: Nielsen]

10

Parameters Encode Features

raw
pixels

simple
patterns

combined
patterns

patterns
to digits

[Image courtesy: Nielsen]

Compared to several other classifiers,
the network parameters also include

the feature computations. Thus,
NNs can also learn the features!

11

Many Parameters

Such networks have many parameters!

128 64 10
64x10 128x64 784x128 = 109.386

 parameters

12

Training Through Labeled Data

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

13

Training Through Labeled Data

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

We want to have an approach
that estimates the parameters

by only providing examples
of labeled data points!

14

Exploiting Training Examples

“0”
“1”
“2”
“3”
“4”
“5”
“6”
“7”
“8”
“9”

0
1
2
3
4
5
6
7
8
9

?
=

15

Loss Function

§  We define a loss (= cost) function over
all weights and biases of the network

§  Computed using training data
§  Input to are the network parameters

§  Output is the error of the network with

these parameters on the training data

16

Loss Function

data
point

network with
parameters

label network
output

Compare output layer to the true label

17

Loss Over All Examples

We need to evaluate the performance of
the network over all examples

{(, 5), (, 2), (, 2), (, 9), (, 8), ...

loss = all examples, avg. squared(NN(input) – label)

18

The Parameters We Want

§  Parameter that minimize the sum of
avg. squared losses over all examples

§  The squared loss is only one possible
loss, several other options available

§  Goal: Find the parameter vector
for the labeled training set
given the loss

19

Let’s Start...

§  Initialize parameters randomly
§  See how well it performs (bad!)
§  How to improve the parameters so

that the loss decreases?

1 dim high
dimensional

(109.386 dim)

That’s complex!

20

Loss Minimization
using Gradient Descent
§  Our problem looks like a non-linear

least squares problem
§  We have a lot of parameters, which

makes using GN computationally tricky
§  Gradient descent is a better way to

perform the minimization

21

Gradient Descent in 1D

find
this

random
start

How to move?

22

Gradient Descent in 1D

gradient

find
this

How to move?
Exploit the gradient

23

Gradient Descent in 1D

gradient

find
this

Strategy:

24

Gradient Descent in 1D

25

Gradient Descent in 1D

tells us in which direction to go

26

Gradient Descent in 1D

Step by step:

27

Gradient Descent in 1D

§  First derivative of loss:
§  Learning rate (small value):

Gradient descent works by
§ 
§ while (!converged)

28

Gradient Descent in 1D

Step by step:

GD only finds local minima

29

Gradient Descent in 2D

§  We can do the same in 2D
§  Gradients are direction vectors

30

Gradient Descent in 2D

§  We can do the same in 2D
§  Gradients are direction vectors

31

Gradient Descent in 2D

§  We can do the same in 2D
§  Gradients are direction vectors

32

Gradient Descent in 2D

§  We can do the same in 2D
§  Gradients are direction vectors

33

Meaning of the Gradient Vector

§  Some dimensions are more important
than others to reduce the loss

§  Gradient indicates which change leads
to the fastest reduction of the loss

changes in

and have the
same relevance
to reduce loss

changes in are
more relevant

than changes in
to reduce loss

34

Gradient Descent in Higher
Dimensional Spaces
§  Same situation as before, but the

gradient vector has more dimensions
§  Update rule

In our classification example, all these
vectors have 109.386 dimensions!

35

Keep in Mind...
parameters are weights and biases

total loss is the averaged
loss of all examples

difference between
what we get and

what we want

We need to adjust the
parameters to minimize

the total loss!

36

Gradient Over All Examples

§  Loss function sums over all examples

§  This means for the gradient

We need to sum over all training
examples and compute all gradients

whenever we perform a single GD step!

37

Two Challenges

1. How to optimize the process if we
have a lot of training examples?

2. How to compute the gradients for
complex and nested functions?

We need to perform these operations

often, so we need to be able to
execute them efficiently!

38

1: Handling Large Training Sets

1st trick: Compute a gradient only on
a small, sampled subset of examples

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

39

1: Handling Large Training Sets

1st trick: Compute a gradient only on
a small, sampled subset of examples

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

= mini-batch to be used

40

1: Stochastic Gradient Descent

§  1st trick: Compute a gradient only on
a small, sampled subset of examples

§  We sample a mini-batch in each
step of gradient descent

§  Use only mini-batch to compute

§  This approximates the real gradient

41

1: Stochastic Gradient Descent

Approximate down-hill steps but much
faster to compute

42

2: Computing the Gradient

§  2nd trick: Compute step by step
§  Neuron activations are chains of

activation functions and matrix-vector
multiplications

§  Many connections between the neurons
§  Computing this 109.386 dimensional

gradient can be tricky...

backpropagation algorithm

43

2: Backpropagation

§  The idea is to break down the gradient
computation into smaller steps

§  Key ingredients of backpropagation:

chain rule

local variables
along paths

through the NN

44

Backpropagation

45

Computational Graph

§  Directed graph
§  Nodes contain mathematical

operations
§  Edges encode input/output values
§  Example:

46

Function and Corresponding
Computational Graph

47

Evaluating the Function

2

2

-3 -1

4

-4

forward pass

48

Add Local Variables

2

2

-3 -1

4
-4

forward pass

49

Computing the Gradient

§  With the forward pass, we evaluate
the function at a given point

§  Next: compute the gradient of the
function at the given point

§  We can do this by traversing the graph
backwards

§  At each note, we compute the local
derivative of the function w.r.t. the
local inputs

50

Gradient At Point [2, -3, 2]

2

2

-3 -1

4
-4

backward pass

51

For a Single Node (Chain Rule)

assume to
be given

to be
computed

to be
computed

52

For a Single Node (Chain Rule)

53

For a Single Node (Chain Rule)

54

For a Single Node (Chain Rule)
-1

4

-4

1

-1

4

55

For a Single Node (Chain Rule)
-1

4

-4

1

-1

4

56

Backward Pass

2

2

-3 -1

4
-4

1

function
to derive

known
variable to
derive for

57

Backward Pass

2

2

-3 -1

4
-4

1

function

58

Backward Pass

2

2

-3 -1

4
-4

1

4

function

59

Backward Pass

2

2

-3 -1

4
-4

1

4

-1

function

60

Backward Pass

2

2

-3 -1

4
-4

1

4

-1

4 function

61

Backward Pass

2

2

-3 -1

4
-4

1

4

-1

4

4 function

62

Backward Pass

2

2

-3 -1

4
-4

1

4

-1
-4

4

4

function

63

Backward Pass

2

2

-3 -1

4
-4

1

4

-1
-4

4

4

64

Backpropagation (Backprop)

§  Approach is called backpropagation
and computes the gradient of any
function expressed as such a graph

§  Combines chain rule and local
variables for the graph nodes

§  Recursively traverses the graph
§  Can be used for computing both,

numerical and analytical gradient
computation

65

Example for One Neuron

sigmoid activation

66

Example for One Neuron with
Two Incoming Activations

67

Forward Pass

2

-1

-3

-2

-3

68

Forward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

69

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1

70

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53

local function

71

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53

local function

72

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53 -0.2

local function

73

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53 0.2 -0.2

local function

74

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53
0.2

0.2 -0.2

0.2

local function

75

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53

0.2

0.2

0.2
0.2 -0.2

0.2

local function

76

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53

0.2

0.2

-0.2

0.4

0.2
0.2 -0.2

0.2

local function

77

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53

0.2

0.2

-0.2

0.4

-0.4

-0.6

0.2
0.2 -0.2

0.2

local function

78

Backward Pass

2

-1

-3

-2

-3

-2

6
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53

0.2

0.2

-0.2

0.4

-0.4

-0.6

0.2
0.2 -0.2

0.2

79

Backpropagation for a Single
Neuron with Sigmoid Activ.
§  The example illustrated that we can

compute the gradient for a neuron
§  We can also model the sigmoid using a

single node (“sigmoid gate”)
4

1 -1 0.37 1.37 0.73

1 -0.53 -0.53 0.2 -0.2
-3

80

Backpropagation from Neuron
to Neuron
§  Recursive application from neuron to

neuron through the layers
§  For multiple outgoing edges, we need

to compute the sum of gradients

§  Backpropagation also generalizes
directly to multivariate function

81

Neural Networks As
Computation Graphs
§  We can use BP for computing the

gradient of the loss function
§  We add a loss layer

neural network loss layer

82

Quadratic Loss for
Backpropagation

parameters

training data

83

Backpropagation (Backprop)

§  BP allows us to compute gradients
of nested and complex functions

§  Combines chain rule and local
variables

§  Recursive traversal of the network
§  Forward pass computes the

linearization point for the gradient
§  Backward pass computes the gradient

84

Learning a Neural Network

Repeat until convergence
1. Sample mini-batch from training data
2. Run backprop to compute gradient

for SGD using mini-batch

3. Execute SGD step to find better
parameters reducing the loss

Return parameter vector

85

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

86

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

input output

hidden
(as MLP) convolutions

and pooling

87

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

classifier feature
computation

features
/code

88

Convolutional Neural Networks

In image-related learning tasks, CNNs
play an important role

[I
m

ag
e

co
ur

te
sy

:
va

n
Ve

en
]

in
p

u
t

ou
tp

u
t

classifier feature
computation

features
/code

end-to-end learning

89

What Is “Deep Learning”?

“Learning neural networks
with many hidden layers”

Definition: #hidden layers > 2

Very deep networks today
have up to 150 hidden layers

(still growing...)

90

Summary – Part 2

§  Leaning multi-layer perceptrons
§  Parameters are the weights and biases
§  Learning = estimate weights & biases
§  Minimization of a loss (cost) function
§  Gradient descent for parameter

optimization
§  Backpropagation to compute gradients
§  End-to-end: no manual features
§  CNN for image processing

91

Literature & Resources
§  Online Book by Michael Nielsen, Chapter 1:

http://neuralnetworksanddeeplearning.com/chap1.html

§  Nielsen, Chapter 1, Python3 code:
https://github.com/MichalDanielDobrzanski/DeepLearningPython

§  MNIST database:
§  http://yann.lecun.com/exdb/mnist/

§  Grant Sanderson, Neural Networks
https://www.3blue1brown.com/

§  Online book by Deisenroth, Faisal, Ong:
Mathematics for Machine Learning
https://mml-book.github.io/

§  Alpaydin, Introduction to Machine Learning
§  Standford AI Lectures by Li et al.

92

Slide Information
§  The slides have been created by Cyrill Stachniss as part of the

photogrammetry and robotics courses.
§  I tried to acknowledge all people from whom I used

images or videos. In case I made a mistake or missed
someone, please let me know.

§  Huge thank you to Grant Sanderson (3blue1brown) for
his great educational videos that influenced this lecture.

§  Thanks to Michael Nielsen for his free online book & code as
well as to Fei-Fei Li et al. for the Stanford AI lectures.

§  If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de

