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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 

So far: assumed to be known! 
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Simple Form of Point Cloud 
Registration 



6 

Simple Form of Point Cloud 
Registration 
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Simple Form of Point Cloud 
Registration 
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This Becomes Tricky if the 
Correspondences are Unknown 
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Simple Form of Point Cloud 
Registration 

unknown 
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Registration of 3D Data Points 

§  Goal: find the parameters of the 
transformation that best align 
corresponding data points 

 

§  Optimization / search for parameters 
§  Iterative closest point (ICP w/ SVD) 
§ Robust least squares approaches (#3) 

§  Known (#1) vs. estimated (#2) 
correspondences 
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3D Point Cloud 
Registration 
Example  

[Video courtesy: P. Glira] 
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Part 1 
Point Cloud Registration 

with Known Data Association 

We have derived an efficient to 
compute, optimal, direct solution 
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Formal Problem Definition 

§  Given corresponding points: 

§  and optionally weights:  

§  Find the parameters       of the rigid 
body transform with 

§  so that the squared error is minimized 
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Solution for Computing the 
Rigid Body Transform 

§  Rotation 

§  Translation 

§  with 
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Alignment Summary 
 Alignment through translation and 
rotation 

translate points to make the  
center of masses overlap 

rotate points 

Image courtesy: Ju 
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Part 2 
Point Cloud Registration 

with Unknown Data Association 

No direct and optimal solution exists 
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Iterative Closest Point (ICP) 
 [Chen & Medioni ‘91, Besl & McKay ‘92] 
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ICP: Point Cloud Registration  
Estimating the Data Association 
If the correct correspondences are not 
known, it is generally impossible to 
determine the optimal parameters in 
one step 

? 
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ICP: Point Cloud Registration  
Estimating the Data Association 
If the correct correspondences are not 
known, it is generally impossible to 
determine the optimal parameters in 
one step 
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ICP: Point Cloud Registration  
Estimating the Data Association 
If the correct correspondences are not 
known, it is generally impossible to 
determine the optimal parameters in 
one step – but we can iterate! 
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Iterative Closest Point (ICP) 
Algorithm 
§  Idea: Iteratively estimate the data 

association and transformation 
§  “A Method for Registration of 3-D 

Shapes”  [Besl & McKay 92] 

§  Assumption: We have an initial guess 
§  point locations or 
§  point correspondences 
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Iterative Closest Point (ICP) 
Algorithm 
§  Iterate estimating the alignment 

§  Pick for every point its closest neighbor  
in the other point cloud (“closest point”) 

§ Compute the rigid body transform & align 
§ Repeat 

§  Converges if initial point clouds (or 
correspondences) are “close enough” 
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ICP Illustrated 

1. Select points 
on one mesh or 
point cloud 

2. Find closest 
on other mesh 
or point cloud 

3. Minimize 
distances 

4. Iterate 

[Courtesy of Rusinkiewicz] 
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Basic ICP Algorithm  

error   

while (  has decreased and   > threshold) 

  = determine_correspondences 

     = compute_transformation_params 

  

 
 

return  
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ICP Example 

[Video courtesy: Glira] 

SimpleICP by Philipp Glira 
https://github.com/pglira/simpleICP  
C++, Matlab, Julia, Octave, and Python 
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Vanilla ICP  

§  The Vanilla ICP approach is easy to 
implement 

§  Works if a good initial guess is 
available 

But... 
§  May require many iterations 
§  Bad correspondences can seriously 

degrade the quality of the result 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 
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Performance of Variants 

Various aspects of performance: 
§  Speed 
§  Stability 
§  Tolerance w.r.t. noise and outliers 
§  Basin of convergence  

(maximum initial misalignment) 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 
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Selecting Source Points 

§  Use all points 
§  Uniform sub-sampling 
§  Random sampling 
§  Feature-based sampling 
§  Normal-space sampling 

(Ensure that samples have normals distributed as 
uniformly as possible) 
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ICP with Uniform Sampling 

Video courtesy: Nuechter 
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Uniform vs. Normal-Space 
Sampling 

uniform sampling normal-space sampling 
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Comparison 

§  Normal-space sampling is better for 
mostly smooth areas with sparse 
features [Rusinkiewicz et al., 01] 

random sampling normal-space sampling 
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Comparison 

§  Normal-space sampling is better for 
mostly smooth areas with sparse 
features [Rusinkiewicz et al., 01] 

25

Result

Stability-based or normal-space sampling 
important for smooth areas with small features

Random sampling Normal-space samplingrandom sampling normal-space sampling 
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Feature-Based Sampling 

Full 3D scan (~200.000 points) Extracted features (~5.000 points) 

§  Try to work only with highly distinct points 
§  Simplifies the search for correspondences 
§  Higher efficiency and sometimes better accuracy  
§  Requires preprocessing 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 
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Data Association 

§  Has huge impact on convergence and 
speed 

§  Various different matching methods: 
§ Closest point  
§ Closest compatible point 
§ Normal shooting 
§  Point-to-plane 
§  Projection-based approaches 
§ … 
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Closest-Point Matching 

Find closest point in other the point set 
(using kd-trees) 

Generally stable, but slow convergence.  
Often the first approach to try (“Vanilla ICP”) 
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No Initial Guess? 

Without an initial guess, align the center 
of masses of both point sets before 
searching correspondences 

Image courtesy: Bogoslavskyi 
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Starting Configuration 

Image courtesy: Bogoslavskyi 
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Align Center of Masses by Shift 

Image courtesy: Bogoslavskyi 
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Nearest Neighbor Assignment 

Image courtesy: Bogoslavskyi 
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Compute Transformation, Align 

Image courtesy: Bogoslavskyi 
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Iterate 

Image courtesy: Bogoslavskyi 
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Closest Compatible Point 

§  Robustification by considering the 
compatibility of the points 

§  Only matches compatible points 
§  Compatibility can be based on  

§ Normals 
§ Colors 
§ Curvature 
§ Higher-order derivatives 
§ Other local features 
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Feature Compatibility   

Full 3D scan (~200.000 points) Extracted features (~5.000 points) 

Match only points that have compatibly features 
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Normal Shooting 

Project along normal, intersect other 
point set to find a correspondence 

Slightly better convergence results than 
closest point for smooth structures, but 
worse for noisy or complex structures 
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Projective Data Association 

Searches for correspondences by 
projecting a point towards the sensor 
viewpoint  
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Point-to-Plane Metric  

§  Idea: still find the closest points 
§  Error = project point-to-point onto the 

direction of the normal, shot from the 
found point 
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Point-to-Plane Metric  

§  Error = project point-to-point onto the 
direction of the normal, shot from the 
found point 

[Image courtesy: Low] 
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Point-to-Point vs Point-to-Plane 

point-to-point point-to-plane 
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Point-to-Point vs Point-to-Plane 

[Video courtesy: P. Glira] 
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ICP Example for Mapping 

odometry odometry 3D range data + 3D range data + 

3D point cloud i 3D point cloud i+1 
6DoF ICP 
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Kinect-Based Mapping  
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Projective Frame-to-Model  
Data Association 

Point cloud 
& 3D model 

Point-to-plane ICP 
Projective DA 

Image courtesy: Newcombe et al. 
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LiDAR Projective ICP in SLAM 

Behley, Stachniss: “Efficient Surfel-Based SLAM using 3D Laser Range Data 
in Urban Environments”, RSS 2018 



57 

Data Association 

§  There a various different ways to find 
correspondences  

§  Investing into a good data association 
is key obtaining good results 

§  Exploit any initial guess 
§  Normal-based metrics often better 

than standard point-to-point metric 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 
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Weighting Correspondences 

§  Weight the corresponding point pairs 
§  Noise: Weighting based on sensor 

uncertainty 
§  Weights are easy to incorporate  

into the transformation computation 
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Weighting Correspondences 

§  Noise: Weighting based on sensor 
uncertainty 

§  Weights are especially relevant if 
measurement noise is varying 

Image courtesy: Förstner and Wrobel 
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ICP Variants 

Variants on the following stages of  
ICP have been proposed: 
 

1.  Consider point subsets 
2.  Different data association strategies 
3.  Weight the correspondences   
4.  Reject potential outlier point pairs 

 



62 

Rejecting Potential Outlier Pairs 

§  Point-to-point distance larger than a 
given threshold 
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Rejecting Potential Outlier Pairs 

§  Point-to-point distance larger than a 
given threshold 

§  Rejection of pairs that are not 
consistent with their neighboring pairs  
[Dorai 98] 
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Rejecting Potential Outlier Pairs 

§  Point-to-point distance larger than a 
given threshold 

§  Rejection of pairs that are not 
consistent with their neighboring pairs  
[Dorai 98] 

§  Trimmed ICP: Sort correspondences 
w.r.t. their error, ignore the worst t%  
[Chetverikov et al. 02] 
§  t is related to overlap and outlier ratio 
§ Overlap has to be estimated 
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Example: Mapping  
in Dynamic Environments 

Palazzolo, Behley, Lottes, Giguère, Stachniss, “ReFusion: 3D Reconstruction in 
Dynamic Environments for RGB-D Cameras Exploiting Residuals”, IROS 2019 
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Mapping Works in Static Scenes 
Fails in Dynamic Environments 

RGB camera frames 3D model re-projected 
onto the camera frames 
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Fails in Dynamic Environments 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 

Dynamic 
object 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Detection of Dynamic Elements 
Exploiting Residuals 
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Works in Dynamic Environments 

RGB camera frames 3D model re-projected 
onto the camera frames 

Palazzolo, Behley, Lottes, Giguère, Stachniss, “ReFusion: 3D Reconstruction in 
Dynamic Environments for RGB-D Cameras Exploiting Residuals”, IROS 2019 
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Works in Dynamic Environments 

Palazzolo, Behley, Lottes, Giguère, Stachniss, “ReFusion: 3D Reconstruction in 
Dynamic Environments for RGB-D Cameras Exploiting Residuals”, IROS 2019 
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Works in Dynamic Environments 

RGB camera frames 3D model re-projected 
onto the camera frames 

Palazzolo, Behley, Lottes, Giguère, Stachniss, “ReFusion: 3D Reconstruction in 
Dynamic Environments for RGB-D Cameras Exploiting Residuals”, IROS 2019 
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Learning-based  
Moving Object Detection 

Chen, Li, Mersch, Wiesmann, Gall, Behley, Stachniss: "Moving Object Segmentation 
in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data" 
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Sophisticated Outlier Rejection 

Deep learning-based moving object 
segmentation in 3D LiDAR scans 

moving object  
segmentation 

raw point cloud 

parked 
car 

moving 
car 

Chen, Li, Mersch, Wiesmann, Gall, Behley, Stachniss: "Moving Object Segmentation 
in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data" 
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Sophisticated Outlier Rejection 

Chen, Li, Mersch, Wiesmann, Gall, Behley, Stachniss: "Moving Object Segmentation 
in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data" 

raw point cloud ground truth 

estimated moving  
object segmentation 
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ICP Algorithm 
§  Potentially subsample point clouds 
§  Determine corresponding points 
§  Potentially weight or reject outlier pairs 
§  Compute rotation R, translation t (SVD) 
§  Apply R and t to all points of the set to be 

registered 
§  Compute the error E(R,t) 
§  While error decreased and error > threshold 

§  Determine correspondences and weights 
§  Compute and apply rigid body transformation  

§  Output final alignment 
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Part 3: 
Point Cloud Registration  

using Non-Linear Least Squares 
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Summary 

§  Registration of point clouds is an 
important task in perception 

§  ICP is the standard algorithm for  
point cloud alignment/scan matching 

§  Estimates translation and rotation 
between clouds/scans 

§  Given data associations between 
clouds, the transformation can be 
computed efficiently 
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Summary 

§  The major problem is to determine  
the correct data associations 

§  Iterative approach (DA & alignment) 
§  Several variants exist 
§  Initial guess is needed for robust data 

association 
§  Often: least squares approach with a 

plane-based metric, data association 
heuristics, and outlier rejection 
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5 Minute Summary... 

https://www.youtube.com/watch?v=QWDM4cFdKrE 


