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Reminder: Classification 

§  Given a set of     classes 
 
 

§  and features  
§  learn a function    that assigns a class 

given feature 
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Ensemble Methods 

§  The key idea of ensemble methods for 
classification is to use multiple 
classifiers and to combine them to a  
stronger classifier 

 
Two prominent approaches 
§  Bagging 
§  Boosting 
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Bagging  
(Boostrap Aggregating) 
§  Idea of combining multiple classifiers 

trained on subsampled training data to 
obtain a better overall classifier   

§  Emphasis on multiple training sets  

majority vote 
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Boosting 

§  Incrementally ensemble building 
§  Train new model instances to 

emphasize the training data instances 
that previous models misclassified 

§  Emphasis on multiple classifiers  

incrementally  
learned 

weighted majority vote 
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Random Forests 
(Bagging with Decision Trees) 
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Bagging  
 
§  Combining multiple classifiers trained 

from subsampled training sets to 
obtain a better classifier  

majority vote 
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Random Forests  
= Bagging with Decision Trees  
§  Combine multiple decision trees into a 

forests of decision trees 

majority vote 
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Previous Lecture: 
Decision Trees for Classification 
§  Idea: sequences of splits of the 

input space define regions that 
correspond to classes 

§  Tree is built in a divide-and-conquer 
approach based on the training data 

§  Each node realizes a split in feature 
space (split node) or represents a 
classification output (leaf node) 
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Previous Lecture: 
Decision Tree Example 

Image courtesy: Aplaydin 
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Random Forest Learning 

1. Randomly split the training data 

“Bootstrapping” step 
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Random Forest Learning 

1. Randomly split the training data 
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Random Forest Learning 

2. Randomly subsample the dimensions 
in the training data subsets 
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Random Forest Learning 

2. Randomly subsample the dimensions 
in the training data subsets 
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Random Forest Learning 

3. Learn standard decision trees based 
on sampled training data subsets 

forest 
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Random Forest Classification 

§  Classify the test sample with all trees 
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Properties 
 
§  Naturally reduces the risk of 

overfitting 
§  Provide comparably accurate 

classification results 
§  Easy to parallelize  
§  Efficient GPU implementations exist 
§  As easy to implement as decision trees 
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Random Forest Showcase 

§  Body part classification in the Kinect 
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Random Forest Summary 
 
§  Combines a set of decision trees into a 

decision forest 
§  Each tree is learned using a 

subsampled training set  
§  Subsampling of training examples and 

feature dimensions 
§  Bagging with decision trees 
§  Frequently used in classification today 
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AdaBoost 
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Boosting 

§  Incremental ensemble building 
§  Train new model instances to 

emphasize the training data instances 
that previous models misclassified 

incrementally  
learned 
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Boosting with AdaBoost 

§  Learn an accurate strong classifier 
by combining an ensemble of 
inaccurate “rules of thumb” 

§  Inaccurate rule      :  “weak” 
classifier, weak learner, classifier 

§  Accurate rule       : “strong” 
classifier, final classifier 
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AdaBoost 

§  Most popular algorithm for this type of 
problem       [Freund et al. 95], [Schapire et al. 99]  

§  Given an ensemble of weak 
classifiers      , the combined strong 
classifier       is obtained by a 
weighted majority voting scheme  
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Why is AdaBoost Interesting? 

It tells us  
§  What the "best features" are 
§  What the best thresholds are, and 
§  How to combine them to a classifier 

AdaBoost can be seen as a feature 
selection strategy 



25 

AdaBoost 

§  AdaBoost is a non-linear classifier 
§  Generalizes well: tends to maximize 

the margin 
§  Easy to implement 
 

Prerequisite 
§  Weak classifiers must be better than 

random guessing 
§  Error < 0.5 in a binary classification 

problem 
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Possible Weak Classifiers 

§  Decision stump: 
Single axis-parallel partition of space 
(popular choice) 

§  Decision tree: 
Hierarchical partition of space 

§  Support Vector Machines (SVM): 
Best separating hyperplane 

§  … 
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1x

2x

θ

Decision Stump  
§  Trivial decision tree 
§  Equivalent to linear classifier defined by a 

hyperplane 
§  Plane is orthogonal to the j-th axis  

(with which it intersects in threshold θ) 
§  Formally, 

-1/+1: inequality direction j-th dimension 
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Decision Stump Training 
§  Train a decision stump on weighted data 

§  Finding an optimum  
parameter θ* for each  
dimension  j =1…d  and 
then select the  j*  for  
which the weighted error  
is minimal 

1x*θ

2x
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Decision Stump Training 
Training algorithm for stumps: Intuition 

§  Label: 
 red: + 
 blue: – 

 
§  Assuming all 

weights = 1 
 

1x

€ 

θ*, j* = 1

2x
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∀  j  = 1...d 
 Sort samples xi

  in ascending order along 
dimension j 
 ∀  t  = 1...T 
  Compute T  cumulative sums 
 end 
 Threshold θj  is at extremum of 
 Sign of extremum gives direction     of inequality 

end 
Global extremum in all D sums                    
gives threshold θ* and dimension j* 
 
 

Decision Stump Training Algo. 
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AdaBoost Algorithm 
Given the training data 

1. Initialize weights 

2. For l  = 1,...,L 

§  Train weak classifiers           on weighted training data 

§  Select classifier minimizing 

§  Compute voting weight of         : 

§  Recompute weights:  

3. Combine results to a strong classifier 
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AdaBoost: Voting Weight 

§  The voting weight     of a weak 
classifier        quantifies its importance  
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random guess  
error  = 0.5  
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AdaBoost: Training Data Weight 
Update 
§  Update step: 

 
 
§  Weights of misclassified training samples 

are increased 
§  Weights of correctly classified samples are 

decreased 

normalizer so that 
all weights sum up 
to 1 previous weight 
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AdaBoost: Training Data Weight 
Update 
§  Weights of misclassified training 

samples are increased 
§  Weights of correctly classified samples 

are decreased 
§  In each iteration, AdaBoost puts  

more weight on the misclassified 
examples of the previous weak 
classifier 
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AdaBoost: Strong Classifier 

§  The resulting strong classifier is 

§  AdaBoost implements a weighted 
majority voting scheme 

§  Classification is efficient to implement 
(sum over simple weak classifiers) 

Put your data here 

Class Result  
{+1, -1} 
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§  Training data 
 

AdaBoost: Step-By-Step 
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§  Iteration 1, train weak classifier 1 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
el = 0.2 

Voting weight 
αl = 1.39 

Total error = 4 



38 

§  Iteration 1, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
el = 0.2 

Voting weight 
αl = 1.39 

Total error = 4 
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§  Iteration 2, train weak classifier 2 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
el = 0.16 

Voting weight 
αl = 1.69 

Total error = 5 
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§  Iteration 2, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
el = 0.16 

Voting weight 
αl = 1.69 

Total error = 5 
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§  Iteration 3, train weak classifier 3 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
el = 0.25 

Voting weight 
αl = 1.11 

Total error = 1 
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§  Iteration 3, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
el = 0.25 

Voting weight 
αl = 1.11 

Total error = 1 
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§  Iteration 4, train weak classifier 4 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
el = 0.20 

Voting weight 
αl = 1.40 

Total error = 1 
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§  Iteration 4, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
el = 0.20 

Voting weight 
αl = 1.40 

Total error = 1 
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§  Iteration 5, train weak classifier 5 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.81 

Dimension 
j* = 1 

Weighted error 
el = 0.28 

Voting weight 
αl = 0.96 

Total error = 1 
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§  Iteration 5, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.81 

Dimension 
j* = 1 

Weighted error 
el = 0.28 

Voting weight 
αl = 0.96 

Total error = 1 
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§  Iteration 6, train weak classifier 6 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
el = 0.29 

Voting weight 
αl = 0.88 

Total error = 1 
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§  Iteration 6, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
el = 0.29 

Voting weight 
αl = 0.88 

Total error = 1 
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§  Iteration 7, train weak classifier 7 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
el = 0.29 

Voting weight 
αl = 0.88 

Total error = 1 
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§  Iteration 7, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
el = 0.29 

Voting weight 
αl = 0.88 

Total error = 1 
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§  Iteration 8, train weak classifier 8 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.93 

Dimension, sign 
j* = 1 , neg 

Weighted error 
el = 0.25 

Voting weight 
αl = 1.12 

Total error = 0 



52 

§  Iteration 8, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.93 

Dimension, sign 
j* = 1 , neg 

Weighted error 
el = 0.25 

Voting weight 
αl = 1.12 

Total error = 0 
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§  Final Strong Classifier 
 

AdaBoost: Step-By-Step 

Total training 
error = 0 

(rare in practice) 
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AdaBoost Showcase 

§  Face detection by Viola & Jones 

+ AdaBoost 
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AdaBoost Summary 

§  Combines multiple weak classifiers 
into a strong one 

§  Incrementally adds weak classifiers 
§  Reweights the training data in each 

step to focus in wrongly classified 
examples 

§  AdaBoost for face detection became 
very popular (around 2001) 
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Summary  
 
§  Evaluation classifiers  
§  Generalization 
§  Ideas of Boosting and Bagging 
§  Random forest classification 
§  AdaBoost 
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§  Breitman, Random Forests, 2011 
§  Alpaydin, Introduction to Machine 

Learning, Chapter 17 


