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Photogrammetry & Robotics Lab 

Introduction to Classification 

Cyrill Stachniss 

The slides have been created by Cyrill Stachniss.  
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Classification Example 

Detecting vegetation  

vegetation? 
yes/no 
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Classification Problem 

§  Given a set of     classes 
 
 

§  and features  
§  learn a function    that assigns a class 

given feature 
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Example 
§  Features: Pixel intensity values  
§  Classes: {“vegetation”, “no vegetation”} 
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State of the Art Examples 
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Example 

Image courtesy: Förstner 
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Learning Needs Information  

§  Learning the function    requires 
additional information 

§  This additional information/knowledge 
can be provided through distributions 
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Learning Needs Information  

§  Learning the function    requires 
additional information 

§  This additional information/knowledge 
can be provided through distributions 

§  Manually specifying a such knowledge 
is often hard and thus should be 
learned from data 
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Training Data 

§  Learning the function    requires 
additional information 

§  This additional information/knowledge 
is often provided through training 
data 

§  Training data are pairs of feature 
vectors and classes 

 
 

learning 
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Supervised Learning 

§  Training data  
§  In case of two classes often called: 

positive and negative examples 
§  The training data is provided by a 

(often human) supervisor  
§  Learn a function    that generalizes 

this decision to new (unseen) data 
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Classification vs. Regression 

Classification  
§  Output is always a class label 
§  Goal: find a separation of the input 

space that correspond to the classes 
 
Regression  
§  Output is continuous variable 
§  Goal: Function that fits a set of data 

points 
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Example: Family Cars 

§  Features of cars are for example the 
price and engine power 

§  Example values for some cars: (15kE, 
50kW), (20kE, 80kW), (7kE, 80kW), … 

§  Training data:(15kE, 50kW, true), (20kE, 
80kW, true), (7kE, 80kW, false), … 

§  Classifier: “Is (12kE, 65kW) a family car?”  
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Example: Is it a Family Car? 

Image courtesy: Aplaydin 

feature vector 

positive 
example 

 

negative 
example 
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Example: Is it a Family Car? 

Image courtesy: Aplaydin 

feature vector 

How to to make 
a decision for a 
new car if it is a 

family car or not? 
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Hypothesis 

Image courtesy: Aplaydin 

Are there 
other possible 

solutions? 
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Multiple Consistent Hypotheses  
with the Training Data 

Image courtesy: Aplaydin 
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Multiple Consistent Hypotheses  
with the Training Data 

Image courtesy: Aplaydin 

most general 
hypothesis 

most specific 
hypothesis 
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Most Specific and Most General  

Image courtesy: Aplaydin 

most general 
hypothesis 

most specific 
hypothesis 
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Version Space is Between the 
Most Specific and Most General  

Image courtesy: Aplaydin 

most general 
hypothesis 

most specific 
hypothesis 

version  
space 
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Choose the Hypothesis that 
Maximizes the Margin to the 
Most Specific and General One 

Image courtesy: Aplaydin 

support 
points 

margin 
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Classification Errors 
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Classification Errors 

Image courtesy: Aplaydin 

assume this 
to be correct 
hypothesis 



23 

Classification Errors 

Image courtesy: Aplaydin 

assume this 
to be correct 
hypothesis 

assume this to 
be the selected 

hypothesis 
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Classification Errors 

Image courtesy: Aplaydin 

false  
positives 

false 
negatives 

assume this 
to be correct 
hypothesis 

assume this to 
be the selected 

hypothesis 
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Possible Outcomes 

§  A family car is correctly classified as 
a family car (TP) 

§  A family car is wrongly classified as a 
non-family car (FN) 

§  A non-family car is correctly classified 
as a non-family car (TN) 

§  A non-family car is wrongly classified 
as a family car (FP) 
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Possible Outcomes 

§  True Positives (TP): all positive 
examples classified as positives 

§  False Negatives (FN): all positive 
examples classified as negatives 

§  True Negatives (TN): all negative 
examples classified as negatives 

§  False Positives (FP): all negative 
examples classified as positives  
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Possible Outcomes 

§  FP is also called type I error  
(In German: Fehler 1. Art oder α-Fehler)  

§  FN is also called type II error 
(In German: Fehler 2. Art oder β-Fehler) 

positive negative 

positive TP FP 

negative FN TN 

in reality  

classified 
as 
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Identical to the Standard 
Confusion Matrix for 2 Classes 

positive negative 

positive TP FP 

negative FN TN 

in reality  

classified 
as 

class 1  class 2 

class 1 1 as 1 2 as 1 

class 2 1 as 2 2 as 2 

in reality  

classified 
as 

confusion  
matrix 
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Evaluating a Classifier 

Image courtesy: Wikipedia.org 

in reality  

cl
as

si
fie

d 
as

 

(sensitivity is also  
called recall or  

true positive rate) 

(specificity is also  
called true  

negative rate) 
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False and True Positive Rate 

§  False positive rate is the probability 
that a randomly selected and in reality  
negative example is classified positive 
 

§  True positive rate (=sensitivity, 
recall) is the probability that a 
randomly selected, in reality positive 
example is classified as positive 
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true positive 
rate / recall / 
sensitivity  

false positive rate 

Receiver Operating 
Characteristic (ROC Curves) 

Image courtesy: Wikipedia 
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Precision and Recall  

§  Precision is the probability that a 
randomly selected, positively classified 
example is positive in reality 
 

§  Recall (=sensitivity, true positive rate) 
is the probability that a randomly 
selected, in reality positive example is 
classified as positive 
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Precision Recall Plots 

our method 
competitor 1 
competitor 2  

precision recall 
values obtained 
for different  
parameters 
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F-score / F1 score / F-measure 

§  Combines precision and recall into one 
value (harmonic mean) 

§  F-score reaches its best value at 1  
and its worst score at 0 

§  Note: There is a large number of 
different measures… 
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Designing a  
Traditional Classifier 
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Traditional Classification: 
Training 

Learning the distribution of features for 
each class or the discriminant function  

Selecting and computing  
appropriate features 

Collecting labeled  
training data 
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Traditional Classification: 
Testing (on different datasets) 

Evaluate the performance 

Determine class based the classifier 
(trained with a different dataset) 

Extract features  
(as in the training phase) 
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Traditional Classification: 
Operation 

Determine class based the classifier 
(probability/distance of the features 

given/to the training patterns) 

Extract features  
(as in the training phase) 
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Generalization 
How well does a model generalize from the 
data it was trained on to a new test set? 

Training set (labels known) Test set  
(labels unknown) 
Slide courtesy: Lazebnik 
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Components of the 
Generalization Error 
§  Bias describes how much the average 

model over all training sets differ from 
the true model. These are errors due 
to inaccurate assumptions/
simplifications made in the model 

§  Variance describes how much models 
estimated from different training sets 
differ from each other 

Slide courtesy: Lazebnik 
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Bias-Variance Trade-Off 
Not enough flexibility: 
models with too few 
parameters are 
inaccurate because of a 
large bias 

Fitting to the noise in 
the training data: 
models with too many 
parameters are 
inaccurate because of a 
large variance 

Slide courtesy: Hoiem 
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Bias-Variance Trade-Off 

E(MSE) = noise2    +   bias2   +   variance   

More explanations on the bias-variance trade-off  

 http://www.inf.ed.ac.uk/teaching/courses/mlsc/
Notes/Lecture4/BiasVariance.pdf 

unavoidable 
error 

error due to 
incorrect 

assumptions 

error due to 
variance of 

training samples 

Slide courtesy: Hoiem 
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Underfitting & Overfitting 

§  Underfitting: model is too “simple” to 
represent the relevant characteristics 
§ High bias and low variance 
§ High training error and high test error 

§  Overfitting: model is too “complex” 
and fits irrelevant characteristics 
(noise) in the data 
§  Low bias and high variance 
§  Low training error and high test error 

Slide courtesy: Lazebnik 
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Rules of Thumb  

§  Try simple classifiers first 
§  Use increasingly more powerful 

classifiers with more training data  
§  Find good features: Better to have 

smart features and simple classifiers 
than simple features and smart 
classifiers 

Slide courtesy: Hoiem 
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Remember… 

No classifier is inherently better  
than any other: we need to  

make assumptions to generalize 

Three types of errors 
§  Inherent noise: unavoidable 
§  Bias: due to over-simplifications 
§  Variance: due to inability to perfectly 

estimate parameters from limited data 
Slide courtesy: Hoiem 
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5x2 Cross Validation 

§  Randomly split up labeled dataset into 
2 parts of equal size 

§  Use one for training, the second one 
for testing (validation) 

§  Swap both sets 
§  Repeat 5 times (called folds) 
§  Analyze the classification errors 

     Results in different 10 classifiers 
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Feature Example for 
Remote Sensing Data 
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Features 

Is the intensity of  
a pixel sufficient? 

Slide courtesy: Roscher; Image Courtesy: USGS EarthExplorer 
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234 234 

Features 
Intensity RGB-value Hyperspectral 

signature 

176 
234 

59 59 234 59 59 234 59 59 234 59 59 234 234 234 9 

One pixel usually contains a lot of 
information. 

Slide courtesy: Roscher 
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Neighborhood Information 

§  A feature can also  
cover multiple pixels,  
i.e., information about 
neighborhood 

§  The larger the neighborhood, 
the higher the feature 
dimension  

§  The neighborhood can be 
patch-based or region/
segment-based 

Slide courtesy: Roscher 
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Higher-Dimensional Features 
for Neighborhood Information  

Slide courtesy: Roscher; Image Courtesy: USGS EarthExplorer 
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Nearest Neighbor Classification 
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Nearest Neighbor Approach to 
Classification 
§  The feature distribution is modeled by 

the training data (or a subset) 
§  The class is assigned based on the 

closest feature in the training data 
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Example: Nearest Neighbor 

§  Classification in aerial 
(NIR) images 

§  Features: intensity 
values at two 
different channels 

§  4 classes 
§  NN classifier based on 

the Euclidian distance  

Slide courtesy: Waske/Stefanski 
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Example: Nearest Neighbor 

Slide courtesy: Waske/Stefanski 
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Example: Nearest Neighbor 

Slide courtesy: Waske/Stefanski 
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Learning is Completed! 

Slide courtesy: Waske/Stefanski 
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Example: Nearest Neighbor 

classify new data points 

Slide courtesy: Waske/Stefanski 
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Example: Nearest Neighbor 

result class of the nearest neighbor 
training data point in feature space 

Slide courtesy: Waske/Stefanski 
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Nearest Neighbor Approach 

§  Training data represents the 
distribution of features directly 

§  Problematic in the presence of noise 
§  Problematic for classes/features with 

different variances  
§  Often requires a densely sampled 

space  
§  Discriminant function  

is a Voronoi diagram  

Image courtesy: Wikipedia 
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NN and k-NN Approach  

NN:  
§  The feature distribution is modeled by 

the training data (or a subset) 
§  The class is assigned based on the 

closest feature in the training data 

k-NN:  
§  The k nearest neighbors are 

considered for the classification 
decision (majority vote or weighted) 
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k-Nearest Neighbor Approach 

§  Robustified variant of NN 
§  Choice of k is often done heuristically 
§  Small k: less robust to noise 
§  Large k: may considers far away 

neighbors 
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Decision Trees 
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Decision Trees for Classification 

§  Idea: sequences of splits of the 
input space define regions that 
correspond to classes 

§  Hierarchical data structure realizing a 
divide-and-conquer strategy 

§  Setup of the tree through training data 
§  Efficient nonparametric method for 

classification (and regression) 
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Decision Tree Example 

Image courtesy: Aplaydin 
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Elements of a Decision Tree 

Image courtesy: Aplaydin 

root  
node 

decision  
nodes 

leaf nodes 

test function 
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Decision Nodes 

§  Each decision node implements a 
test function with discrete outcomes 

§  The test function of each decision 
node splits the input space into 
regions 

§  Also called split node 
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Leaf Nodes 

§  A leaf node symbolizes the end of a 
sequence of decisions 

§  A single (output) class is associated to 
leach leaf node 

§  A leaf node defines a localized region 
in the input space where instances 
falling in this region have the same 
label 
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Classification for a Given 
Decision Tree 
1. Start at the root node 
2.  If current node is a leaf node, return 

its class label 
3. Perform the test of the current 

decision node and follow the 
corresponding branch  

4. Goto 2 
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Learning a Decision Tree 

§  The order in which split decisions are 
made influences the complexity and 
performance of the tree 

§  Finding the optimal arrangement of 
tests is NP hard, thus heuristics are 
needed 

Question: What would be a good 
strategy to arrange the split nodes? 
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Which Decision to Make Next? 

§  Select the test that best separates 
the class labels in the data 

§  The “purer” the children, the better 
the split    

§  For any “pure” child branch, we can 
create a leaf node (no further splits) 
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Impurity 

§  Purity (or impurity) can be defined 
through the uncertainty in the 
distribution over the class label in 
the current vs. the split-up region  

§  Goal: Always select the split that 
minimizes impurity 

§  Different impurity measures:  
§  Entropy 
§ Gini index 
§ … 
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Entropy as Impurity 

§  Entropy over the classes 

§  For two classes 
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Entropy as Impurity 

§  Entropy over the classes 

§  Select the split that reduces the 
entropy at most 

change in 
entropy 

entropy  
before 
the split 

entropy  
after 

the split 
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Gini Index 

§  Alternative criterion to entropy  
§  Gini index  

very similar! 
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When to Stop? 

§  Intuitive idea: add a leaf node 
after a split leads to a pure node  

What could be problematic about this 
strategy? 
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When to Stop? 

§  Intuitive idea: add a leaf note after a 
split leads to a pure node 

§  Overfitting problem: the tree 
perfectly splits the classes on the 
training dataset but does not 
generalize well to other datasets 

§  Standard approach: stop after a 
certain level of purity is reached 

§  A leaf stores the posterior probabilities 
of classes, instead of best label 
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Decision Trees for Classification 

§  Comparably easy to understand and 
implement 

§  Works well to high-dimensional data 
§  Allow to handle numerical and 

categorical variables easily  
§  Finding the optimal split is NP hard 
§  Heuristics are used (e.g., entropy) 
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Support Vector Machines 
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Support Vector Machines 

§  How to select the classifier with the 
best generalization performance? 

Key idea: 
select the 
hyperplane  
that maximizes 
the margin 
between both 
classes 



81 

Support Vector Machines 

§  SVMs seek to maximize the margin 
between both classes 

§  Search for the separating hyperplane 
is formulated as a convex optimization 
problem  

§  Optimal solution for computing the 
hyperplane 
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Support Vector Machines 

§  We assume linearly separable data 
§  Linearly separating plane 

can be written as 

weight  
vector data threshold 

(“bias”) 
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Support Vector Machines 

§  Linearly separating  
plane 

weight  
vector data threshold 

(“bias”) 

H 
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Support Vector Machines 

§  Distance of the closest neg./pos. 
example to the plane:  

§  Choose hyperplane H so  
that it lies in the middle  
between H1 and H2, i.e.,  
  

§  Margin: 

H1 H2 
H 
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Margin  

§  Distance of the closest neg./pos. 
example to the plane:  

§  Choose hyperplane so  
that   

§  Margin: 

§  We can scale 
so that: 

H1 H2 
H 
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Constrains 

§  Using the scaling 
§  Assuming linearly separable data 
§  For each data point     , 

we can write 
 
or 

H1 H2 
H 
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Support Vectors 

§  The separating hyperplane is define by 
the support vectors 

§  For each support vector, 
we can write 
 
 
with the class label 

§  Margin  
 
 

H1 H2 
H 
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SVM Optimization Problem 

§  Find hyperplane that maximizes the 
margin 

§  with the constraints 

§  Can be solved through quadratic 
programming with linear constraints.   
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SVM Testing 

§  Classifying an new data point just 
requires to test on which side of the 
hyperplane the points is located  
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Linear Separable? 

§  Introduce “some tolerance” for data 
points are not perfectly separable 
(done via slack variables) 

§  Kernel-trick: move to a different, high-
dimensional space  
(done via kernel functions) 
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Classification Examples 

§  SVMs often outperform ML and DT 
approaches for multisensor RS data 

§  SVMs often yield more homogenous 
classification results 

ML: 64.8% correct  DT: 61.2% correct  

 

SVM: 72.6% correct  

 

 [Waske & Benediktsson’07] 
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Maximum-A-Posteriori 
Classification 
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Maximum-A-Posteriori (MAP) 
Classification  
§  Classification is decision making 
§  Probability theory as the framework 

for making decisions under uncertainty 
§  Based on Bayes’ rule 
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Maximum-A-Posteriori (MAP) 
Classification  
§  MAP relies on Bayes’ rule: 

§  Answers: “What is the probability of a 
class given an observed feature?” 

class feature 
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Maximum-A-Posteriori (MAP) 
Classification  
§  Relies on Bayes’ rule 

a-priori probability 
for the occurrence 
of the class  
(no observation)  

probability for the 
feature occurrence, 
can be obtained by: 

Likelihood function 
for the class   .  
It is also called 
observation model 

posterior 
probability 
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Maximum-A-Posteriori (MAP) 
Classification  
§  Relies on Bayes’ rule 

probability for the  
occurrence of the  
class without data  
 

probability for the 
feature occurrence 
(normalizer)  

Likelihood function 
for the class  
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Maximum-A-Posteriori (MAP) 
Classification  
§  Relies on Bayes’ rule 

probability for the  
occurrence of the  
class without data  
 

normalizer 

Likelihood function 
for the class  
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Probability Distributions  

§          : Class probability given the 
observed feature 

§          : Sensor model: the probability 
of observing a feature given the class  

§        : A-priori probability for the 
occurrence of the class 

§       : Normalizer 

Distributions          and        must be 
learned from training data! 
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MAP Classification 

1.   Compute for each class 

2. Select the MAP class 

 identical  
for all classes 

(thus it can  
be ignored) 
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Losses and Risks 

§  What if decisions are not equally 
good? 
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Losses and Risks 

§  What if decisions are not equally good? 
§  Definition of the risk of an action 

§  Select the action     that minimizes the 
risk: 

loss when classifying  
as      if the class is  

action of classifying 
the class  
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0/1 Loss 

§  Under a 0/1 loss, i.e. 
§  We minimize the risk 

 
 
§  by selecting the MAP class  

(expected result) 
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Rejecting All Classes 

§  For most applications, it is useful to 
reject an action      in case of doubt 

§  Loss: 

§  Risk: 

§  Choose:  
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Example 

Image courtesy: Aplaydin 
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Remote Sensing Example:  
Land Cover Classification 

Slide courtesy: Roscher 
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Remote Sensing Example:  
Input and Annotations 
Features: RGB red = arable land;  

blue = desert 

Image courtesy: Roscher 
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Remote Sensing Example:  
Feature Space 

Image courtesy: Roscher 
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Remote Sensing Example:  
Training Data Points 

Image courtesy: Roscher 
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Remote Sensing Example:  
Likelihood Function (3D Gauss.) 

Image courtesy: Roscher 



110 

Parametric vs. Non-Parametric 
Classification Approaches 
§  The Gaussian assumption for 

leads to a fixed number of parameters 
(examples: MAP with Gaussians) 

§  Non-parametric models do not have a 
fixed number of parameters 
(examples: NN, kNN, decision trees) 

§  Non-parametric models grow in size to 
accommodate the data 
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Classification Showcases 

Body part classification in the Kinect 
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Classification Showcases 

Face detection by Viola & Jones 

+ AdaBoost 

Image courtesy: Viola/Jones 
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Crop Weed Classification 
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Scene Understanding 
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Summary  
 
§  Introduction to classification 
§  Building a simple classifier 
§  Different types of errors 
§  Classifier Evaluation 
§  Nearest neighbor classifier 
§  Decision trees for classification 
§  MAP approach to classification 
§  Highly relevant for real world 

applications 
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Literature 

§  Alpaydin, Introduction to Machine 
Learning, Chapter 2, 3, 4.5, 5.5, 9.2 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used 

images or videos. In case I made a mistake or missed 
someone, please let me know.  

§  The photogrammetry material heavily relies on the very well 
written lecture notes by Wolfgang Förstner and the 
Photogrammetric Computer Vision book by Förstner & Wrobel. 

§  Parts of the robotics material stems from the great 
Probabilistic Robotics book by Thrun, Burgard and Fox. 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss,  cyrill.stachniss@igg.uni-bonn.de 
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Generative vs. Discriminative 
Approaches 
§  Generative approaches use data to 

calculate the posterior densities and 
then get the discriminant function 

§  The densities can be used to draw 
possible features (“to generate”) 

§  Discriminative approaches bypasses 
the estimation of densities and directly 
estimate the discriminants 

(additional material) 
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MAP Classification with 
Gaussian Distributed Features 
§  Let us look into features that follow a 

Gaussian given a class 

§  Thus, we can write 

§  and the negative log likelihood 
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MAP Approach 

§  The MAP classifier directly yields  

§  and the classification boundary are 
points in which the function 
 
 
changes its sign 
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Classification Boundaries 

§  The classification boundaries are 
points in which        changes its sign  
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Classification Boundaries 

§  The classification boundaries are 
points in which        changes its sign  
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Classification Boundaries 

§  The classification boundaries are 
points in which        changes its sign  
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Classification Boundaries 

§  The function     D is a quadratic 
function as: 

§  The shape of              depends on the 
Eigenvalues of 

quadratic 

linear 

constant 
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Example 

§  Elliptic and hyperbolic boundaries 

Image courtesy: Förstner 
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Extension to Discrete and  
Gaussian Distributed Features 
§  The features consist of discrete      

and Gaussian distributed    features 

§  Thus, we can write 

§  assuming independence in  

(additional material) 
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Classification Boundaries 

§  This leads to a similar result: 

different 

same 

(additional material) 
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Effect 

This leads to a selection of the class for  
which 
§  the probability of the discrete features 

    is large, 
§  the deviation in    from the mean with 

respect to the variance is small, and    
§  the class     has a large a-priori 

probability. 

(additional material) 
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The Likelihood Function 

... for discrete features for class i: 

occurrences of  
class i (not    ) 

(additional material) 
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The Likelihood Function 

... for Gaussian distributed features 
for class i: 

all feature vectors 
corresponding to  
data of class i 
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Traditional Classification: 
Training 

Learning the distribution of features for 
each class or the discriminant function  

Selecting and computing  
appropriate features 

Collecting labeled  
training data 
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Learning a Classifier 

§  In practice the distributions 
and        are not known 

§  Both must be learned from data 

Training data 
§  Sample set of size  
§       samples correspond to class  
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Prior Distribution 

§  The prior distribution       , which 
models the probability that a random 
sample corresponds to class      is  


