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3D Point Cloud 
Registration 
Example  

[Video courtesy: P. Glira] 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 

least squares solution! 
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Registration of 3D Data Points 

§  Goal: find the parameters of the 
transformation that best align 
corresponding data points 

 

§  Optimization / search for parameters 
§  Iterative closest point (ICP w/ SVD) 
§ Robust least squares approaches (#3) 

§  Known (#1) vs. estimated (#2) 
correspondences 
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Part 1 
Point Cloud Registration 

with Known Data Association 

We have derived an efficient to 
compute, optimal, direct solution 
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Part 2 
Point Cloud Registration 

with Unknown Data Association 

No direct and optimal solution exists 
but we can register clouds using iterative 
approaches estimating correspondences 
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ICP Illustrated 

1. Select points 
on one mesh or 
point cloud 

2. Find closest 
on other mesh 
or point cloud 

3. Minimize 
distances 

4. Iterate 

[Courtesy of Rusinkiewicz] 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 
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Finding Correspondences 

§  There a various different ways to find 
correspondences  

§  Investing into a good data association 
is key obtaining good results 

§  Exploit any initial guess 
§  Normal-based metrics often better 

than standard point-to-point metric 
§  Outlier rejection is important, 

especially in dynamic environments 
 



15 

Part 3 
Point Cloud Registration 

using Non-Linear Least Squares 
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Why a Least Squares Approach? 

§  SVD solution assumes point-to-point 
correspondences 

§  More complex error functions require a 
more general least squares approach 

§  LS approach can better consider 
uncertainties (3D point covariances) 

§  Often solved via an iterative Gauss 
Newton-based minimization 
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Start with Least Squares for  
2D Point-to-Point Registration 
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Gauss Newton Minimization 

§  Example in 2D for point-to-point 
§  Objective: 
§  Error vector: 
§  Expands to:  
§  Parameters: 
§  Explicitly: 
§  Linearize the non-linear error function 
 

How does the Jacobian looks like? 
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Jacobian for 2D Points 

§  Computing the Jacobian 

§  leads to a 2 x 3 matrix in our case 
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Jacobian for 2D Points 

§  Computing the Jacobian for  the error 
vector 

§  as 



21 

Gauss Newton Minimization 
§  Example in 2D for point-to-point 
§  Objective: 
§  Error vector:  
§  Jacobian: 
Todo 
§  Compute normal equation matrix 
§  Compute right-hand side 
§  Solve resulting linear system 
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Gauss Newton Minimization 
§  Jacobian: 
§  Matrix: 
§  Right-hand side: 
§  Compute terms over all points 

§  Solve                via 
§  Update parameters 
§  Iterative until convergence 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 
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2D Least Squares Example 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 
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2D Least Squares Example 
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2D Least Squares Example 
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2D Least Squares Example 
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2D Least Squares Example 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 



38 

2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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2D Least Squares Example 

Image courtesy: Bogoslavskyi 
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Least Squares Registration 
using Point-to-Plane Metric 
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Point-to-Plane Error  

§  Idea: still find the closest points 
§  Error = project point-to-point onto the 

direction of the normal, shot from the 
found point 
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Point-to-Plane Error 

§  Error = project point-to-point onto the 
direction of the normal, shot from the 
found point 

[Image courtesy: Low] 
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Simple Normals from Neighbors 
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Point-to-Plane Metric 

§  Objective point-to-point 
error vector 
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Different Jacobian 

§  A changes objective leads to a 
different Jacobian 

1D error 
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Different Jacobian 

§  A changes objective leads to a 
different Jacobian 

1D error 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 



51 

2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 



52 

2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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2D Point-to-Plane Example 

Image courtesy: Bogoslavskyi 
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Symmetric Point-to-Plane 

§  Point-to-plane metric is not symmetric 

point-to-point point-to-plane 

Image courtesy: Rusinkiewicz 
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Symmetric Point-to-Plane 

§  Point-to-plane metric is not symmetric 

point-to-point point-to-plane 

Image courtesy: Rusinkiewicz 
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Symmetric Point-to-Plane 

§  Point-to-plane metric is not symmetric 
§  We can easily combine normals from 

both surfaces to obtain symmetry 

point-to-point point-to-plane symmetric 

Image courtesy: Rusinkiewicz 
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Symmetric Point-to-Plane 

§  Point-to-plane metric is not symmetric 
§  We can easily combine normals from 

both surfaces to obtain symmetry 

Additional work: requires computing the  
normals in both clouds (originally in one) 
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Comparison of Metrics  
(Bunny dataset) 

Symmetric metric performs best 

Note: log scale 

Image courtesy: Rusinkiewicz 
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Symmetric Point-to-Plane 

Combine normals from both surfaces to 
obtain a symmetric metric 

A simple change that leads to an  
improved performance of ICP 
(speed, basin of convergence) 
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Robust Least Squares 
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Robust Least Squares 

§  Data association outliers strongly 
impact the least squares result 

§  Robust kernels / M-estimators aims at 
down-weighing the impact of outliers 

§  Function that changes the error 
function depending on its magnitude 
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Robust Least Squares 

§  Weighted least squares approach to 
realize robust least squares estimation 

§  Each kernel yields a specific weight 
§  The kernel will impact the Jacobians 
§  The rest stays the same 
§  The choice of the kernel must align 

with the outlier distribution  
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Kernel for Outlier Rejection 

§  Apply robust kernels to down-weigh 
the impact of potential outliers 

§  Kernel parameter can be adjusted  

See: Chebrolu, Läbe, Vysotska, Behley, Stachniss: “Adaptive  
Robust Kernels for Non-Linear Least Squares Problems” 
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Robust Kernels in Action 

Outlier rejection in presence of dynamic objects 
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Adaptive Robust Kernels 

Chebrolu, Läbe, Vysotska, Behley, Stachniss: “Adaptive  
Robust Kernels for Non-Linear Least Squares Problems” 
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Outlier Rejection is Key 

§  Finding the correct data association is 
key for robust registration 

§  Approaches often also use heuristics 
as an initial guess for associations 

§  Example questions: 
§  Are there some well-identifiable points? 
§ Do we know something about potentially 

moving objects in the scene?  
§ Can we exploit ego-motion estimates? 

See also Part 2 of the lecture! 
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Redundant Odometry 

multiple motion estimates 

Reinke, Chen, Stachniss: "Simple But Effective Redundant Odometry for 
Autonomous Vehicles”, ICRA 2021 
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Different Approaches Win  
in Different Situations 
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Remarks from Practice 

§  Always exploit an initial guess 
(odometry, constant velocity, ...) 

§  Normal-based metrics often better 
than standard point-to-point metric 

§  Symmetric metric often performs well 
§  Exploit informed outlier rejection if 

possible/available 
§  Adaptive kernels adapt to the outlier 

situation for each scan pair 
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Remarks from Practice 

§  For “sensor odometry” estimation, 
exploit multiple sensors 

§  Sanity check to detect failures 
§  Vehicle constraints 
§ Dynamic constraints 
§  ... 

§  At some point, SLAM with loop closing 
and global optimization is needed 

§  Remark: proper point uncertainties are 
often tricky to estimate 
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SuMa: LiDAR-based SLAM 
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Going a Step Further: 
Non-Rigid Registration 
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Non-Rigid Registration 

§  What happens when the objects are 
non-rigid and can be deformed? 

§  Location-specific transformations 
§  Object deformations often encoded  

via an additional cost term 
§  Leads to least squares methods with 

more complex cost functions 
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Non-Rigid Registration Example: 
Time Series of 3D Point Clouds 
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Non-Rigid Registration Example: 
Simplified Data Association via 
Skeleton Matching  
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Non-Rigid Registration Example: 
Estimating Correspondences 
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Non-Rigid Registration Example: 
Skeleton Deformation 
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Non-Rigid Registration Example: 
Back to the Point Clouds 
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Non-Rigid Registration Example: 
Registration Results 
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Non-Rigid Registration Example: 
Timeline Interpolation  

time 
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Registering Humans 

Image courtesy: Li, Yang, Lai, Guo 
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Resources 
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Notebook by Igor Bogoslavskyi 

https://nbviewer.jupyter.org/github/niosus/notebooks/blob/master/icp.ipynb 
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Open3D – A Popular Library 
http://www.open3d.org/ 
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Further Reading 
§  Jupyter notebook by I. Bogolslavskyi (highly recommended) 
§  SimpleICP by P. Glira: https://github.com/pglira/simpleICP  
§  Arun et al. “Least-Squares Fitting of Two 3D Point Sets” 
§  Besl & McKay “Registration of 3-D shapes”  
§  Pomerleau et al. “Review of Point Cloud Registration” 
§  Rusinkiewicz et al. “Efficient Variants of ICP” …	
§  Rusinkiewicz: “A Symmetric Objective Function for ICP” 
§  Pomerleau et al. “Comparing ICP Variants” 
§  Serafin & Grisetti: “Normal-ICP” 
§  Segal et al. “Generalized ICP” 
§  Yang et al. “Go-ICP” 
§  Chenbrolu et al. “Adaptive Kernels” 
§  Agamennoni et al. "Self-tuning M-estimators” 
§  Chen et al. “Moving object Segmentation” 
§  Landry et al. “CELLO-3D: Covariances for ICP” 
§  Babin et al. “Analysis of Robust Functions for ICP” 
§  Della Corte et al. “Photometric point cloud registration” 
§  Behley & Stachniss “SuMa: Projective ICP in LiDAR SLAM” 
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Summary 

§  Registration of point clouds is an 
important task in perception 

§  ICP is the standard algorithm for  
point cloud alignment/scan matching 

§  Estimates translation and rotation 
between clouds/scans 

§  Given data associations between 
clouds, the transformation can be 
computed efficiently 
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Summary 

§  The major problem is to determine  
the correct data associations 

§  Iterative approach (DA & alignment) 
§  Several variants exist 
§  Initial guess is needed for robust data 

association 
§  Often: least squares approach with a 

plane-based metric, data association 
heuristics, and outlier rejection 
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5 Minute Summary... 

https://www.youtube.com/watch?v=QWDM4cFdKrE 


