Photogrammetry & Robotics Lab

Ensemble Classification:
Bagging & Boosting

Cyrill Stachniss

Reminder: Classification

= Given a set of K classes
() = {wl,...,wK}

= and features e

= learn a function f that assigns a class
given feature

c = f(e) with ¢ € ()

Ensemble Methods

= The key idea of ensemble methods for
classification is to use multiple
classifiers and to combine them to a
stronger classifier

Two prominent approaches

= Bagging
= Boosting

Bagging
(Boostrap Aggregating)

= [dea of combining multiple classifiers
trained on subsampled training data to
obtain a better overall classifier

= Emphasis on multiple training sets

{(e,w)}N, mmh {(e.w)}V. . {(ew)}s

c=fle) wmp T

Boosting

= Incrementally ensemble building

= Train new model instances to
emphasize the training data instances
that previous models misclassified

= Emphasis on multiple classifiers

weighted majority vote
c=fle) wmp wi f1(e),...,wpfp(e)
~

incrementally
learned

Random Forests
(Bagging with Decision Trees)

Bagging

= Combining multiple classifiers trained
from subsampled training sets to
obtain a better classifier

{(e;w)}il; mp {(ew)}l .. {(ew)}s

!

majority vote

f1(6)7"'7fB(e)

Random Forests
= Bagging with Decision Trees

= Combine multiple decision trees into a
forests of decision trees

majority vote

Previous Lecture:
Decision Trees for Classification

= Idea: sequences of splits of the
input space define regions that
correspond to classes

= Tree is built in a divide-and-conquer
approach based on the training data

= Each node realizes a split in feature
space (split node) or represents a
classification output (leaf node)

Previous Lecture:
Decision Tree Example

SA
Q CUQ
O
O
. Qe 4
O © O
w1 O N O
W2 W1

Image courtesy: Aplaydin 10

Random Forest Learning

1. Randomly split the training data

€11 €12 €1d W1
€21 €22 €ad Wi
i €Eml €Em?2 €Emd W2 |

“"Bootstrapping” step

11

Random Forest Learning

1. Randomly split the training data

€11 €12 .« .. €1d W1
€21 €929 .« .. €24 W1

. €3d w3

€51 €52 €54 W2 €31
€91 €92 ... €g9d W1 . €11 . €1d W1
| €m1 €m2 ... €Emd W2 | | €1 €2 ... €jg W2 |

12

Random Forest Learning

2. Randomly subsample the dimensions
in the training data subsets

€51 €p2 .. €54 W2
€91 €Ep2 .. €od W1

| €m1 €Ep2 .. €md W2 |
€g1 €32 .. €3d W3
€11 €12 .- €l1a W1

el e |- €iq w2

Random Forest Learning

2. Randomly subsample the dimensions
in the training data subsets

€51 €p2 .- €54 W2 €51

c. €5d w9
€91 €ph2 .. €9d w1 ‘ €91 ce €9d w1
i eml e 2 .. emd (UQ | i eml .« o emd CUQ |
e e) W3 - €32 ... €3q W3
1 32 .
€12 ... €14 W1
€11 €12 .- €l1a W1

€:2 N 77,)
| efj1 €2 |-- €id w2 | - -

Random Forest Learning

3. Learn standard decision trees based
on sampled training data subsets

€51 ce €5d %) |
€91 “. €9d w1 ‘
et o ema o L
- e forest
i €32 ... €3q W3 |

€12 ... €14 W1 l

i €i2 N 7 e A) |

Random Forest Classification

= Classify the test sample with all trees

16

Properties

= Naturally reduces the risk of
overfitting

= Provide comparably accurate
classification results

= Easy to parallelize
= Efficient GPU implementations exist
= As easy to implement as decision trees

17

Random Forest Showcase

= Body part classification in the Kinect

R e .\)3' 2

:“JUA‘- .
-) , . -
L8 ¢ R S S Rl Tl T R
jah ' .
- o
B S SR

@y - *.u.ii,.._.!‘,l,

o- WS
_ _ % .
o M 2, .Lu x PR

D

1 million test images, 1day using a 100 core clster

18

Random Forest Summary

= Combines a set of decision trees into a
decision forest

= Each tree is learned using a
subsampled training set

= Subsampling of training examples and
feature dimensions

= Bagging with decision trees
= Frequently used in classification today

19

AdaBoost

20

Boosting

= Incremental ensemble building

= Train new model instances to
emphasize the training data instances
that previous models misclassified

c = f(e)) C:ézwifi(e)

incrementally
learned

21

Boosting with AdaBoost

= Learn an accurate strong classifier
by combining an ensemble of
inaccurate “rules of thumb”

= Inaccurate rule h(z): “weak”
classifier, weak learner, classifier

= Accurate rule H(x): “strong”
classifier, final classifier

22

AdaBoost

= Most popular algorithm for this type of
prOblem [Freund et al. 95], [Schapire et al. 99]

= Given an ensemble of weak
classifiers h(x), the combined strong

classifier H(x)is obtained by a
weighted majority voting scheme

flx)=) al(z) H(x)=sign(f(z))

23

Why is AdaBoost Interesting?

It tells us

= What the "best features" are

= What the best thresholds are, and

= How to combine them to a classifier

AdaBoost can be seen as a feature
selection strategy

24

AdaBoost

= AdaBoost is a non-=linear classifier

= Generalizes well: tends to maximize
the margin

= Easy to implement

Prerequisite

= Weak classifiers must be better than
random guessing

= Error < 0.5 in a binary classification
problem

25

Possible Weak Classifiers

= Decision stump:
Single axis-parallel partition of space
(popular choice)

= Decision tree:
Hierarchical partition of space

= Support Vector Machines (SVM):
Best separating hyperplane

26

Decision Stump

= Trivial decision tree

= Equivalent to linear classifier defined by a

hyperplane

= Plane is orthogonal to the j-th axis

(with which it intersects in thresho

)(,'2 A

= Formally,

(‘|‘1 if Dj >pj9

h(z, j,0) = . o
\ 1/4\6IW1\.

do6)
o’ ‘.
Shuse
o %o X

6 Xy

-1/+1: inequality direction j-th dimension

27

Decision Stump Training

= Train a decision stump on weighted data
(55,0%) = argmme W' # h(z"))

= Finding an optimum
parameter 6* for each ‘_ |
dimension j =1..d and =x o ®
o

then select the j* for .
which the weighted error | e g® ® e
is minimal © ;%0

28

Decision Stump Training
Training algorithm for stumps: Intuition

= Label: r X,

i ®
red: + ° Q' P
blue: - |
o ® o o,
| 020 o,
= Assuming all @ . ®
weights = 1 ® o i ® 3f1
Wi(i) = > w(t)w' M\ :
t=1 i o N
0, =1

29

Decision Stump Training Algo.

Vji=1.d
Sort samples x' in ascending order along
dimension ;
Vi=1.T)
Compute T cumulative sums W, (i) = Zw(t)“t
end t=1

Threshold ¢, is at extremum of W (i)

Sign of extremum gives direction p; of inequality
end

Global extremum in all D sums W,(i),j =1..D
gives threshold 6* and dimension ;*

AdaBoost Algorithm
Given the training data {(z', %), ..., (2!, w")}
1. Initialize weights w(t) =1/T

2. Forl =1,..,L

= Train weak classifiers h(x) on weighted training data

= Select classifier minimizing ¢; = Zw w® # hy(xh))

= Compute voting weight of /;(x) a; = 0.5log((1 —¢;) /1)
= Recompute weights: w(t) = w(t) exp(—ayw'hi(x))/Z

3. Combine results to a strong classifier

AdaBoost: Voting Weight

= The voting weight o; of a weak
classifier n(z) quantifies its importance

‘ a; = 0.5log((1 —¢;)/ey)

(A
" ‘random guess

error = 0.5

error

AdaBoost: Training Data Weight
Update

» Update step: <1 if w'=My(x')

/ {> 1 otherwise

_ o exp(Zonw hy (a))
w(t) = w(t) 7

1‘ \ normalizer so that

. : Il weigh
previous weight ’?o lNelg ts sum up

= Weights of misclassified training samples
are increased

= Weights of correctly classified samples are

decreased 23

AdaBoost: Training Data Weight
Update

= Weights of misclassified training
samples are increased

= Weights of correctly classified samples
are decreased

= In each iteration, AdaBoost puts
more weight on the misclassified
examples of the previous weak
classifier

34

AdaBoost: Strong Classifier

= The resulting strong classifier is

L
H(CB) = sign (Z Q] hl(a:)) — ({:Eis _Rle}sult
[=1

Put your data here

= AdaBoost implements a weighted
majority voting scheme

= Classification is efficient to implement
(sum over simple weak classifiers)

35

AdaBoost: Step-By-Step

= Training data

36

AdaBoost: Step-By-Step

= Iteration 1, train weak classifier 1

Threshold
6* =0.37

Dimension
c* _
] p—

Weighted error

Voting weight
a; = 1.39

Total error = 4

37

AdaBoost: Step-By-Step

= Jteration 1, recompute weights

Threshold
6* =0.37

Dimension
c* _
] p—

Weighted error

Voting weight
a; = 1.39

Total error = 4 38

AdaBoost: Step-By-Step

= Iteration 2, train weak classifier 2

Threshold
6* =0.47

Dimension
j*=2

Weighted error

Voting weight
a; = 1.69

Total error = 5

39

AdaBoost: Step-By-Step

= Jteration 2, recompute weights

Threshold
6* =0.47

Dimension
j*=2

Weighted error

Voting weight
a; = 1.69

Total error = 5 40

AdaBoost: Step-By-Step

= Iteration 3, train weak classifier 3

Threshold
6* =0.14

Dimension, sign
j* =2, neg

Weighted error

Voting weight
o, = 1.11

Total error = 1

41

AdaBoost: Step-By-Step

= Jteration 3, recompute weights

Threshold
6* =0.14

Dimension, sign
j* =2, neg

Weighted error

Voting weight
o, = 1.11

Total error = 1 42

AdaBoost: Step-By-Step

= Iteration 4, train weak classifier 4

Threshold
6* =0.37

Dimension
c* _
] p—

Weighted error

Voting weight
a; = 1.40

Total error = 1 43

AdaBoost: Step-By-Step

= Jteration 4, recompute weights

Threshold
6* =0.37

Dimension
c* _
] p—

Weighted error

Voting weight
a; = 1.40

Total error = 1 a4

AdaBoost: Step-By-Step

Threshold
6* =0.81

Dimension
c* _
] p—

Weighted error

Voting weight
a;, = 0.96

Total error = 1

= Iteration 5, train weak classifier 5

45

AdaBoost: Step-By-Step

= Jteration 5, recompute weights

Threshold
6* =0.81

Dimension
c* _
] p—

Weighted error

Voting weight
a;, = 0.96

Total error = 1 46

AdaBoost: Step-By-Step

= Iteration 6, train weak classifier 6

Threshold
6* =0.47

Dimension
j*=2

Weighted error

Voting weight
o, = 0.88

Total error = 1

47

AdaBoost: Step-By-Step

= Jteration 6, recompute weights

Threshold
6* =0.47

Dimension
j*=2

Weighted error

Voting weight
o, = 0.88

Total error = 1 48

AdaBoost: Step-By-Step

Threshold
6* =0.14

Dimension, sign
j* =2, neg

Weighted error

Voting weight
o, = 0.88

Total error = 1

= Iteration 7, train weak classifier 7

49

AdaBoost: Step-By-Step

= Jteration 7, recompute weights

Threshold
6* =0.14

Dimension, sign
j* =2, neg

Weighted error

Voting weight
o, = 0.88

Total error = 1 50

AdaBoost: Step-By-Step

= Iteration 8, train weak classifier 8

Threshold
6* =0.93

Dimension, sign
J*¥=1,neg

Weighted error

Voting weight
a,=1.12

Total error = 0 51

AdaBoost: Step-By-Step

= Jteration 8, recompute weights

Threshold
+ ¢ 6* =0.93

Dimension, sign
j*=1, neg

% ’ Weighted error
-+ e; = 0.25
O oL E

o7 O Voting weight
+ O{Z =1.12

Total error = 0 52

Step-By-Step

AdaBoost

= Final Strong Classifier

ining

Total tra

=0

error

(rare in practice)

0Oo0goooo0oo0O0
0Oo0goooo0oo0O0

0

0QgQoOo0O00O0O0
0gooooo0oo0
0QgQoOo0O00O0O0

5

0Oo0goooo0oo0O0

O O
O

0QgQoOo0O00O0O0

O O O O

0Oo0goooo0oo0O0

O00O0(g
O00O0(g

O O O O O
O0O0O0O0
OO0 po0O0OO0

o@oo
oo¥oo

0O00O0(g
O000O0Qg
©000O0Qg
O00O0(g
O000O0Qg

OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
OO0OO0O0O00O0O0O0O0OO0OO0OODOO0OOODOQgOOOOQgOOOOOO

OO0OO0OO0OO0OOOOOOOOOOOOO(Q
OO0OO0OO0OO0OOOOOOOOOOOOO(Q

OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
O0O00000000000O0O0O0D0ODO0ODO0OQgOOOOQGgOOOOO0OO

O0O0O000O00000D0D0O0O0O0OODOQOO0OO
OO0OO0OO0OO0OOO0OO0OOOOODOOOOOQgOOO
O0O0O000O00000D0D0O0O0O0OODOQOO0OO

o

o

o

O0O00000000000O0O0O0D0ODO0ODO0OQgOOOOQGgOOOOO0OO

O0O0O000O0O0000DO0O0O0O0OODOQO
OO0OO0O0O0OO0OO0OO0OO0OOOODOOOOOQYO
O0O0O000O0O000DO0O0O0O0O0OOODOQO

OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
O0OO0O0O0O0O0OO0OO0OO0OOODOO0OOODOQgOOOOQgOOOOOO
OO0OO0O0O00O0OO0OO0OO0OO0OODOO0OOODOQgOOOOQgOOOOOO

OO0OO0OO0OO0OOOOQgOOOOQgOOOOOO
OO0OO0OO0OO0OOOOQgOOOOQgOOOOOO

0

OO0OO0OO0OO0OOOOOOOOOOOOOQ(Q

Oo0OoO0OO0OO0OO0OO
o

Oo0OoO0OO0OO0OO0OO

OO0O000O00O000000O0O0O0(JdQYg

O00O0O000O0O0O0OO0OO0ODOOOQO

O

+

Oo0OO0OO0OQgOOOOQgOOOOO0OO

Oo0OO0OO0OQgOOOOQgOOOOO0OO

(o}
o

OO’ OOOOOQ

o
OO0OO0OO0OO0OOO0OOOOO0OO

O© OO

OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
O0OO0O0O0O0O0OO0OO0OO0OO0OO0ODOO0OOODOQgOOOOQgQOOOOOO
O0O00000000000O0O0O0D0ODO0ODO0OQgOOOOQGgOOOOO0OO
OO0OO0O0O0O0O0O0OO0OO0OOO0ODOO0OOODOQgOOOOQgOOOOOO
O0O0O000O0O0O0O0O0OD0ODOODODOOQgOOOOQGgOOOOOO
O0O00000000000O0O0O0D0ODO0ODO0OQgOOOOQGgOOOOO0OO
O0O00000000000O0O0O0D0ODO0ODO0OQgOOOOQGgOOOOO0OO

+

HTEITTIVERPPRRTES Y

4+

 ccoofeaacacaacaacaadana

53

AdaBoost Showcase

= Face detection by Viola & Jones

m %J ﬂ + AdaBoost

54

AdaBoost Summary

= Combines multiple weak classifiers
iInto a strong one

= Incrementally adds weak classifiers

= Reweights the training data in each
step to focus in wrongly classified
examples

» AdaBoost for face detection became
very popular (around 2001)

55

Summary

= Evaluation classifiers

= Generalization

= [deas of Boosting and Bagging
= Random forest classification

= AdaBoost

56

Literature

= Breitman, Random Forests, 2011

= Alpaydin, Introduction to Machine
Learning, Chapter 17

57

