Photogrammetry & Robotics Lab

Projective 3-Point (P3P) Algorithm or Spatial Resection

Cyrill Stachniss

Camera Localization

Given:

3D coordinates of object points X_i

Observed:

- 2D image coordinates \mathbf{x}_i of the object points

Wanted:

Extrinsic parameters R, X_O of the calibrated camera

Camera Localization

Task: estimate the pose of the camera

2

4

Reminder: Mapping Model

Direct linear transform (DLT) maps any object point ${\bf X}$ to the image point ${\bf x}$

3

Reminder: Camera Orientation

 $\mathbf{x} = \mathsf{K} \mathsf{R}[I_3| - \mathbf{X}_O] \mathbf{X} = \mathsf{P} \mathbf{X}$

- Intrinsics (interior orientation)
 - Intrinsic parameters of the camera
 - Given through matrix K

Extrinsics (exterior orientation)

- Extrinsic parameters of the camera
- Given through $oldsymbol{X}_O$ and $oldsymbol{R}$

Direct Linear Transform (DLT)

Relation to DLT : Compute the 11 intrinsic and extrinsic parameters

Projective 3-Point Algorithm (or Spatial Resection)

Given the intrinsic parameters, compute the **6 extrinisic parameters**

P3P/SR vs. DLT

5

• P3P/SR: Calibrated camera

- 6 unknowns
- We need at least 3 points

DLT: Uncalibrated camera

- 11 unknowns
- We need at least 6 points
- Assuming an affine camera (straight-line preserving projection)

P3P/SR Model

 Coordinates of object points within the camera system are given by

 $s_i {}^k \mathbf{x}_i^s = \mathsf{R}(\mathbf{X}_i - \mathbf{X}_O)$ i = 1, 2, 3

ray directions pointing to the object points

P3P/SR Model

 Coordinates of object points within the camera system are given by

 $s_i^k \mathbf{x}_i^s = \mathsf{R}(\boldsymbol{X}_i - \boldsymbol{X}_O)$ i = 1, 2, 3

 From image coordinates, we obtain the directional vector of projection ray

P3P/SR Model

 Coordinates of object points within the camera system are given by

$$s_i^k \mathbf{x}_i^s = \mathsf{R}(\boldsymbol{X}_i - \boldsymbol{X}_O)$$
 $i = 1, 2, 3$

 From image coordinates, we obtain the directional vector of projection ray

1. Get Length of Projection Rays

1. Get Length of Projection Rays

Use the Law of Cosines

Use the Law of Cosines

Analogously in all three triangles

Compute Distances

We start from:

$$a^2 = s_2^2 + s_3^2 - 2s_2s_3\cos\alpha$$

• Define:
$$u = \frac{s_2}{s_1}$$
 $v = \frac{s_3}{s_1}$

Substitution leads to:

$$a^{2} = s_{1}^{2}(u^{2} + v^{2} - 2uv\cos\alpha)$$

• Rearrange to:
$$s_1^2 = \frac{a^2}{u^2 + v^2 - 2uv \cos \alpha}$$

22

Compute Distances

Use the same definition

$$u = \frac{s_2}{s_1} \qquad v = \frac{s_3}{s_1}$$

And perform the substitution again for:

$$b^{2} = s_{1}^{2} + s_{3}^{2} - 2s_{1}s_{3}\cos\beta$$
$$c^{2} = s_{1}^{2} + s_{2}^{2} - 2s_{1}s_{2}\cos\gamma$$

Compute Distances

Analogously, we obtain

$$s_1^2 = \frac{a^2}{u^2 + v^2 - 2uv \cos \alpha}$$

$$= \frac{b^2}{1 + v^2 - 2v \cos \beta}$$

$$= \frac{c^2}{1 + u^2 - 2u \cos \gamma}$$

Rearrange Again

Solve one equation for *u* put into the other

 $s_{1}^{2} = \frac{a^{2}}{u^{2} + v^{2} - 2uv \cos \alpha}$ $s_{1}^{2} = \frac{b^{2}}{1 + v^{2} - 2v \cos \beta}$ $s_{1}^{2} = \frac{c^{2}}{1 + u^{2} - 2u \cos \gamma}$

Results in an fourth degree polynomial

$$A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$$

25

Forth Degree Polynomial

$$A_{4}v^{4} + A_{3}v^{3} + A_{2}v^{2} + A_{1}v + A_{0} = 0$$

$$A_{2} = 2\left[\left(\frac{a^{2} - c^{2}}{b^{2}}\right)^{2} - 1 + 2\left(\frac{a^{2} - c^{2}}{b^{2}}\right)^{2}\cos^{2}\beta + 2\left(\frac{b^{2} - c^{2}}{b^{2}}\right)\cos^{2}\alpha - 4\left(\frac{a^{2} + c^{2}}{b^{2}}\right)\cos\alpha\cos\beta\cos\gamma + 2\left(\frac{b^{2} - a^{2}}{b^{2}}\right)\cos^{2}\gamma\right]$$

Forth Degree Polynomial

 $\begin{aligned} \underline{A_4}v^4 + \underline{A_3}v^3 + A_2v^2 + A_1v + A_0 &= 0\\ \underline{A_4} &= \left(\frac{a^2 - c^2}{b^2} - 1\right)^2 - \frac{4c^2}{b^2}\cos^2\alpha\\ \underline{A_3} &= 4\left[\frac{a^2 - c^2}{b^2}\left(1 - \frac{a^2 - c^2}{b^2}\right)\cos\beta\\ &- \left(1 - \frac{a^2 + c^2}{b^2}\right)\cos\alpha\cos\gamma + 2\frac{c^2}{b^2}\cos^2\alpha\cos\beta \right] \end{aligned}$

26

28

Forth Degree Polynomial

$$A_4 v^4 + A_3 v^3 + A_2 v^2 + A_1 v + A_0 = 0$$

$$A_1 = 4 \left[-\left(\frac{a^2 - c^2}{b^2}\right) \left(1 + \frac{a^2 - c^2}{b^2}\right) \cos \beta + \frac{2a^2}{b^2} \cos^2 \gamma \cos \beta - \left(1 - \left(\frac{a^2 + c^2}{b^2}\right)\right) \cos \alpha \cos \gamma \right]$$

$$A_0 = \left(1 + \frac{a^2 - c^2}{b^2}\right)^2 - \frac{4a^2}{b^2} \cos^2 \gamma$$

Forth Degree Polynomial

 $A_4v^4 + A_3v^3 + A_2v^2 + A_1v + A_0 = 0$ Solve for v to get s_1, s_2, s_3 through: $s_1^2 = \frac{b^2}{1 + v^2 - 2v \cos \beta}$ $s_3 = v \ s_1$ $a^2 = s_2^2 + s_3^2 - 2s_2s_3 \cos \alpha \Rightarrow s_2 = \cdots$

Problem: up to 4 possible solutions !

$$\{s_1, s_2, s_3\}_{1...4}$$

29

Example for Multiple Solutions

- Assume a = b = c and $\alpha = \beta = \gamma$
- Tilting the triangle (X_1, X_2, X_3) has no effect on (a, b, c) and (α, β, γ)

How to Eliminate This Ambiguity?

- Known approximate solution (e.g. from GPS) or
- Use 4th points to confirm the right solution

 s_1,s_2,s_3

2. Orientation of the Camera

Given:

 Distances and direction vectors to the control points

Task:

Estimate 6 extrinsic parameters

2. Orientation of the Camera

1. Compute 3D coordinates of the control points in the camera system

$$^{k}\boldsymbol{X}_{i}=s_{i}\ ^{k}\mathbf{x}_{i}^{s}\qquad i=1,2,3$$

2. Orientation of the Camera

1. Compute 3D coordinates of the control points in the camera system

 ${}^{k}\boldsymbol{X}_{i} = s_{i} {}^{k}\boldsymbol{\mathbf{x}}_{i}^{s} \qquad i = 1, 2, 3$

Critical Surfaces

"Critical cylinder"

- If the projection center lies on a cylinder defined by the control points
- Small changes in angles lead to large changes in coordinates
- Instable solution

Outlier Handling with RANSAC

Use **direct solution** to find correct solution among set of corrupted points

- Assume I≥3 points
 - 1. Select 3 points randomly
 - 2. Estimate parameters of SR/P3P
 - Count the number of other points that support current hypotheses
 - 4. Select best solution
- Can deal with large numbers of outliers in data

38

Orienting a calibrated camera by using > 3 points

Spatial Resection Iterative Solution

Overview: Iterative Solution

- Over determined system with I > 3
- No direct solution but iterative LS
- Main steps
 - Build the system of observation equations
 - Measure image points $oldsymbol{x}_i,\ i=1,\ldots I$
 - Estimate initial solution $R, oldsymbol{X}_o
 ightarrow oldsymbol{x}^{(0)}$
 - Adjustment
 - Linearizing
 - Estimate extrinsic parameter \widehat{x}
 - Iterate until convergence

Summary: P3P/SR

- Estimates the pose of a calibrated camera given control points
- Uses ≥3 points
- Direct solution
 - Fast
 - Suited for outlier detection with RANSAC
- Statistically optimal solution using iterative least squares
 - Uses all available points
 - Assumes no outliers
 - Allows for accuracy assessments