
1

Photogrammetry & Robotics Lab

Ensemble Classification:
Bagging & Boosting

Cyrill Stachniss

2

Reminder: Classification

§  Given a set of classes

§  and features
§  learn a function that assigns a class

given feature

3

Ensemble Methods

§  The key idea of ensemble methods for
classification is to use multiple
classifiers and to combine them to a
stronger classifier

Two prominent approaches
§  Bagging
§  Boosting

4

Bagging
(Boostrap Aggregating)
§  Idea of combining multiple classifiers

trained on subsampled training data to
obtain a better overall classifier

§  Emphasis on multiple training sets

majority vote

5

Boosting

§  Incrementally ensemble building
§  Train new model instances to

emphasize the training data instances
that previous models misclassified

§  Emphasis on multiple classifiers

incrementally
learned

weighted majority vote

6

Random Forests
(Bagging with Decision Trees)

7

Bagging

§  Combining multiple classifiers trained

from subsampled training sets to
obtain a better classifier

majority vote

8

Random Forests
= Bagging with Decision Trees
§  Combine multiple decision trees into a

forests of decision trees

majority vote

9

Previous Lecture:
Decision Trees for Classification
§  Idea: sequences of splits of the

input space define regions that
correspond to classes

§  Tree is built in a divide-and-conquer
approach based on the training data

§  Each node realizes a split in feature
space (split node) or represents a
classification output (leaf node)

10

Previous Lecture:
Decision Tree Example

Image courtesy: Aplaydin

11

Random Forest Learning

1. Randomly split the training data

“Bootstrapping” step

12

Random Forest Learning

1. Randomly split the training data

13

Random Forest Learning

2. Randomly subsample the dimensions
in the training data subsets

14

Random Forest Learning

2. Randomly subsample the dimensions
in the training data subsets

15

Random Forest Learning

3. Learn standard decision trees based
on sampled training data subsets

forest

16

Random Forest Classification

§  Classify the test sample with all trees

17

Properties

§  Naturally reduces the risk of

overfitting
§  Provide comparably accurate

classification results
§  Easy to parallelize
§  Efficient GPU implementations exist
§  As easy to implement as decision trees

18

Random Forest Showcase

§  Body part classification in the Kinect

19

Random Forest Summary

§  Combines a set of decision trees into a

decision forest
§  Each tree is learned using a

subsampled training set
§  Subsampling of training examples and

feature dimensions
§  Bagging with decision trees
§  Frequently used in classification today

20

AdaBoost

21

Boosting

§  Incremental ensemble building
§  Train new model instances to

emphasize the training data instances
that previous models misclassified

incrementally
learned

22

Boosting with AdaBoost

§  Learn an accurate strong classifier
by combining an ensemble of
inaccurate “rules of thumb”

§  Inaccurate rule : “weak”
classifier, weak learner, classifier

§  Accurate rule : “strong”
classifier, final classifier

23

AdaBoost

§  Most popular algorithm for this type of
problem [Freund et al. 95], [Schapire et al. 99]

§  Given an ensemble of weak
classifiers , the combined strong
classifier is obtained by a
weighted majority voting scheme

24

Why is AdaBoost Interesting?

It tells us
§  What the "best features" are
§  What the best thresholds are, and
§  How to combine them to a classifier

AdaBoost can be seen as a feature
selection strategy

25

AdaBoost

§  AdaBoost is a non-linear classifier
§  Generalizes well: tends to maximize

the margin
§  Easy to implement

Prerequisite
§  Weak classifiers must be better than

random guessing
§  Error < 0.5 in a binary classification

problem

26

Possible Weak Classifiers

§  Decision stump:
Single axis-parallel partition of space
(popular choice)

§  Decision tree:
Hierarchical partition of space

§  Support Vector Machines (SVM):
Best separating hyperplane

§  …

27

1x

2x

θ

Decision Stump
§  Trivial decision tree
§  Equivalent to linear classifier defined by a

hyperplane
§  Plane is orthogonal to the j-th axis

(with which it intersects in threshold θ)
§  Formally,

-1/+1: inequality direction j-th dimension

28

Decision Stump Training
§  Train a decision stump on weighted data

§  Finding an optimum
parameter θ* for each
dimension j =1…d and
then select the j* for
which the weighted error
is minimal

1x*θ

2x

29

Decision Stump Training
Training algorithm for stumps: Intuition

§  Label:
 red: +
 blue: –

§  Assuming all

weights = 1

1x

€

θ*, j* = 1

2x

30

∀ j = 1...d
 Sort samples xi

 in ascending order along
dimension j
 ∀ t = 1...T
 Compute T cumulative sums
 end
 Threshold θj is at extremum of
 Sign of extremum gives direction of inequality

end
Global extremum in all D sums
gives threshold θ* and dimension j*

Decision Stump Training Algo.

31

AdaBoost Algorithm
Given the training data

1. Initialize weights

2. For l = 1,...,L

§  Train weak classifiers on weighted training data

§  Select classifier minimizing

§  Compute voting weight of :

§  Recompute weights:

3. Combine results to a strong classifier

32

AdaBoost: Voting Weight

§  The voting weight of a weak
classifier quantifies its importance

! !"# !"$!"% !"& !"' !"(
!!"'

!

!"'

#

#"'

$

$"'

error

α
t

random guess
error = 0.5

33

AdaBoost: Training Data Weight
Update
§  Update step:

§  Weights of misclassified training samples

are increased
§  Weights of correctly classified samples are

decreased

normalizer so that
all weights sum up
to 1 previous weight

34

AdaBoost: Training Data Weight
Update
§  Weights of misclassified training

samples are increased
§  Weights of correctly classified samples

are decreased
§  In each iteration, AdaBoost puts

more weight on the misclassified
examples of the previous weak
classifier

35

AdaBoost: Strong Classifier

§  The resulting strong classifier is

§  AdaBoost implements a weighted
majority voting scheme

§  Classification is efficient to implement
(sum over simple weak classifiers)

Put your data here

Class Result
{+1, -1}

36

§  Training data

AdaBoost: Step-By-Step

37

§  Iteration 1, train weak classifier 1

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
el = 0.2

Voting weight
αl = 1.39

Total error = 4

38

§  Iteration 1, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
el = 0.2

Voting weight
αl = 1.39

Total error = 4

39

§  Iteration 2, train weak classifier 2

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
el = 0.16

Voting weight
αl = 1.69

Total error = 5

40

§  Iteration 2, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
el = 0.16

Voting weight
αl = 1.69

Total error = 5

41

§  Iteration 3, train weak classifier 3

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
el = 0.25

Voting weight
αl = 1.11

Total error = 1

42

§  Iteration 3, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
el = 0.25

Voting weight
αl = 1.11

Total error = 1

43

§  Iteration 4, train weak classifier 4

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
el = 0.20

Voting weight
αl = 1.40

Total error = 1

44

§  Iteration 4, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
el = 0.20

Voting weight
αl = 1.40

Total error = 1

45

§  Iteration 5, train weak classifier 5

AdaBoost: Step-By-Step

Threshold
θ* = 0.81

Dimension
j* = 1

Weighted error
el = 0.28

Voting weight
αl = 0.96

Total error = 1

46

§  Iteration 5, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.81

Dimension
j* = 1

Weighted error
el = 0.28

Voting weight
αl = 0.96

Total error = 1

47

§  Iteration 6, train weak classifier 6

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
el = 0.29

Voting weight
αl = 0.88

Total error = 1

48

§  Iteration 6, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
el = 0.29

Voting weight
αl = 0.88

Total error = 1

49

§  Iteration 7, train weak classifier 7

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
el = 0.29

Voting weight
αl = 0.88

Total error = 1

50

§  Iteration 7, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
el = 0.29

Voting weight
αl = 0.88

Total error = 1

51

§  Iteration 8, train weak classifier 8

AdaBoost: Step-By-Step

Threshold
θ* = 0.93

Dimension, sign
j* = 1 , neg

Weighted error
el = 0.25

Voting weight
αl = 1.12

Total error = 0

52

§  Iteration 8, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.93

Dimension, sign
j* = 1 , neg

Weighted error
el = 0.25

Voting weight
αl = 1.12

Total error = 0

53

§  Final Strong Classifier

AdaBoost: Step-By-Step

Total training
error = 0

(rare in practice)

54

AdaBoost Showcase

§  Face detection by Viola & Jones

+ AdaBoost

55

AdaBoost Summary

§  Combines multiple weak classifiers
into a strong one

§  Incrementally adds weak classifiers
§  Reweights the training data in each

step to focus in wrongly classified
examples

§  AdaBoost for face detection became
very popular (around 2001)

56

Summary

§  Evaluation classifiers
§  Generalization
§  Ideas of Boosting and Bagging
§  Random forest classification
§  AdaBoost

57

Literature

§  Breitman, Random Forests, 2011
§  Alpaydin, Introduction to Machine

Learning, Chapter 17

