Photogrammetry & Robotics Lab

Camera Extrinsics and Intrinsics

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.

Goal: Describe How a 3D Point is Mapped to a 2D Pixel Coord.

Goal: Describe How a Point is Mapped to a Pixel Coordinate

 $\mathbf{x} = \mathbf{P}\mathbf{X}$ pixel coordinate

world transformation coordinate

Coordinate Systems

- 1. World/object coordinate system
- 2. Camera coordinate system
- 3. Image plane coordinate system
- 4. Sensor coordinate system

3

1

Extrinsic Parameters

- Describe the pose (pose = position and heading) of the camera with respect to the world
- Invertible transformation

How many parameters are needed?

6 parameters: 3 for the position + 3 for the heading

13

Extrinsic Parameters

- Point $\mathcal P$ with coordinates in world coordinates

$$\boldsymbol{X}_{\mathcal{P}} = [X_{\mathcal{P}}, Y_{\mathcal{P}}, Z_{\mathcal{P}}]^{\mathsf{T}}$$

 Center O of the projection (origin of the camera coordinate system)

$$\boldsymbol{X}_O = [X_O, Y_O, Z_O]^\mathsf{T}$$

• X_O is sometimes also called Z or Z_O

14

Transformation

 Translation between the origin of the world c.s. and the camera c.s.

 $\boldsymbol{X}_O = [X_O, Y_O, Z_O]^\mathsf{T}$

- Rotation R from S_o to S_k .
- In Euclidian coordinates this yields

 ${}^{k}\boldsymbol{X}_{\boldsymbol{\mathcal{P}}} = \boldsymbol{R}(\boldsymbol{X}_{\boldsymbol{\mathcal{P}}} - \boldsymbol{X}_{O})$

Transformation in H.C.

- In Euclidian coordinates ${}^{k}X_{P} = R(X_{P} X_{O})$
- Expressed in Homogeneous Coord.

$$\begin{bmatrix} {}^{k} \mathbf{X}_{\mathcal{P}} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} R & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} I_{3} & -\mathbf{X}_{O} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathcal{P}} \\ \mathbf{1} \end{bmatrix}$$

Euclidian
$$= \begin{bmatrix} R & -R\mathbf{X}_{O} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathcal{P}} \\ \mathbf{1} \end{bmatrix}$$

Function
$$= \begin{bmatrix} R & -R\mathbf{X}_{O} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathcal{P}} \\ \mathbf{1} \end{bmatrix}$$

Function
$$= \begin{bmatrix} R & -R\mathbf{X}_{O} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{1} \end{bmatrix}$$

Intrinsic Parameters

17

Mapping as a 3 Step Process

We split up the mapping into 3 steps

- 1. Ideal perspective projection to the image plane
- Mapping to the sensor coordinate system ("where the pixels are")
- 3. Compensation for the fact that the two previous mappings are idealized

Intrinsic Parameters

- The process of projecting points from the camera c.s. to the sensor c.s.
- Invertible transformations:
 - image plane to sensor
 - model deviations
- Not invertible: central projection

18

Where Are We in the Process?

Ideal Perspective Projection

- Distortion-free lens
- All rays are straight lines and pass through the projection center. This point is the origin of the camera coordinate system S_k
- Focal point and principal point lie on the optical axis
- The distance from the camera origin to the image plane is the constant c

Image Coordinate System

Camera Constant

- Distance between the center of projection *O* and the principal point *H*
- Value is computed as part of the camera calibration
- Here: coordinate system with c < 0

Image courtesy: Förstner 23

21

Ideal Perspective Projection

Through the intercept theorem, we obtain for the point \overline{P} projected onto the image plane the coordinates $[{}^{c}x_{\overline{P}}, {}^{c}y_{\overline{P}}]$

Ideal Perspective Projection

Through the intercept theorem, we obtain for the point \overline{P} projected onto the image plane the coordinates $[{}^{c}x_{\overline{P}}, {}^{c}y_{\overline{P}}]$

25

27

Verify the Result

Ideal perspective projection is

$${}^{c}x_{\overline{\mathcal{P}}} = c \frac{{}^{k}X_{\mathcal{P}}}{{}^{k}Z_{\mathcal{P}}} \qquad {}^{c}y_{\overline{\mathcal{P}}} = c \frac{{}^{k}Y_{\mathcal{P}}}{{}^{k}Z_{\mathcal{P}}}$$

• Our results is

In Homogenous Coordinates

• We can express that in H.C.

$$\begin{bmatrix} & ^{k}U_{\overline{\mathcal{P}}} \\ & ^{k}V_{\overline{\mathcal{P}}} \\ & ^{k}W_{\overline{\mathcal{P}}} \\ & ^{k}T_{\overline{\mathcal{P}}} \end{bmatrix} = \begin{bmatrix} & c & 0 & 0 & 0 \\ & 0 & c & 0 & 0 \\ & 0 & 0 & c & 0 \\ & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} & ^{k}X_{\mathcal{P}} \\ & ^{k}Y_{\mathcal{P}} \\ & ^{k}Z_{\mathcal{P}} \\ & 1 \end{bmatrix}$$

and drop the 3rd coordinate (row)

$${}^{c}\mathbf{x}_{\overline{\mathcal{P}}} = \begin{bmatrix} {}^{c}u_{\overline{\mathcal{P}}} \\ {}^{c}v_{\overline{\mathcal{P}}} \\ {}^{c}w_{\overline{\mathcal{P}}} \end{bmatrix} = \begin{bmatrix} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} {}^{k}X_{\mathcal{P}} \\ {}^{k}Y_{\mathcal{P}} \\ {}^{k}Z_{\mathcal{P}} \\ 1 \end{bmatrix}$$

26

In Homogenous Coordinates

Thus, we can write for any point

$${}^{c}\mathbf{x}_{\overline{\mathscr{P}}} = {}^{c}\mathsf{P}_{k} {}^{k}\mathbf{X}_{\mathscr{P}}$$

• with
$${}^{c}\mathsf{P}_{k} = \left[\begin{array}{cccc} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Assuming an Ideal Camera...

...leads us to the mapping using the intrinsic and extrinsic parameters

$$^{c}\mathbf{x} = \ ^{c}\mathsf{P} \mathbf{X}$$

with

$${}^{c}\mathsf{P} = {}^{c}\mathsf{P}_{k} {}^{k}\mathsf{H} = \left[\begin{array}{ccc} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \left[\begin{array}{c} R & -R\boldsymbol{X}_{O} \\ \boldsymbol{0}^{\mathsf{T}} & 1 \end{array} \right]$$

29

31

Notation

We can write the overall mapping as

$${}^{c}\mathsf{P} = {}^{c}\mathsf{K}[R| - R\boldsymbol{X}_{O}] = {}^{c}\mathsf{K} R [I_{3}| - \boldsymbol{X}_{O}]$$

short for
$$[I_{3}| - \boldsymbol{X}_{O}] = \begin{bmatrix} 1 & 0 & 0 & -X_{O} \\ 0 & 1 & 0 & -Y_{O} \\ 0 & 0 & 1 & -Z_{O} \end{bmatrix}$$

Calibration Matrix

We can now define the calibration matrix for the ideal camera ${}^{c}\mathsf{K} = \left[\begin{array}{ccc} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{array} \right]$ • We can write the overall mapping as ^c $\mathsf{P} = {}^{c}\mathsf{K}[R| - RX_{O}] = {}^{c}\mathsf{K} R[I_{3}| - X_{O}]$ 3x4 matrices 30 Calibration Matrix ${}^{c}\mathsf{K} = \begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix}$ We have the projection $^{c}\mathsf{P} = ^{c}\mathsf{K} R \left[I_{3}\right] - X_{O}$ • that maps a point to the image plane $^{c}\mathbf{x} = {}^{c}\mathsf{K}R[I_{3}] - X_{O}]\mathbf{X}$ • and yields for the coordinates of ^cx $\begin{bmatrix} c & u' \\ c & v' \\ c & w' \end{bmatrix} = \begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{21} & r_{22} & r_{23} \\ r_{21} & r_{22} & r_{23} \end{bmatrix} \begin{bmatrix} X - X_O \\ Y - Y_O \\ Z - Z_O \end{bmatrix}$ 32

Location of the Principal Point

- The origin of the sensor system is not at the principal point
- Compensation through a shift

Calibration Matrix

Often, the transformation ${}^{s}H_{c}$ is combined with the calibration matrix ${}^{c}K$, i.e.

$$\begin{split} \mathsf{K} &\doteq {}^{s}\mathsf{H}_{c} {}^{c}\mathsf{K} \\ &= \left[\begin{array}{ccc} 1 & s & x_{H} \\ 0 & 1+m & y_{H} \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{array} \right] \\ &= \left[\begin{array}{ccc} c & cs & x_{H} \\ 0 & c(1+m) & y_{H} \\ 0 & 0 & 1 \end{array} \right] \end{split}$$

Sheer and Scale Difference

- Scale difference m in x and y
- Sheer compensation s (for digital cameras, we typically have $s \approx 0$)

$${}^{s}\mathsf{H}_{c} = \left[\begin{array}{ccc} 1 & s & x_{H} \\ 0 & 1+m & y_{H} \\ 0 & 0 & 1 \end{array} \right]$$

Finally, we obtain

$${}^{s}\mathbf{x} = {}^{s}\mathsf{H}_{c} {}^{c}\mathsf{K}\mathsf{R}[\mathbf{I}_{3}| - \mathbf{X}_{O}]\mathbf{X}$$

38

Calibration Matrix

This calibration matrix is an affine transformation

$$\mathsf{K} = \left[\begin{array}{ccc} c & cs & x_H \\ 0 & c(1+m) & y_H \\ 0 & 0 & 1 \end{array} \right]$$

- contains 5 parameters:
 - camera constant: c
 - principal point: x_H, y_H
 - scale difference: m
 - sheer: s

DLT: Direct Linear Transform DLT: Direct Linear Transform • The mapping $\chi = \mathcal{P}(\chi)$: $\mathbf{x} = \mathsf{P}\mathbf{X}$ The homogeneous projection matrix • with $P = KR[I_3| - X_O]$ $\mathsf{P} = \mathsf{K} \mathsf{R}[I_3| - \mathbf{X}_O]$ contains 11 parameters and $K = \begin{bmatrix} c & cs & x_H \\ 0 & c(1+m) & y_H \\ 0 & 0 & 1 \end{bmatrix}$ • 6 extrinsic parameters: R, X_O • 5 intrinsic parameters: c, x_H, y_H, m, s is called the direct linear transform It is the model of the affine camera • Affine camera = camera with an affine mapping to the sensor c.s. (after the central projection is applied)₄₁ 42 **DLT: Direct Linear Transform** The homogeneous projection matrix $\mathsf{P} = \mathsf{K} \mathsf{R}[I_3| - \mathbf{X}_O]$ • contains 11 parameters **Non-Linear Errors** • 6 extrinsic parameters: R, X_{O} • 5 intrinsic parameters: c, x_H, y_H, m, s Euclidian world: ${}^{s}x = \frac{p_{11}X + p_{12}Y + p_{13}Z + p_{14}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}$ ${}^{s}y = \frac{p_{21}X + p_{22}Y + p_{23}Z + p_{24}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}$ 43 44

47

- The real world is non-linear
- Reasons for non-linear errors
 - Imperfect lens
 - Planarity of the sensor

Location-dependent shift in the sensor coordinate system

- Individual shift for each pixel
- General mapping

Example

Left:not straight line preserving Right: rectified image

Image courtesy: Abraham 49

General Mapping in H.C.

General mapping yields

$${}^{a}\mathbf{x} = {}^{a}\mathsf{H}_{s}(oldsymbol{x}){}^{s}\mathbf{x}$$

with

$${}^{a}\mathsf{H}_{s}(\boldsymbol{x}) = \left[\begin{array}{ccc} 1 & 0 & \Delta x(\boldsymbol{x}, \boldsymbol{q}) \\ 0 & 1 & \Delta y(\boldsymbol{x}, \boldsymbol{q}) \\ 0 & 0 & 1 \end{array} \right]$$

so that the overall mapping becomes

 $^{a}\mathbf{x} = {}^{a}\mathsf{H}_{s}(\boldsymbol{x})\;\mathsf{K}R[I_{3}|-\boldsymbol{X}_{O}]\mathbf{X}$

50

General Calibration Matrix

 General calibration matrix is obtained by combining the one of the affine camera with the general mapping

$${}^{a}\mathsf{K}(\boldsymbol{x},\boldsymbol{q}) = {}^{a}\mathsf{H}_{s}(\boldsymbol{x},\boldsymbol{q})\mathsf{K}$$
$$= \begin{bmatrix} c & cs & x_{H} + \Delta x(\boldsymbol{x},\boldsymbol{q}) \\ 0 & c(1+m) & y_{H} + \Delta y(\boldsymbol{x},\boldsymbol{q}) \\ 0 & 0 & 1 \end{bmatrix}$$

• resulting in the general camera model ${}^{a}\mathbf{x} = {}^{a}\mathsf{P}(\boldsymbol{x}, \boldsymbol{q}) \mathbf{X}$ ${}^{a}\mathsf{P}(\boldsymbol{x}, \boldsymbol{q}) = {}^{a}\mathsf{K}(\boldsymbol{x}, \boldsymbol{q}) R[I| - \boldsymbol{X}_{O}]$

51

Approaches for Modeling ${}^{a}\mathsf{H}_{s}(\boldsymbol{x})$

Large number of different approaches to model the non-linear errors

Physics approach

- Well motivated
- There are large number of reasons for non-linear errors ...

Phenomenological approaches

- Just model the effects
- Easier but do not identify the problem

Inversion Step 2: ${}^{s}\mathbf{x} \rightarrow \mathbf{X}$

- Starting from $\lambda \mathbf{x} = \mathsf{K} R \boldsymbol{X} \mathsf{K} R \boldsymbol{X}_O$
- we obtain
 - $\boldsymbol{X} = (\mathsf{K}R)^{-1}\mathsf{K}R\boldsymbol{X}_O + \lambda(\mathsf{K}R)^{-1}\mathbf{x}$ = $\boldsymbol{X}_O + \lambda(\mathsf{K}R)^{-1}\mathbf{x}$

• The term $\lambda(KR)^{-1}x$ describes the direction of the ray from the camera origin X_O to the 3D point X

61

Classification of Cameras

extrinsic parameters

 $X_0 \atop (X,Y,Z)$

normalized

Example: pinhole camera for which the principal point is the origin of the image coordinate system, the x- and y-axis of the image coordinate system is aligned with the x-/y-axis of the world c.s. and the distance between the origin and the image plane is 1

Classification of Cameras

extrinsic parameters			intrinsic pa	S	
$egin{array}{c c} oldsymbol{X}_0 & oldsymbol{R} \ _{(X,Y,Z)} & oldsymbol{(}\omega,\phi,\kappa) \end{array} egin{array}{c c} c & & \ \end{array}$		c	x_H, y_H	m,s	q_1, q_2, \ldots

62

Classification of Cameras

extrinsic

parameters

$egin{array}{c} m{X}_0 \ (X,Y,Z) \end{array}$	$\mathop{\pmb{R}}_{(\omega,\phi,\kappa)}$	
normalized		
unit camera		

Example: pinhole camera for which the principal point (x, y) is the origin of the image coordinate system and the distance between the origin and the image plane is 1

Classification of Cameras

extrinsic parameters		intrinsic	parameters	
$egin{array}{c} m{X}_0 \ (X,Y,Z) \end{array}$	$\mathop{\pmb{R}}\limits_{(\omega,\phi,\kappa)}$	c		
normalized				
unit camera				
ideal camera				

Example: pinhole camera for which the x/y coordinate of the principal point is the origin of the image coordinate system

65

Classification of Cameras

extrinsic parameters		intrinsic parameters			S
$egin{array}{c} m{X}_0 \ (X,Y,Z) \end{array}$	$\mathop{\pmb{R}}\limits_{(\omega,\phi,\kappa)}$	c	x_H, y_H	m,s	
normalized					
unit camera					
ideal camera					
Euclidian ca	mera				
affine came	ra				

Example: camera that preserves straight lines

Classification of Cameras

extrinsic parameters			intrinsic pa	arameters
$egin{array}{c} m{X}_0 \ (X,Y,Z) \end{array}$	$\mathop{\pmb{R}}\limits_{(\omega,\phi,\kappa)}$	c	x_H, y_H	
normalized				
unit camera				
ideal camera				
Euclidian camera				

Example: pinhole camera using a Euclidian sensor in the image plane

66

Classification of Cameras

extrinsic parameters			intrinsic pa	S	
$egin{array}{c} m{X}_0 \ (X,Y,Z) \end{array}$	$R \atop (\omega,\phi,\kappa)$	c	x_H, y_H	m,s	q_1, q_2, \ldots
normalized					
unit camera	1				
ideal camera					
Euclidian ca	imera				
affine came	ra				
general camera					

Example: camera with non-linear distortions 68

Calibration Matrices

camera	calibration matrix	#parameters
unit	${}^{0}K = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$	6 (6+0)
ideal	${}^{k}K = \left[\begin{array}{ccc} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{array} \right]$	7 (6+1)
Euclidian	${}^{p}K = \left[\begin{array}{ccc} c & 0 & x_{H} \\ 0 & c & y_{H} \\ 0 & 0 & 1 \end{array} \right]$	9 (6+3)
affine	$K = \left[\begin{array}{ccc} c & cs & x_H \\ 0 & c(1+m) & y_H \\ 0 & 0 & 1 \end{array} \right]$	11 (6+5)
general	${}^{a}K = \begin{bmatrix} c & cs & x_{H} + \Delta x \\ 0 & c(1+m) & y_{H} + \Delta y \\ 0 & 0 & 1 \end{bmatrix}$] 11+N
	L	69

Calibrated Camera

- If the intrinsics are unknown, we call the camera uncalibrated
- If the intrinsics are known, we call the camera calibrated
- The process of obtaining the intrinsics is called camera calibration
- If the intrinsics are known and do not change, the camera is called metric camera

70

Summary

- We described the mapping from the world c.s. to individual pixels (sensor)
- Extrinsics = world to camera c.s.
- **Intrinsics** = camera to sensor c.s.
- DLT = Direct linear transform
- Non-linear errors
- Inversion of the mapping process

Summary of the Mapping

Literature

- Förstner & Wrobel, Photogrammetric Computer Vision, Chapter "Geometry of the Single Image", 11.1.1 – 11.1.6
- Förstner, Scriptum Photogrammetrie I, Chapter "Einbild-Photogrammetrie", subsections 1 & 2

Slide Information

- The slides have been created by Cyrill Stachniss as part of the photogrammetry and robotics courses.
- I tried to acknowledge all people from whom I used images or videos. In case I made a mistake or missed someone, please let me know.
- The photogrammetry material heavily relies on the very well written lecture notes by Wolfgang Förstner and the Photogrammetric Computer Vision book by Förstner & Wrobel.
- Parts of the robotics material stems from the great Probabilistic Robotics book by Thrun, Burgard and Fox.
- If you are a university lecturer, feel free to use the course material. If you adapt the course material, please make sure that you keep the acknowledgements to others and please acknowledge me as well. To satisfy my own curiosity, please send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de

73