Photogrammetry & Robotics Lab

Image Segmentation using Mean Shift

Cyrill Stachniss

Slides partially by: Comaniciu, Hayes, Hoiem, Meer, Moore and others 1

Motivation

Can we identify similar image regions?

Image courtesy: Stefanski 2

Motivation

Can we identify similar image regions?

Image courtesy: Stefanski 3

Motivation

Clustering is the problem of grouping similar data points (and represent them with a single token)

Clustering is important for image processing and Image understanding

Clustering for Image Segmentation

Goal: Break up the image into similar regions without training data

Image courtesy: Stefanski, Hoiem 5

Key Challenges in Clustering

Clustering is the problem of grouping similar data points and represent them with a single token

Key Challenges

- What makes two data points or areas in an areas similar?
- How do we compute an overall grouping from pairwise similarities?

Mean Shift Segmentation

Mean Shift Segmentation

Versatile technique for clustering-based segmentation of image data

D. Comniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Image courtesy: Comaniciu and Meer 8

Mean Shift Algorithm

Try to find modes of a non-parametric density

Idea: Estimating the PDF and Finding the Maxima

- Non-parametric approach to density estimation ("how many data points are in a certain region?")
- Find the local modes of this density
- All points that "belong" or "lead" to the same mode form a cluster

Kernel Density Estimation (Parzen Window Technique)

Use a smoothing kernel

$$f(\boldsymbol{x}) = \sum_{m} K(\boldsymbol{x} - \boldsymbol{x}_{m}) = \sum_{m} k\left(\frac{\boldsymbol{x} - \boldsymbol{x}_{m}}{h}\right)$$

Standard choice: Gaussian kernel

$$k(\mathbf{x}) = (2\pi)^{-d/2} \exp\left(-\frac{1}{2}||\mathbf{x}||^2\right)$$

Computing the Mean Shift

Simple mean shift procedure:

- Compute mean shift vector
- Translate the Kernel window

Image courtesy: Ulkrainitz & Sarel 20

Attraction Basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Attraction Basin

(a)

(b)

Image courtesy: Comaniciu and Meer 22

Mean Shift Algorithm

The mean shift algorithm seeks *modes* of the given set of points

- 1. Choose kernel and bandwidth
- 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat (b,c) until convergence
- **3.** Assign points that lead to nearby modes to the same cluster

Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc.)
- Set kernel size for features K_f and position K_s
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that are within width of K_f and K_s

Mean Shift Segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html Image courtesy: Comaniciu and Meer 25

Mean Shift Segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html Image courtesy: Comaniciu and Meer 26

Mean Shift Pros and Cons

Pros

- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers

Cons

- Have to choose kernel size in advance
- Not well suited for high-dimensional features

Summary

- Clustering = "group similar things"
- Unsupervised image segmentation is a clustering problem
- Mean shift is a popular technique for image-based segmentation
- Several other clustering approaches:
 - Agglomerative clustering
 - k-means
 - GMM estimation

Literature

- D. Comniciu and P. Meer: Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
- Szeliski, Computer Vision: Algorithms and Applications, Chapter 5