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Direct Solutions for Computing
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The slides have been created by Cyrill Stachniss.

Motivation

F/E R, b Image courtesy: Collins 2

Topics of Today

Compute the
» Fundamental matrix
given corresponding points
= Essential matrix
given corresponding points

= Rotation matrix and basis
given an essential matrix

Computing the
Fundamental Matrix
Given Corresponding Points




Fundamental Matrix

» The fundamental matrix F is

[ F = (K’)—TR’sbR”T(K”)—l]

= [t encodes the relative orientation
for two uncalibrated cameras

= Coplanarity constraint through F

=
x' Fx”" = 0

Fundamental Matrix

The fundamental matrix F can directly
be computed if we know the
= K',K” calibration matrices
= R',R"” viewing direction of the cameras
" Sy baseline
= or the projection matrices P’, P”

How to compute F given ONLY
corresponding points in images?

Problem Formulation

= Given: N corresponding points
(x,7y/)n7(x//7y”)n Wlth n = 17"'7N

= Wanted: fundamental matrix F

Fundamental Matrix
From Corresponding Points

= For each point, we have the
coplanarity constraint

X/ZFXZ =0 n=1,...,N




Fundamental Matrix
From Corresponding Points

= For each point, we have the
coplanarity constraint

X'ZFXZ =0 n=1,..,.N
" Or
Fi1 Fio Fi3 z,
[0, U, 1] | [F21 Faz  Fos Yn | =0
F31 F3p  F33 1
unknowns! .

What is the Issue here?

= In standard least squares problems,
we have a vector of unknowns

* Here, the matrix elements of F are
the unknowns

Question:
How to turn the unknown matrix
elements into a vector of unknowns?
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Linear Dependency

= Linear function in the unknowns Fj;

1
Fia  Fis ),

?J;Lal] Fo1 Fay  Fos y’ | =0
F31 F3y F33 1
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Linear Dependency

= Linear function in the unknowns Fj;

1/
Fy, Fip Fis T,

[55%1] Fay  Fag Yp | =0

F31 F39 F33 1

" / " ! _
a:nFllxn .’L‘anlyn ...=0
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Linear Dependency

= Linear function in the unknowns Fj;

1

Fii Fi2 Fis T,
[xflruy;z Fy1 Py Fos yr | =0

F33  Fs3 1

CIZ;;an;ﬂL -+ nggly;,L +D .=0
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Linear Dependency

= Linear function in the unknowns Fj;

1

Fi1 Fia Fis x!
[0, Uns 1] | For Fao  Fas Yp | =0
F31 F3y F3z3 1

4

7 A T S B ) Y S ) SN S T A
[xnxn7xnyn7mn7ynmn7ynyn7yn?xn7yn7 1] '

[F11, Fo1, F31, Fia, Fao, Fio, Fi3, Fa3, F33]T =0

n=1,...,.N
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Linear Dependency

= Linear function in the unknowns Fj;

T /.. ",/ 12 1/ 1,/ 2 / /
an > [.’L‘nl‘n, ToYns Tons YnTos YnYns Yns> Ty Uns 1] :

f —>[F11, Fo1, F31, Fia, Foo, F3a, Fi3, Fas, F33]T =0
n=1,..,.N

4

alf=0 n=1,..N
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Using the Kronecker Product

= Linear function in the unknowns Fj;

T /.. ",/ 124 1/ ",/ 12 / /
a'n > [ZIZ‘n.’En, ToYns s YnTos YUnYns Yns Tns Uns 1] :

f —>[Fi1, Fo1, F31, Fia, Foo, F3a, Fi3, Fas, F33]T =0
n=1,..,.N

4

(x' @x!)"vecF = a f =0 n=1,.,N
(< @x,)T veck

(it holds in general: x"Fy = (y ® x)"vecF ) 6




Linear System From All Points

= We directly obtain a linear system if
we consider all N points

al f =0 n=1,...N
—~—

n

~—
(xiy@se, )7 vecF

v
ao| i m AF =0
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Solving the Linear System

= Singular value decomposition solves

Af =0

= and thus provides a solution for
f = [Fi1, Fo1, Fa1, Fia, Foo, Fso, Fi3, Fag, F3)"

= SVD: f is the right-singular vector
corresponding to a singular value of A
that is zero
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How Many Points Are Needed?
= The vector f has 9 dimensions

- T -

a-lar| M Af =0
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How Many Points Are Needed?

= The vector f has 9 dimensions

a-lar| M Af =0

= Matrix A has at most rank 8
= We need 8 corresponding points
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More Than 8 Points...

= In reality: noisy measurements
= With more than 8 points, the matrix A
will become regular (but should not!)

= Use the singular vector f of A that
corresponds to the smallest singular
value is the solution f — F
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Singular Vector

= Use the singular vector f of A that
corresponds to the smallest singular
value is the solution f — F

A= UDVT

- L = [

N x9 N x N Nx9 9x9

>
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8-Point Algorithm 1st Try

1 function F = F_from_point_pairs(xs, xss)

2 % xs, xss: Nx3 homologous poi coordinates, N > 7
3 % F: -

4

% coefficient matrix
for n =1 : size(xs, 1)

A(n, :) = kron(xss(n, :), xs(n, :));
end

© ® N o u
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8-Point Algorithm 1st Try

1 function F = F_from_point_pairs(xs, xss)

2 % xs, xss: Nx3 homologous poi coordinates, N > 7
3 F 3x3

4

5 % coefficient matrix

6 forn =1 : size(xs, 1)

7 A(n, :) = kron(xss(n, :), xs(n, :));

8 end

9

10 % singular value decomposition

11 [U, D, V] = svd(A);

12

13 % select the singlar vector with the minimal singular valu
14 F = reshape(V(:, 9), 3, 3);

~ singular vector of the
smallest singular value

Not necessarily a matrix of rank 2
(but F should have: rank(F)=2) ”




Enforcing Rank 2

= We want to enforce a matrix F with
rank(F) = 2

= F should approximate our computed
matrix F as close a possible

What to do?
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Enforcing Rank 2

= We want to enforce a matrix F with
rank(F) = 2

= F should approximate our computed
matrix F as close a possible

= Use a second SVD (this time of F)
F=UD"V" = Udiag(Dy1, D2, 0) V'

with svd(F) = UDV"
and Dy > Dyy > D33

26

8-Point Algorithm

1 function F = F_from_point_pairs(xs, xss)
2 % XS, %Ss: Nx3 1 i coordinates, N > 7
4

5 % coefficient matrix

6 for n =1 : size(xs, 1)

7 A(n, :) = kron(xss(n, :), xs(n, :));
8 end

9

10 % singular value decomposition

11 [U, D, V] = svd(A);

12

13 % approximate F, possibly regular

14 Fa = reshape(V(:, 9), 3, 3);

15
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8-Point Algorithm

1 function F = F_from_point_pairs(xs, xss)

2 % X8, %ss: Nx3 T ] int coordinates, N > 7
3 3x3 ix

4

5 % e cie ma pe

6 for n =1 : size(xs, 1)

7 A(n, :) = kron(xss(n, :), xs(n, :));

8 end

9

10 % singular value decomposition

11 [U, D, V] = svd(A);

12

13 % approximate F, possibly regular

14 Fa = reshape(V(:, 9), 3, 3);

15

16 % svd decomposition of F

17 [Ua, Da, Val] = svd(Fa);

18

19 % algebraically best F, singular

20 F = Ua % diag([Da(1l, 1), Dba(2, 2), 0]) % Vva';
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Well-Conditioned Problem

= Example image 12MPixel camera

4000 S A

= > mp | 1400

1

3000

~\>[ 1800 ]

v
= Ill-conditioned, numerically instable

1800 new 0.9
1400 m) coordinate mp 0.7
1 @ system 1 @
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Conditioning/Normalization
to Obtain a Well-Conditioned
Problem

= Normalization of the point coordinates
substantially improves the stability

= Transform the points so that the
center of mass of all points is at (0,0)

= Scale the image so that the x and y
coordinated are within [-1,1]
©
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Conditioning/Normalization

» Define T : Tx = x so that coordinates
are zero-centered and in [-1,1]

= Determine fundamental matrix F from
the transformed coordinates

X Fx" = (T7%R)TF(T'%")
= TTTFT R
= XFR"
= Obtain essential matrix F through
= F = T TFT 7!

F = T'FT "

Singularity — Points on a Plane

= If all corresponding points lie on a
plane, then rank(A) < 8

= Numerically instable if points are close
to a plane Q

Images from the “Fundamental Matrix Song” Video by D. Wedge
32




Singularity — No Translation

= The projection centers of both
cameras are identical: X o = X~

= This happens if the translation of the
camera is zero between both images

®°e scene

e

cam2
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Summary so far

= Estimating the fundamental matrix
from N pairs of corresponding points

= Direct solution of N>7 points based on
solving a homogenous linear system
(“"8-Point Algorithm™)
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Let’'s Do the Same for the
Essential Matrix
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Reminder: Essential Matrix

= Essential matrix = “fundamental
matrix for calibrated cameras”

E=RS,R""

= Often parameterized through

(general parameterization of dependent images)

E=S,R'

= Coplanarity constraint for calibrated
cameras

T
k:X/ E k:X// —0

36




Essential Matrix
from 8+ Corresponding Points

= For each point, we have the
coplanarity constraint

Essential Matrix
from 8+ Corresponding Points

= For each point, we have the
coplanarity constraint

T T
Px'E Fx! =0 n=1,..,.N Px' E Fx! =0 n=1,..,.N
= Note: Same equation as for the = Or
fupdfnjer;aal matrix but for the . By Fi FEis kgt
B o ("%, “Yn, ]| Ear Bz Eog “yp | =0
Remember: #*x' = (K')"'x Es; FEsy FEas W
37 38
As for the Fundamental Matrix... Constraints
T By Eyy Eis Zmn = For the fundamental matrix, we
/ / 2 _ -
["an, "y, €] | Bz Bz B U | =0 enforced the rank(F) = 2 constraint
E31 Esz  Ess c
D1 0 0
F=UDV'=U| 0 Dy 0 |VT
0 0 0
xss)
= For the essential matrix, both non-
A zero singular values are identical
) A(n, ) = kron(;ss(n, 1), xs(n, :)); build matl‘iX A
s end | d 0 0 100
10 % singular value decompc Solve Ae:O E = U O d 0 VT = U 0 ]. 0 VT
11 [U, D, V] = svd(d); | 0 0 O T 0 0 0
ke oy sy, the ioied :bulld-matrix E homogenous
Which constraints to consider? 39 More details: Forstner, Skript Photogrammetrie 1I, Sect 1.2.3 40




8-Point Algorithm for the
Essential Matrix

1 function E = E_from_point_pairs(xs, xss)
% X xss: Nx3 homologous point coordinates, N > 7

6 for n =1 : size(xs, 1) . .
A(n, :) = kron(xss(n, :), xs(n, :)); build matrix A

8 end ‘

10 % singular value decomposition Solve Ae:o
11 [U, D, V] = svd(A); |

% approximate E, possibly regular build matrix Ea
14 Ea = reshape(V(:, 9), 3, 3); |

16 % svd decomposition of E

17 [Ua, Da, Val] = svd(Ea); comPUte SVDl Of Ea
19] % algebraically best E, singular, ssa bu“d matrix E from Ea

20 E = Ua = diag([1l, 1, 0]) = Va'; by imposing constraints
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Conditioning/Normalization
to Obtain a Well-Conditioned
Problem (As Done Before)

= As for the 8-Point algorithm for the

fundamental matrix, normalization of
the point coordinates is essential

= Transform the points so that the
center of mass of all points is at (0,0)

= Scale the image so that the x and y
coordinated are within [-1,1]
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Conditioning/Normalization

» Define T : Tx = x so that coordinates
are zero-centered and in [-1,1]

= Determine essential matrix E from the
transformed coordinates
FxTERX" = (T7HERHTE(TLFRY)
_ ki’TT_TET_l kf(”
— kj\(/TE k‘)'\(//
= Obtain essential matrix E through
= E = 7 'ET
E = TET 43

Properties of the Essential Mat.

* Homogenous
= Singular:|E| =0 (determinant is zero)
= Two identical non-zero singular values

= As a result of the skew-sym. matrix:

2EE'E —tr (EEN)E= 0
3x3

44




5-Point Algorithm
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5-Point Algorithm

= Proposed by Nistér in 2003/2004

= Standard solution today to obtaining
the direct solution

= Solving a polynomial of degree 10
= 10 possible solutions

= Often used together RANSAC
= RANSAC proposes correspondences

= Evaluate all 5-point solutions based on
the other corresponding points

46

5-Point Algorithm

= More details in the script by Férstner
“Photogrammetrie II”, Ch 1.2

= Stewenius, Engels, Nistér: “Recent
Developments on Direct Relative
Orientation”, ISPRS 2006

= Li and Hartley: “Five-Point Motion
Estimation Made Easy”

47

Computing the
Orientation Parameters
Given the Essential Matrix

48




Compute Basis and Rotation
Given E

= In short: E — S, R

Question: Is there a unique solution?
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The Solution We Want...

50

Multiple Solutions from Math...

We only know b up to a scalar.
So we can multiply it by -1...

51

IcX//
O/ » O//
We only know b up to a scalar.
So we can multiply it by -1...

52




Multiple Solutions from Math...

1
1
1
1
1
1
1
1
1
1"

We can also rotate the
(second) camera by PI

kx’\/\ Or do both
O/
53 54
Four Possible Solutions from
MathIII
o’ x o
/b
kx/ b
kX//
Ol O//
O/I
kX//
kx’\%\
O/

55

/
O The only physically plausible
solution that that the point are
in front of both cameras.
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Algebraic Solution

for Obtaining the Basis and Rotation
Matrix Given the Essential Matrix
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Solution by Hartley & Zisserman

= We know that 1 00
E=U|0 1 0|VT
f 0 O
rotation
matrices
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Solution by Hartley & Zisserman

= We know that 0 0
1 0|VT
0

rotation
matrices

_ 0 10 0 -1 0

» Define z=| -1 0 o wW=1|1 0 o0
0 0 O 0 0 1

skew-sym. mat rotation mat

|

o O =
O = O
o O O

= So that zw-= [
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Solution by Hartley & Zisserman

60




Solution by Hartley & Zisserman

(1 0 0
E = Ulo 1 o0]|VT
| 0 0 0
[0 1 0 0 -1 0
= Ul -1 0 0 1 0 o0|VvT
0 00 0 0 1
z W
= vzutuwvT
——
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Solution by Hartley & Zisserman

- vzUuuwvT
N——
/
- uzutTuwvT
\SAH,_/
5 R"
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Four Possibilities to Define Z, W

10 0 0 1 0]]0 -1 0
01 0 —ZW =|-10 0 1 0 0
00 0 0 00]|lo 0 1
0 10710 =10
=-Z'W =—-| -1 0 0 1 0 0
0 00] [0 0 1
0 1 077[0 -1 07"
=—ZW" =—| -1 0 0 1 0 0
0 00]|lo 0 1
0 101 To =1 071"
ZTwT =] -1 0 0 1 0 0
0 0 0 0 0 1
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Yields Four Solutions

E = vzutuwvT
Ss R"

«— |

2 solutions for Sg 2 solutions for R
Sp=UzU" S} =UZ"U" R =UWVT R =UWTV'

» El=vuzU" UwVvT
E2=vuz"U" uwv’
E3=vuzUu" uwTvT
Et=vuz"UT uwTvT

4 solutions
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Solution by Hartley & Zisserman

= Compute the SVD of E: UDV" = svd(E)
= Normalize U,V by U= U|U|,V = V|V|
= Compute the four solutions
S;=UzU" S =UZ'U" R{ =UWVT Ry =UWTV'
= Test for which solutions all points are
in front of both cameras

= Return the physically plausible
configuration
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Summary (1)

= Algorithms to compute the relative
orientation from image data

= Allow us to estimate the camera
motion (except of the scale)

= Direct solutions
= F from N>7 points (“8-Point Algorithm™)
= E from N>7 points (*8-Point Algorithm”)

* E from N=5 points (“Nister’s 5-Point
Algorithm™)
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Summary (2)

= Direct solutions
Extracting Sp, R from E
Not statistically optimal

Often used in combination with
RANSAC for identifying in/outliers

Direct solutions & RANSAC serves as
initial guess for iterative solutions

= Subsequent refinement using least
squares only based on inlier points
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Literature

= FOrstner, Wrobel: Photogrammetric
Computer Vision, Ch. 12.3.1-12.3.3

= Hartley: In Defence of the 8-point
Algorithm

= Stewenius, Engels, Nistér: Recent
Developments on Direct Relative
Orientation, ISPRS 2006
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Slide Information

= The slides have been created by Cyrill Stachniss as part of the
photogrammetry and robotics courses.

= I tried to acknowledge all people from whom I used images or
videos. In case I made a mistake or missed someone, please
let me know.

= The photogrammetry material heavily relies on the very well
written lecture notes by Wolfgang Forstner and the
Photogrammetric Computer Vision book by Forstner & Wrobel.

= Parts of the robotics material stems from the great
Probabilistic Robotics book by Thrun, Burgard and Fox.

= If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de, 2014 69




