Photogrammetry & Robotics Lab

Geometric Transformations

Cyrill Stachniss

The slides have been created by Cyrill Stachniss. Partial slides courtesy by S. Seitz.

Rectification

- Process of correcting an image distortion by transforming the image
- Input: distorted image
- Output:
 rectified image

Image courtesy: SIGPAC 2

Rendering or Texture Mapping

- Input: rectified image
- Output: warped image (on an object)

Image courtesy: Szeliski, Jurassic Park

Registration

- Input and output are differently distorted images
- Goal: Alignment of both images

Geometric Transformations Between Images

- Every image has an own coordinate system
- Image a(x,y) with c.s. S_a
- Image b(x, y) with c.s. S_b
- Coordinates:

Geometric Transformations Between Images

- Goal: transformation from S_b to S_a
- This transforms $[{}^{b}x, {}^{b}y] \rightarrow [{}^{a}x, {}^{a}y]$
- This transformation is T

$$a \boldsymbol{x} = \begin{bmatrix} a & T_b (b \boldsymbol{x}) \\ \mathbf{x} \end{bmatrix}$$

to from

• Analogously: ${}^{b}x = {}^{b}T'_{a}({}^{a}x)$

Geometric Transformations Between Images

- The expression ${}^a x = {}^a T_b ({}^b x)$
- is a short form for

$${}^{a}\boldsymbol{x} = \begin{bmatrix} {}^{a}\boldsymbol{x} \\ {}^{a}\boldsymbol{y} \end{bmatrix} = \begin{bmatrix} T_{x}({}^{b}\boldsymbol{x},{}^{b}\boldsymbol{y}) \\ T_{y}{}^{b}\boldsymbol{x},{}^{b}\boldsymbol{y} \end{bmatrix} = {}^{a}\boldsymbol{T}_{b}({}^{b}\boldsymbol{x})$$

$$1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ dimension}$$
of the function

Example for a Geometric Transformation

Translation

$$\begin{bmatrix} a \\ a \\ y \end{bmatrix} = \begin{bmatrix} T_x(bx, by) \\ T_y(bx, by) \end{bmatrix}$$
$$= \begin{bmatrix} b \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Example for a Geometric Transformation

Affine transformation

$$\begin{bmatrix} a_{x} \\ a_{y} \end{bmatrix} = \begin{bmatrix} T_{x}(b_{x}, b_{y}) \\ T_{y}(b_{x}, b_{y}) \end{bmatrix}$$
$$= \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} b_{x} \\ b_{y} \end{bmatrix} + \begin{bmatrix} h_{13} \\ h_{23} \end{bmatrix}$$

Example

What is this transformation doing?

Example

- Scales the size of the image by 1/4
- Shifts the scaled image by 10 pixels in x and y direction

Example for Pixel (4,40)

Problem

 The transformed pixel index is not an integer anymore

What to do?

Resampling

- The transformation leads to non-integer coordinates
- To assign intensity values from the input to the output images, we need to interpolate
- Performing a discretization and quantization is called resampling

Nearest Neighbor Interpolation

- Choose the same color value as the closest nearby pixel
- Results in rounding the pixel position

$$a([\ ^{a}x],[\ ^{a}y]) = b(\ ^{b}x,\ ^{b}y)$$

Can We Do better?

Linear interpolation in x-direction, followed by the y-direction

Linear interpolation in x-direction, followed by the y-direction

Linear interpolation in x-direction, followed by the y-direction

Linear interpolation in x-direction, followed by the y-direction

$$b({}^{b}x, {}^{b}y) = a_{00}(1 - \Delta x)(1 - \Delta y) + a_{01}(1 - \Delta x)\Delta y$$

+ $a_{10}\Delta x(1 - \Delta y) + a_{11}\Delta x\Delta y$
= $a_{00} + \Delta x(a_{10} - a_{00}) + \Delta y(a_{01} - a_{00})$
+ $\Delta x\Delta y(a_{00} - a_{01} - a_{10} + a_{11})$

Weighted average of the neighboring intensity values $a_{00}, a_{10}, a_{01}, a_{11}$

Weighted average of the neighboring intensity values $a_{00}, a_{10}, a_{01}, a_{11}$

$$z = \sum_{i \le 3} \sum_{j \le 3} c_{ij} \Delta x^i \, \Delta y^j$$

- Result depends on 16 coefficients c_{ij}
- Yields a cubic spline interpolation

Interpolation Example

nearest neighbor bilinear interpolation interpolation

bicubic interpolation

Image courtesy: Wikipedia.org 35

Properties of the Individual Interpolation Methods

	Speed	Quality
NN	++	-
Bilinear	+	0
Bicubic	-	++
Interpolation Example (NN)

Interpolation Example (bilinear)

Image courtesy: Wikipedia.org 38

Interpolation Example (bicubic)

Image courtesy: Wikipedia.org 39

Example: Bilinear vs. Bicubic Interpolation

bilinear interpolation

bicubic interpolation

Image courtesy: Szeliski 40

Forward vs. Backward Warping

Mapping from the input to the output or from the output to the input image?

Forward warping:

Forward warping:

Forward warping:

Forward warping:

$$orall {}^{b} oldsymbol{x} {}^{a} oldsymbol{x}$$

Forward warping:

Compute for every pixel in the input image b a value in the output a

$$\forall \ ^{b} oldsymbol{x} \quad \ ^{a} oldsymbol{x} = \ ^{a} oldsymbol{T}_{b}(\ ^{b} oldsymbol{x})$$

reconstruct the intensities at blue locations (**regular** grid) from the black ones (**irregular**)₄₆

Inverse warping:

Compute for every pixel in the output image a a value based on the input b

$$\forall \ ^{a}\boldsymbol{x} \quad \ ^{b}\boldsymbol{x} = (\ ^{a}\boldsymbol{T}_{b})^{-1}(\ ^{a}\boldsymbol{x}) = \ ^{b}\boldsymbol{T}_{a}(\ ^{a}\boldsymbol{x})$$

Inverse warping:

Compute for every pixel in the output image a a value based on the input b

Inverse warping:

Compute for every pixel in the output image a a value based on the input b

Inverse warping:

Compute for every pixel in the output image a a value based on the input b

$$\forall \ ^{a}x \quad ^{b}x = \ ^{b}T_{a} \left(\ ^{a}x \right)$$

reconstruct the intensities at blue locations (irregular) from the black ones (regular grid)

Resampling

- The forward approach can lead to missing pixels in the output image
- Inverse method allows for the direct application of bilin./cubic interpolation
- Always use inverse warping!

Resampling

- The forward approach can lead to missing pixels in the output image
- Inverse method allows for the direct application of bilin./cubic interpolation
- Always use inverse warping!

Complex Warping Example (1)

Image courtesy: Szeliski 53

Complex Warping Example (2)

top: simple blending; bottom: warping and blending

Image courtesy: Szeliski 54

Alignment for the Average Face

Alignment for the Average Face

avg. female

avg. male

See: http://www.beautycheck.de

Virtual Miss Germany (2002)

Miss NRW

Miss Bremen

"Reale" und "virtuelle" Miss Germany im Vergleich:

Virtual Miss Germany (2007)

Deriving a Beautiful Formula...

generated female generated male

See: http://www.beautycheck.de

Image Half-Sizing

- This image is too big (to fit on the screen)
- How can we reduce it?
- How to generate a half-sized version?

Image Half-Sizing

- This image is too big (to fit on the screen)
- How can we reduce it?
- How to generate a half-sized version?

$$\begin{bmatrix} a \\ a \\ y \end{bmatrix} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} \\ b \\ y \end{bmatrix}$$
$$\begin{bmatrix} b \\ b \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \\ 0 & 2 \end{bmatrix}$$
Slide courtesy: Seitz

Image Subsampling

1/4

Throw away every other row and column to create a half-sized image.

Slide courtesy: Seitz 62

1/8

Image Subsampling

1/21/4 (2x zoom)1/8 (4x zoom)Simple subsampling image and antifacts

Slide courtesy: Seitz 63

Apply a Binomial Filter Before Subsampling

Binomial & 1/2

B & 1/4

Slide courtesy: Seitz 64

B & 1/8

Subsampling with Binomial Pre-Filtering

Binomial & 1/2

Binomial & 1/4

Binomial & 1/8

Slide courtesy: Seitz 65

Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide courtesy: Seitz 66

Why is a Smoothing Step Needed?

- Simple subsampling results in aliasing and loosing details
- Smoothing combines pixel information from neighboring pixels

$$\boldsymbol{B}_{2}^{(2)} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & \underline{4} & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

How Much Smoothing is Needed?

- Depends on the kernel
- Depends on the width of the kernel
- Depends on the scale of the transformation

Kernel Width

Width of a kernel is given by its standard deviation:

$$\sigma = \left(\sum_{i} i^2 w(i)\right)^{\frac{1}{2}}$$

For the box and Gaussian filter

$$\sigma_{\boldsymbol{R}_n} = \left(\frac{n^2 - 1}{12}\right)^{\frac{1}{2}} \qquad \sigma_{\boldsymbol{B}_n} = \left(\frac{n}{4}\right)^{\frac{1}{2}}$$

Widths for Box and Binomial Filter

 $\sigma_{\mathbf{R}_n} = \left(\frac{n^2 - 1}{12}\right)^{\frac{1}{2}} \qquad \sigma_{\mathbf{B}_n} = \left(\frac{n}{4}\right)^{\frac{1}{2}}$ $\frac{1}{2} \quad \frac{2}{3} \quad \frac{3}{4} \quad \frac{5}{5} \quad \frac{7}{8} \quad \frac{8}{1 - 0.50 \quad 0.82 \quad 1.12 \quad 1.41 \quad 2.00 \quad 2.29 \quad 2}{1.41 \quad 2.00 \quad 2.29 \quad 2}$ 9 162.584.61 σR_{r} 0.87 0.50.711.001.121.321.412.001.50 $\sigma_{\boldsymbol{B}_n}$

Scale of a Transformation

Average local scale of a transformation

 $\boldsymbol{T}(\boldsymbol{x}) = [T_x(\boldsymbol{x}), T_y(\boldsymbol{x})]^{\mathsf{T}}$

is given by

$$m = \sqrt{rac{1}{2} \left| \left| rac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}} \right|
ight|^2}$$

$$\frac{1}{2} \left\| \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}} \right\|^2 = \frac{1}{2} \left(\left(\frac{\partial T_x}{\partial x} \right)^2 + \left(\frac{\partial T_x}{\partial y} \right)^2 + \left(\frac{\partial T_y}{\partial x} \right)^2 + \left(\frac{\partial T_y}{\partial y} \right)^2 \right)$$

Scale Example

Consider the transformation

$$\left[\begin{array}{c}T_x\\T_y\end{array}\right] = \left[\begin{array}{cc}2&0\\0&4\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] + \left[\begin{array}{c}3\\2\end{array}\right]$$

which yields a scale of

$$m = \sqrt{\frac{1}{2} \begin{pmatrix} 2^2 + 0^2 + 0^2 + 4^2 \end{pmatrix}} = \sqrt{\frac{1}{2} \cdot 20} \approx 3.16$$
$$\left(\left(\frac{\partial T_x}{\partial x}\right)^2 + \left(\frac{\partial T_x}{\partial y}\right)^2 + \left(\frac{\partial T_y}{\partial x}\right)^2 + \left(\frac{\partial T_y}{\partial y}\right)^2 \right)$$
Consider the Scale for Resampling

• m<1: Image becomes smaller Recommendation $\sigma \approx m/2$

m=1: Same scale

Use bilinear interpolation or bicubic for high quality results

m>1: Image becomes larger
 Use bicubic interpolation

Image Pyramid

- A list of images
- Each image has half of the size of its predecessor

1 (original)

2 (size: 1/2)

3 (size: 1/4)

Image courtesy: Seitz 74

Image Pyramid

Image courtesy: Szeliski 75

Pyramid Example

512 256 128 64 32 16 8

Image courtesy: Forsyth 76

Summary

- Geometric transformations of images
- Interpolation techniques
- Resampling
- Forward and inverse warping
- Image subsampling and smoothing
- Image pyramid

Literature

- Szeliski, Computer Vision: Algorithms and Applications, Chapter 3
- Förstner, Scriptum Photogrammetrie I, Chapter 10

Slide Information

- The slides have been created by Cyrill Stachniss as part of the photogrammetry and robotics courses.
- I tried to acknowledge all people from whom I used images or videos. In case I made a mistake or missed someone, please let me know.
- The photogrammetry material heavily relies on the very well written lecture notes by Wolfgang Förstner and the Photogrammetric Computer Vision book by Förstner & Wrobel.
- Parts of the robotics material stems from the great
 Probabilistic Robotics book by Thrun, Burgard and Fox.
- If you are a university lecturer, feel free to use the course material. If you adapt the course material, please make sure that you keep the acknowledgements to others and please acknowledge me as well. To satisfy my own curiosity, please send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de