Photogrammetry & Robotics Lab

Robust Least Squares
for SLAM

Cyrill Stachniss

Partial slide courtesy: Nived Chebrolu, Pratik Agarwal



Least Squares Minimization

= Minimizes sum of squared errors
= ML estimation for the Gaussian case
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Least Squares Minimization

= Minimizes sum of squared errors
= ML estimation for the Gaussian case
= Key assumption: No outliers!

Problems:

= Qutliers and ambiguities always occur
in the real world

= Optimization is sensitive to outliers
= Gaussian distributions (one mode)



Data Association Is Ambiguous
And Not Always Perfect

= Places that look identical
= Similar rooms in the same building
» Cluttered scenes

= GPS multi path (signal reflections)
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Committing To The Wrong Mode
Can Lead to Mapping Failures

Courtesy: E. Olson, P. Agarwal 7



Data Association Is Ambiguous
And Not Always Perfect

= Places that look identical
= Similar rooms in the same building
» Cluttered scenes

= GPS multi path (signal reflections)

How to deal with this problem
in graph-based SLAM?



MaxMixtures
or Dealing with Multiple Modes



Mathematical Model

= Can we formulate constraints
modeling Gaussian noise differently?

1TQ

p(z | x) = neXD(—— zgezg)
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Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1TQ

p(z | x) = neXD(—— zgezg)

4

1 7
p(Z ‘ X) — Zwknk eXp(__ezijZ]kezjk)
k
Sum of Gaussians with k modes
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Problem

= During error minimization, we consider
the negative log likelihood

1
— log p(Z ‘ X) = Eeg;ﬂwew — logn

4

1
—logp(z | x) = —log Zwmk eXD(—EeZ’k ijkeijk)
k

The log cannot be moved inside the sum!
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Max-Mixture Approximation

= [nstead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

1
p(Z ‘ X) Zwknk eXp(__eZ;k,ﬂmkezgk)
k

1

T
~ mkax WML eXp(_Eeka@]keijk)
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Max-Mixture Approximation

Original bi-modal mixture
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Log Likelihood Of The Max-
Mixture Formulation

= The log can be moved inside the max
operator

1
p(Z | X) ~ mkax WENE exp(—EegkﬂzjkeZ]k)
1

logp(z | x) =~ max —2 g;kﬁzjkezgk+log(wk77k)

1
or. —|ng(Z|X) ~ min 2 Z;kﬂzﬂkewk Iog(wknk)

k
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Integration

= With the max-mixture formulation, the
log likelihood again results in local
quadratic forms

= Easy to integrate in the optimizer:
1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)
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MM For Outlier Rejection

Bi—-modal false loop closure
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MM For Outlier Rejection

Bi-modal false loop closure
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Runtime

Run time anaIyS|s for Intel Dataset
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MM For Outlier Rejection and
Data Association Ambiguities

Bi—-modal false loop closure Multi-modal with null-hypothesis Bi-modal odometry slippage
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Max-Mixture and Outliers

= MM formulation is useful for multi-
model constraints (D.A. ambiguities)

= MM is also a handy tool for dealing
with outliers

= Outliers: one mode represents the
main constraint and a second model
uses a flat Gaussian for the outlier
hypothesis
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Performance (1 outlier)

Gauss-Newton MM Gauss-Newton
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Performance (10 outliers)
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Performance (100 outliers)

N ;
>~
» - v v
3 i)
9757 M
7 ) =
TR o e -
1 \ \|
\ -
4 G i
> 2
2d ” P 3 P
7 "
4 ! o -t W \
/ g o 4 \
V/ % - -
y 75 & ¥ PP
'~ - o []
s ¥ .. = \
L P P NS
Y. v - "
4 — 0 3., 3
f ¥ . ‘
R B <. 0%
N . At N \ »
X 7 N\ 4
. 8
2 - t
TR g A . g
s
AL

Gauss-Newton MM Gauss-Newton

25



MaxMixtues for Dealing with
Outliers

= Supports multi-model constraints

= Approximate the sum of Gaussians
using the max operator

» Jdea: “"Select the best mode of a sum
of Gaussians and use it as if it would
be a single Gaussian”

= Easy to use, quite effective
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Dynamic Covariance Scaling
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Standard Least Squares
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Dynamic Covariance Scaling

X* = argmin Z €ij (X)TQZJ € (X)
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Scaling Parameter

X*: . y XT
arg}r{nmfézje]( )" (s

51;) e (X)

LI

i = min | 1,
Sij mm( 3
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Dynamic Covariance Scaling
3 —
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Dynam|c Covariance Scallng
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Dynam|c Covariance Scallng
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Dyna
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Dynamic Covariance Scaling
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DCS for Dealing with Outliers

= Add an additional weighting term to
the error function

= The weight depends on the error value

= [dea: "Weight down constraints that
are far away from the mean estimate”

= A special case of robust least squares
estimation (Geman-McClure kernel)
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Least Squares
with Robust Kernels
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Optimizing With Outliers

= Assuming a Gaussian error in the
constraints is not always realistic

= Large errors are problematic
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Optimizing With Outliers

= Assuming a Gaussian error in the
constraints is not always realistic

= Large errors are problematic

We need more
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Robust M-Estimators

= Assume non-normally-distributed
noise

= Intuitively: PDF with “heavy tails”
= p(e) function used to define the PDF

p(e) = exp(—p(e))
= Minimizing the neq. log likelihood
x* = argmin }_ p(e;(x))
(/
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Robust M-Estimators:
Gaussian Case

= Kernel function p(e) used to define the
PDF

p(e) = exp(—p(e))

= For the Gaussian case, we set p(e)

to be a quadratic function p(e) = ¢€°

41



Different Rho Functions

= Gaussian: p(e) = ¢°

= Absolute values (L1 norm):p(e) = |e]
= Huber M-estimator

2

,0(6) — % |f‘€‘ < cC
| <

le|] —5) otherwise

= Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, ...)
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Huber Loss

= Mixture of a quadratic and a linear
function

= Quadratic around the solution (noise)
= Linear for outliers (error > threshold)

5 2
{ £ it le| <c s

e — 2
ple) c(le] — 5) otherwise
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Different Robust Loss Functions
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Robust Estimation as
Weighted Least Squares

= Weighted Least Squares

£

X" = argmm ZwZHeZ )||?

= Robust Estimation

£

X" = argmmz,o (e;(x))
1=1
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Robust Estimation
as Weighted Least Squares

= Gradient at optimum goes to zero
= For weighted least squares:

1 9(wie? (%)) e (x)

2 Ox ox D

= wje;(X)
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Robust Estimation
as Weighted Least Squares

= Gradient at optimum goes to zero
= For the robust estimation:
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Robust Estimation
as Weighted Least Squares

= Compare both equations

19(wie?(x))
2 0x
d(p(ei(x)))

48



Robust Estimation
as Weighted Least Squares

= Compare both equations

Lo(uwetC)) Bl

2 Ox v ox

dplei(x)) . 0e(x)
I = p'(ei(x)) 7 =0

= We can use weighted least squares if

we set the weight using the kernel as:
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Robust Least Squares

= We can use the weighted least squares

= The rest stays the same

= The choice of the kernel must align

approach to realize robust L.S.
= The kernel will impact the Jacobians

with the outlier distribution
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Generalized Robust Kernels
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Which Function to Chose?

= Which loss/kernel function to chose?
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Which Function to Chose?

= Which loss/kernel function to chose?
= It depends on the type of outliers!
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Which Function to Chose?

= Which loss/kernel function to chose?
= It depends on the type of outliers!

Some approaches combine them:

1. Start with a strong tails v
for N, iterations VA

2. N, iteration with weaker tails
3. Remove all outliers larger c

4. Gaussian/Huber for the rest v
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General Robust Loss Function
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Adaptive Robust Loss Function
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Recommended Video to Watch

A General and Adaptive
Robust Loss Function

CVPR 2019

Jonathan T. Barron

% Google Research

https://www.youtube.com/watch?v=BmNKbnF69eY
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Adaptive Robust Loss Function
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Adaptive Robust Loss Function

= Jointly optimize over x and «

(x", ™) = argminz,o(ei(x),oz).

(x,0) i—1

= Define a probability distribution for the

general loss function

1 — e,x.C
Ple,a,c) = cZ(a)e ple,asc)

Z(a) = / e~ Plel) de




Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(€7 a, C) — —lOg P(€7 a, C)
— /0(6, Y, C) - lOg CZ(O()
= with
Ple,a,c) = ! e~ r(eac)
Y cZ ()
Z(a) = / e~ Plel) de
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(€7&7 C) — —lOgP(G,CV,C)
— 10(67 , C) + lOg CZ(O()
= with
P(e o C) — 1 e_p(eaaac)
Y cZ ()
o0 approaches
Z(a) = / e P de | infinity for
—00 negative «
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(€7&7 C) — —lOgP(G,CV,C)
— 10(67 , C) + lOg CZ(O()
= with
Ple,a,c) = ! e~ r(eac)
Y cZ ()
00 | We can limit
Z(oz) _ o—rle,al) g, the range of

outliers to
maintain a pdf
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(€7&7 C) — —lOgP(G,CV,C)
— 10(67 Y, C) —l_ lOg CZ(O()
= with
P(e o C) — 1 e_p(eaaac)
Y cZ ()
p= Vxe can Iimi;
o —p(e,a,l the range o
Z(O‘) o / € 4 ) de outliers to

— 7 maintain a pdf
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Adaptive Robust Loss Function

= Adaptive loss function defined as
pa(ev a, C) — —lOg P(ev a, C)
— /0(67 , C) + lOg CZ(O&)

we (e, a, c)
5; """ | [ ] :




Joint Optimization with the
Adaptive Robust Kernel

= In theory, we can now solve a joint
optimization problem
N

(x", ™) = argminz,a(ei(x),oz).

(x,00) .1

= in the weighted least squares sense
using pa(e, @, c) as our robust kernel
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Joint Optimization with the
Adaptive Robust Kernel

= Joint optimization of (x,a):

N

(x", ™) = argmian(ei(X),a).

(x,x) i—1

Problems in practice:
= New Jacobians need to be computed

= &« can dominate the parameter
estimation for complex problems

= Sensitive to initial guess
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EM-Based Optimization with the
Adaptive Robust Kernel

= Solve via Expectation-Maximization
= E-Step: 1D line search problem

N
o' = argmax Z log P(e;(x'~1), a1, ¢)
> =1
= M-Step: Minimize as weighted least
squares

N
x' = argmin Z pa(ei (X)7 Oétv C)
=1
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Iterative Closest Point Example

wrongly aIignedA |

. points on moving car
0 moving car

correctly treated as outliers

=N

 correctalignment.

alignment-errors

Huber Loss Adaptive Robust Loss

Outlier rejection in presence of dynamic objects
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Iterative Closest Point Example
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EM-Based Optimization with the
Adaptive Robust Kernel

= Kernel and unknown are estimated in
a iterative fashion

= EM-based estimation provides better
results than the joint optimization

= Kernel function adapts to the current
situation by adapting o

= No need to change the least squares
problem (Jacobians stay the same)
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Dealing with Outliers

= There are different ways for dealing
with outliers during optimization

= Key question: how does the outlier
distribution look like?
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Dealing with Outliers Summary

= Max-Mixtures supports multi-model
constraints

= [t approximates the sum of Gaussians
using the max operator

= Dynamic Covariance Scaling is a good
choice for a fixed kernel in SLAM

= DCS is a form of Geman-McClure

= Choice of the robust loss function
depends on the problem at hand
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Dealing with Outliers Summary

= Robust least squares using kernels

= Choice of the rho function (kernel)
depends on the problem at hand

= Popular: Huber, L1, DCS/Geman
McClure

= Better: Don't commit on one kernel

= Adaptive robust kernel is the most
flexible way

= We obtained best results with adaptive
kernels in an EM-style estimation
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—bonn.de75



