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Traditional SLAM Paradigms

Kalman  Particle | Graph-
filter filter based

4
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approach to SLAM



Least Squares in General

= Approach for computing a solution for
an overdetermined system

= "More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Today: Application to SLAM



Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain

P Robot pose Constraint



Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses

| »- A
&y
y 5

=]

P Robot pose Constraint



Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints



Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes
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Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes




Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

10



Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

= Then, we can render a
map based on the
known poses
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The Overall SLAM System

= Interplay of front-end and back-end

= Map helps to determine constraints by
reducing the search space

= Topic today: optimization

node positions
v |

Graph Graph
-2 Construction Optimization
(Front-End) graph (Back-End)
(nodes & edges)
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The Graph

= It consists of n nodes x = x1-,
= Each x; is a pose of the robot at
= time t;

= A constraint/edge exists between the
nodes x; and x; if... &

0 i —
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Create an Edge If... (1)

= ..the robot moves from x; to x; 1
= Edge corresponds to odometry

O—0O
X \ Xi4+1

The edge represents the
odometry measurement
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

O O

xj

Measurement from x; Measurement from X
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;

@

X,LQ Yj

Edge represents the position of X jseen
from X, based on the observation
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Transformations

= Transformations can be expressed
using homogenous coordinates

= Odometry-Based edge
(X; 1 X,41)

= Observation-Based edge
(X X5)
How node i sees node j
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Homogenous Coordinates

= H.C. are a system of coordinates used
In projective geometry
= Projective geometry is an alternative

representation of geometric objects
and transformations

= A single matrix can represent
affine transformations and
projective transformations
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Homogenous Coordinates

= N-dim space expressed in N+1 dim
= 4 dim. for modeling the 3D space
= To HC: (:U,y,z)T — (z,, 2, 1)T

T Yy =z

= Backwards: (z,y,z,w)! — (=, =, 57

w w_w

= Vector in HC: v = (z,v, z,w)’
* Translation:

= Rotation:
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The Edge Information Matrices

= Observations are affected by noise

= Information matrix 2;; for each edge
to encode its uncertainty

= The "bigger” 2;;, the more the edge
“matters” in the optimization

Questions

= How do the information matrices look like in
case of scan-matching vs. odometry?

= How will these matrices look like when

moving in a long, featureless corridor?
20



Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e;; (X, X;)

J
nodes

according to
the graph

error
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Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e; ;i (X;,X;)
X, \/ (}%\
nodes
according to
the graph

: T
= Goal: x* = aramin el Qe
gX % (] 171)])

error
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Least Squares SLAM

= This error function looks suitable for

least squares error minimization

X

*

arngin E eg;(xi,xj)ﬂijeij(xi,xj)
]
: T
argmin Q)
gmi Ek e (x)Qrer(x)
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

x : T
x* = arg}zmn;ek(x)ﬂkek(x)

Question:
= What is the state vector?
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

S

x* = argmin)_ el (x)Qep(x)
X
k

Question:
= What is the state vector?

One vector for each
T
T = (X{ x4 ... Xﬁ/ node of the graph

= Specify the error function!
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The Error Function

= Error function for a single constraint
e; (X, %) = tQV(Z_{il(X,lej))

I

measurement

= Error as a function of the whole state vector

I

x; referenced w.r.t. x;

eij(x) = t2v(Z; ;1 (X;1X;))

= Error takes a value of zero if

Zi; = (X;'X;)
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Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

= | inearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= Jterate this procedure until
convergence
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Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) ~ ez-j(x) + JZ]AX

oe;;(x)

with JZ] p— a
X
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;

= s there any consequence on the
structure of the Jacobian?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;
= s there any consequence on the
structure of the Jacobian?

m Yes, it will be non-zero only in the
rows corresponding to x; and X;

0e;;(x) — ( 0...3ez'j(Xz') . 0eyx5) .0 )

aX 3Xi . ox g

Jij = (O"'Az’j"'Bij"'O)

32



Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and x;

e;i(x) = e;;(x;,x;)

= The Jacobian will be zero everywhere
except in the columns of x; and x;
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Consequences of the Sparsity

= We need to compute the coefficient
vector b and matrix H:

bl = Zb ZeTQ Ji;
ZHw = 235%%

i
= The sparse structure of J;; will result
in @ sparse structure of H

= This structure reflects the adjacency
matrix of the graph

H
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Illustration of the Structure

_ 1T
|

N

—

Non-zero only at x; and x;
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Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

—>
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Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

... and at
the blocks

ijj
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Illustration of the Structure
b=> by

i
I+I+m+| I

i
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Consequences of the Sparsity

= An edge contributes to the linear
system via b;; and H;;
= The coefficient vector is:
bi; = e};Q;Ji;
— e%Qij(o...Aij...Bij...o)
— (O---eg;-ﬂijA,,;j---eTQ--B ..... o)

= [t is non-zero only at the indices
corresponding to x; and x;
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Consequences of the Sparsity

= The coefficient matrix of an edge is:
Hj;j = JiQ0;

(

\

\

)

T

T

T

T

T

T

)

/

= Non-zero only in the blocks relating i,]j

40



Sparsity Summary

= An edge ij contributes only to the
= ith and the j* block of b;;

= to the blocks ii, jj, ij and ji of H;;
= Resulting system is sparse

= System can be computed by summing
up the contribution of each edge
= Efficient solvers can be used
= Sparse Cholesky decomposition
= Conjugate gradients
= ... many others
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The Linear System

= VVector of the states increments:
AxT = (Ax] Axf - Ax])
= Coefficient vector:
b’ = (b] bY --- bl )
= Normal equation matrix:
(Iilll H12 ... Hln\

_— 2l {22 ... g2»
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Building the Linear System

For each constraint:
= Compute error e;; = t2v(Z; ' (X; X))

= Compute the blocks of the Jacobian:

de(x;,X;) Oe(x;,x;)
6Xi an
= Update the coefficient vector:

A

= Update the normal equation matrix:

H'+ = A[Q;;A; H74+ = A].Q;;B;;
HJZ—— — Bg;QZ]AZ] Hjj—— — sz;QZjB’Lj

43



Algorithm

optimize(x):

while (!lconverged)
(H, b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
X =X+ AX

end

return x
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Example on the Blackboard
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Trivial 1D Example @)@

= TWo nodes and one observation
(1 22)! = (00)

x =
Zz1o = 1
QQ = 2
el = z12—(r2—21)=1-(0-0)=1
Jio = (1 -1)
bis = ef2Q12J10=(2 —2)
Hipo = J{QQJ12:(_22 _22)
Ax = —HI21512

BUT det(H) = 02?2,
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What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

* One node needs to be “fixed”

4 )

constraint
H:(22 _22>+(C1)8) that sets
B L ) dx;=0
1
Ax = —H “b1o
Ax = (017!
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Role of the Prior

= We saw that the matrix H has not full
rank (after adding the constraints)

= The global frame had not been fixed

* Fixing the global reference frame is
strongly related to the prior p(xg)

= A Gaussian estimate about xp results
in an additional constraint

= E.qg., first pose in the origin:
e(xg) = t2v(Xyp)
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Real World Example

=
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Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

50



Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
disappear from the linear system
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Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
disappear from the linear system

= Construct the full system

= Suppress the rows and the columns
corresponding to the variables to fix
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Why Can We Simply Suppress
the Rows and Columns of the
Corresponding Variables?

plenB) =N ([ 5 ] |3 ot ) =~ ([ 5 ] [a5e 255 )

MARGINALIZATION CONDITIONING
p(a) = [p(e, B)dB p(a| B) =p(a, B)/p(B)
Cov. | 1= M, B o= po +ZapSs5(8 — pg)
| FORM) & _ s 5 = Saa — LagZ54 60
INFO.| M =Ta — NapAgsmps N =Nq — AapP
FORMY A — Aga — AaﬁAﬁ N = Aga

Courtesy: R. Eustice 53



Uncertainty

= H represents the information matrix
given the linearization point

= Inverting H gives the (dense)
covariance matrix

= The diagonal blocks of the covariance
matrix represent the uncertainties of
the corresponding variables
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Relative Uncertainty

To determine the relative uncertainty
between x; and X

» Construct the full matrix H

= Suppress the rows and the columns of
X; (= do not optimize/fix this variable)
= Compute the block j,j of the inverse

= This block will contain the covariance
matrix of x; w.r.t. x;, which has been

fixed
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robot
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Conclusions

= The back-end part of the SLAM
problem can be effectively solved
with Gauss-Newton

= The H matrix is typically sparse

= This sparsity allows for efficiently
solving the linear system

= One of the state-of-the-art solutions
for computing maps
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Giorgio Grisetti and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—bonn.de59



