Photogrammetry & Robotics Lab

Local Operators Through Convolutions – Part 2 Gradient Filters

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.

Three Types of Operators

Local Operation Defined Through Convolutions

Filters of the form

$$g(i,j) = \sum_{k,l} w(k,l) f(i-k,j-l)$$

are convolutions of the function f and a kernel function w

$$g = w * f$$

kernel

output image

2D Box Filter Example $R_3^{(2)} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

2D Box Filter Example

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

2D Box Filter Example

$$\boldsymbol{R}_{3}^{(2)} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{1} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

2D Box Filter Example

$$\boldsymbol{R}_{3}^{(2)} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

2D Box Filter Example

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

reminder Box Filter & Binomial Filters

Box filter realized by the kernel

$$\boldsymbol{R}_{3}^{(1)} = \frac{1}{3} \begin{bmatrix} 1\\ \frac{1}{1}\\ 1 \end{bmatrix} \qquad \boldsymbol{R}_{3}^{(2)} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1\\ 1 & \frac{1}{1} & 1\\ 1 & 1 & 1 \end{bmatrix}$$

Binomial filter realized by the kernel

$$\boldsymbol{B}_{2}^{(1)} = \frac{1}{4} \begin{bmatrix} 1\\ \frac{2}{1}\\ 1 \end{bmatrix} \qquad \boldsymbol{B}_{2}^{(2)} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1\\ 2 & \frac{4}{2} & 2\\ 1 & 2 & 1 \end{bmatrix}$$

Both are smoothing filters

Smoothing Example

Images are Functions

- An image is nothing else than a function $g(i,j):\mathcal{B}\mapsto \mathcal{G}$
- with a 2-dimentional input in ${\cal B}$
- $\hfill \hfill \hfill$
- Maps 2D locations on the image plane to photon counts or intensities values
- Real world: $\mathcal{B} = \mathbb{R} \times \mathbb{R}, \mathcal{G} = \mathbb{N} \approx \mathbb{R}_{\geq 0}$
- Image domain: $\mathcal{B} = \mathbb{N} \times \mathbb{N}, \mathcal{G} = \mathbb{N}$
- Image files: $\mathcal{B} = \mathbb{N} \times \mathbb{N}, \mathcal{G} = [0..255]$

 Approximating the first derivative of a function

 Approximating the first derivative of a function sampled in discrete steps

 Approximating the first derivative of a function sampled in discrete steps

First derivative (1-dim) is given by

$$f'(i) \approx \frac{\Delta f}{\Delta x} = \frac{f(i+1) - f(i)}{i+1-i}$$

First derivative (1-dim) is given by

$$f'(i) \approx \Delta f = \frac{f(i+1) - f(i)}{i+1 - i}$$

• Thus, $\Delta f(i) = f(i+1) - f(i)$

First derivative (1-dim) is given by

$$f'(i) \approx \frac{\Delta f}{\Delta x} = \frac{f(i+1) - f(i)}{1}$$

• We can define the vector $\Delta = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ • so that $f'(i) \approx \Delta * f = \sum_{k=-1}^{0} \Delta(k) f(i-k)$ = f(i+1) - f(i)

- We could also smooth the function by considering the left and right point
- Then, the gradient turns into

$$f'(i) \approx \frac{\Delta f}{\Delta x} = \frac{f(i+1) - f(i-1)}{i+1 - i + 1}$$

= $\frac{f(i+1) - f(i-1)}{2}$

• We have $f'(i) \approx \frac{\Delta f}{\Delta x} = \frac{f(i+1) - f(i-1)}{2}$

- We have $f'(i) \approx \frac{\Delta f}{\Delta x} = \frac{f(i+1) f(i-1)}{2}$
- Define analogously the weight vector

- The weight vector $\Delta = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
- is a smoothed variant of our original weight vector $\Delta = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
- This can be seen by

$$\frac{1}{2} \begin{bmatrix} 1\\ \underline{0}\\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\ 1 \end{bmatrix} * \begin{bmatrix} 1\\ -1 \end{bmatrix} = \boldsymbol{B}_{1}^{(1)} * \begin{bmatrix} 1\\ -1 \end{bmatrix}$$
Binomial gradient gradient

 We define the first derivative of the image function as

$$f' = \frac{\mathrm{d}f}{\mathrm{d}x} \approx \Delta * f = \frac{1}{2} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} * f$$

- In contrast to smoothing kernels used before, the weight vector contains
 negative weights and sums up to 0
- First derivative of a constant signal equals to zero

Example

Gradient in Multiple Dimensions

Gradient operator ∇ ("Nabla") is a vector consisting of the partial derivatives

$$\nabla = \left[\begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{array} \right] \approx \left[\begin{array}{c} \Delta \\ \Delta^{\mathsf{T}} \end{array} \right]$$

Thus, we can compute the 2D gradient images from the image function by

$$\nabla g = \nabla * g = \left[\begin{array}{c} g_x \\ g_y \end{array} \right]$$

here: matrix

coordinates

Gradient of the Image Function

Gradient vector of the image function

$$\nabla g = \nabla * g = \begin{bmatrix} g_x \\ g_y \\ g_y \end{bmatrix}$$
 these are both 2D gradient images

with the magnitude of the gradient

$$|\nabla g| = \sqrt{g_x^2 + g_y^2}$$

and the direction

$$\alpha = \arctan\left(\frac{g_y}{g_x}\right) = \operatorname{atan2}\left(g_y, g_x\right)$$

Gradient Vector

Thus, the 2D gradient vector of the image function can be written as

$$\nabla g = \nabla * g = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} * g = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = |\nabla_g| \begin{bmatrix} \sin \alpha \\ \cos \alpha \end{bmatrix}$$
$$|\nabla g| = \sqrt{g_x^2 + g_y^2}$$
$$\alpha = \operatorname{atan2}\left(g_y, g_x\right)$$

Sobel Operator

- The Sobel operator is the standard operator for computing gradients using a 3x3 window
- It is a combination of a Binomial filter and the gradient

Sobel Operator

The Sobel operator for a 3x3 window

$$\mathbf{A}_{x} = \left(\mathbf{B}_{2}^{(2)} \right)^{\mathsf{T}} * \frac{1}{2} \begin{bmatrix} 1 \\ \underline{0} \\ -1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 2 & 1 \\ 0 & \underline{0} & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
gradient

$$\Delta_{y} = \boldsymbol{B}_{2}^{(2)} * \frac{1}{2} \begin{bmatrix} 1 & \underline{0} & -1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 0 & -1 \\ 2 & \underline{0} & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
gradient

Sobel-Based Edge Detection

Scharr Operator

Improved Sobel operator

$$\Delta_x = \frac{1}{4} \begin{bmatrix} 1 \ \underline{2} \ 1 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 \\ \underline{0} \\ -1 \end{bmatrix}$$
$$\mathbf{4}$$
$$\Delta_x^{\text{Scharr}} = \frac{1}{16} \begin{bmatrix} 3 \ \underline{10} \ 3 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 \\ \underline{0} \\ -1 \end{bmatrix}$$

- Uses a different smoothing kernel
- Better suited for computing the direction of the first derivative

Scharr Operator

Improved Sobel operator

$$\Delta_x^{\text{Scharr}} = \frac{1}{32} \begin{bmatrix} 3 & 10 & 3\\ 0 & \underline{0} & 0\\ -3 & -10 & -3 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 3 \underline{10} & 3 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1\\ \underline{0}\\ -1 \end{bmatrix}$$
$$\Delta_y^{\text{Scharr}} = \frac{1}{32} \begin{bmatrix} 3 & 0 & -3\\ 10 & \underline{0} & -10\\ 3 & 0 & -3 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 3\\ \underline{10}\\ 3 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 & \underline{0} & -1 \end{bmatrix}$$

 10-times more accurate than Sobel in determining the gradient direction

Scharr Operator

- Improved Sobel operator
- 10-times more accurate than Sobel (only for the direction)
- Errors stay typically below 0.5 deg

Image courtesy: Förstner 34

2nd Derivatives

2nd Derivative – 1 Dimensional

 We can also express the second derivative of a function f

2nd Derivative – 1 Dimensional

 We can also express the second derivative of a function f

2nd Derivative – 1 Dimensional

 The second derivative can again be computed via a single convolution

• Kernel
$$\frac{\partial^2}{\partial x^2} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Thus, the second derivative is given by

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2}{\partial x^2} * f = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} * f$$

2nd Derivative – 2 Dimensional

 The second derivative are given through the Hessian matrix

$$H(f) = [h(f)_{ij}] = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

 Consists of the individual partial derivatives

2nd Derivative Kernels in 2D

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$
2nd derivative smoothing
$$\frac{\partial^2}{\partial x^2} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} * \frac{1}{4} [1 \ \underline{2} \ 1]$$
1st derivative 1st derivative
$$\frac{\partial^2}{\partial x \ \partial y} = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 0 & \underline{0} & 0 \\ -1 & 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} * \frac{1}{2} [1 \ \underline{0} -1]$$
smoothing 2nd derivative
$$\frac{\partial^2}{\partial y^2} = \frac{1}{4} \begin{bmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 1 & -2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ \frac{2}{1} \end{bmatrix} * [1 \ \underline{-2} \ 1]$$

Further Derivatives

- We can easily extend this concepts to higher-order derivatives
- Image processing often uses the first derivate, and sometime the second

Laplace Operator

The Laplace operator can be used for edge detection and is defined as

Laplace Operator

A smoother variant of the Laplace operator is

$$\Delta_L = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Laplace Operator Example

Image courtesy: J. Krieger 44

Summary

- Linear filters as local operators
- Convolution as a defining framework
- Introduction of important filters
- Part 1: Box filter & Binomial filter
- Part 2: Gradient filters, 1st and 2nd derivatives, Sobel and Scharr operator
- There are several other operators

Literature

- Szeliski, Computer Vision: Algorithms and Applications, Chapter 3
- Förstner, Scriptum Photogrammetrie I, Chapter "Lokale Operatoren"

Slide Information

- The slides have been created by Cyrill Stachniss as part of the photogrammetry and robotics courses.
- I tried to acknowledge all people from whom I used images or videos. In case I made a mistake or missed someone, please let me know.
- The photogrammetry material heavily relies on the very well written lecture notes by Wolfgang Förstner and the Photogrammetric Computer Vision book by Förstner & Wrobel.
- Parts of the robotics material stems from the great
 Probabilistic Robotics book by Thrun, Burgard and Fox.
- If you are a university lecturer, feel free to use the course material. If you adapt the course material, please make sure that you keep the acknowledgements to others and please acknowledge me as well. To satisfy my own curiosity, please send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de