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Least Squares Minimization

= Minimizes sum of squared errors
= ML estimation for the Gaussian case
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Least Squares Minimization

* Minimizes sum of squared errors
= ML estimation for the Gaussian case
= Key assumption: No outliers!

Problems:

= Qutliers and ambiguities always occur
in the real world

= Optimization is sensitive to outliers
= Gaussian distributions (one mode)

Data Association Is Ambiguous
And Not Always Perfect

* Places that look identical

= Similar rooms in the same building
= Cluttered scenes

= GPS multi path (signal reflections)




Example

3D world belief about the

robot’s pose
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Committing To The Wrong Mode
Can Lead to Mapping Failures
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Data Association Is Ambiguous
And Not Always Perfect

* Places that look identical

= Similar rooms in the same building
= Cluttered scenes

= GPS multi path (signal reflections)

How to deal with this problem
in graph-based SLAM?




MaxMixtures
or Dealing with Multiple Modes

Mathematical Model

= Can we formulate constraints
modeling Gaussian noise differently?

1
p(z | x) = neXD(— szezj)
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Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1
p(z | x) = neXD(— Qz]ezg)
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p(z|x) = Z’wmk exp(—= zngijkeijk)

Sum of Gaussmns with k modes
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Problem

* During error minimization, we consider
the negative log likelihood

1
—logp(z | x) = Eefﬂ

4

ij€ij — 1097

—logp(z | x) = —109 >  wyn, exp(—= zjkﬂz'jkeijk)

k
The log cannot be moved inside the sum!
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Max-Mixture Approximation

» Instead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

p(z|x) = Zwknk exp(—3 ijﬂljkeljk)
1.7
~ m’?x WENE exp( zng@]ke’Uk)
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Max-Mixture Approximation

Original bi-modal mixture Max-mixture Sum-mixture
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Log Likelihood Of The Max-
Mixture Formulation

* The log can be moved inside the max
operator

1.7
p(z |x) = maxwgmnyexp(—7 zijijeijk)
1
logp(z | x) =~ mkax —Ee;f’;-kﬂijkeijk + log(wgny,)

1
or: —logp(z|x) =~ mkm 2e£kﬂzjkeijk — log(wgm;)
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Integration

= With the max-mixture formulation, the
log likelihood again results in local
quadratic forms

= Easy to integrate in the optimizer:

1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)
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MM For Outlier Rejection

Bi-modal false loop closure
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MM For Outlier Rejection and
Data Association Ambiguities

Bi-modal odometry slippage

Bi-modal false loop closure Multi-modal with null-hypothesis
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Max-Mixture and Outliers

= MM formulation is useful for multi-
model constraints (D.A. ambiguities)

= MM is also a handy tool for dealing

with outliers

= Qutliers: one mode represents the
main constraint and a second model
uses a flat Gaussian for the outlier

hypothesis
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Performance (10 outliers)

“ N
¢S5
SN
RS

o“

%
A%

/’/{/4 )

it

X
28

O
-

D

)

L

>

Gauss-Newton MM Gauss-Newton

24




Performance (100 outliers)

MM Gauss-Newton

Gauss-Newton
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MaxMixtues for Dealing with
Outliers

= Supports multi-model constraints

= Approximate the sum of Gaussians
using the max operator

» Idea: “Select the best mode of a sum
of Gaussians and use it as if it would
be a single Gaussian”

= Easy to use, quite effective
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Dynamic Covariance Scaling

27

Standard Least Squares
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Dynamic Covariance Scaling Scaling Parameter

= argmm Z e;;(X 7Jj) e;;(X)
X" = argminZeij(X)TQijeij(X) t
X TN - ’
X3

—in [ 1 20
Si; = min | 1, g X?j
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Dynamlc Covarlance Scallng Dynamlc Covarlance Scallng

—Squared error
—Scaling function (s) I
— Scaled error for different s

—Squared error
—Scaling function (s) |
— Scaled error for different s

Both have
squared error

%2 error
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Dynamic Covariance Scaling

3

— Squared error
—Scaling function (s)

—Scaled error for different s||

Scaled
error
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Dynamic Covariance Scaling
3 T T T I T T I

— Squared error
—Scaling function (s)
— Scaled error for different s

X2 error
=
n

Linearization
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Dynamic Covariance Scaling

3 : : —
—Squared error
| —Scaling function (s)
= —Scaled error for different s
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DCS for Dealing with Outliers

= Add an additional weighting term to
the error function

= The weight depends on the error value

= Idea: “"Weight down constraints that
are far away from the mean estimate”

= A special case of robust least squares
estimation (Geman-McClure kernel)
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Least Squares
with Robust Kernels
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Optimizing With Outliers
= Assuming a Gaussian error in the

constraints is not always realistic
= Large errors are problematic
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Optimizing With Outliers

= Assuming a Gaussian error in the
constraints is not always realistic

» Large errors are problematic

We need more

None probability mass
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Robust M-Estimators

= Assume non-normally-distributed
noise

= Intuitively: PDF with “heavy tails”
= p(e) function used to define the PDF

p(e) = exp(—p(e))
= Minimizing the neg. log likelihood

x* = argmin}_p(e;(x))
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Robust M-Estimators:
Gaussian Case

» Kernel function p(e) used to define the
PDF

p(e) = exp(—p(e))

» For the Gaussian case, we set p(e)

to be a quadratic function p(e) = ¢
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Different Rho Functions

= Gaussian: p(e) = €2

= Absolute values (L1 norm): p(e) = |e]
= Huber M-estimator

2

ole) = {e— if le] <c

2
c(le] — 5) otherwise

= Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, ...)
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Huber Loss

* Mixture of a quadratic and a linear
function

= Quadratic around the solution (noise)
* Linear for outliers (error > threshold)

2.5

. ifle] <c _
— 2 15
p(e) { c(le] —5) otherwise |

0.5

0
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Different Robust Loss Functions
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Robust Estimation as
Weighted Least Squares

= Weighted Least Squares
N

1

= Robust Estimation
N

X" = argminz,o(ei(x))

X i=1
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Robust Estimation
as Weighted Least Squares

= Gradient at optimum goes to zero
= For weighted least squares:
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Robust Estimation
as Weighted Least Squares

= Gradient at optimum goes to zero
» For the robust estimation:

5(p(gi£><))) _ p’(ei(x))(%(,;ix) _0
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Robust Estimation
as Weighted Least Squares

= Compare both equations

48




Robust Estimation
as Weighted Least Squares

= Compare both equations

o) e
2 ox v ox
d(plei(x)) dei(x)
ARAEBDD) — p(eae) 52 =

= We can use weighted least squares if
we set the weight using the kernel as:

[wi _ ei(lx)p%ei(x))]
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Robust Least Squares

= We can use the weighted least squares
approach to realize robust L.S.

= The kernel will impact the Jacobians
» The rest stays the same

= The choice of the kernel must align
with the outlier distribution
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Generalized Robust Kernels

51

Which Function to Chose?

= Which loss/kernel function to chose?

52




Which Function to Chose?

= Which loss/kernel function to chose?
» It depends on the type of outliers!
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Which Function to Chose?

= Which loss/kernel function to chose?
= It depends on the type of outliers!

Some approaches combine them:

1. Start with a strong tails i\/
for N, iterations L\

2. N, iteration with weaker tails
3. Remove all outliers larger c :
4. Gaussian/Huber for the rest :\/
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General Robust Loss Function
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Adaptive Robust Loss Function
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Recommended Video to Watch

A General and Adaptive
Robust Loss Function

CVPR 2019

Jonathan T. Barron

i Google Research

https://www.youtube.com/watch?v=BmNKbnF69eY
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Adaptive Robust Loss Function

04r
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Adaptive Robust Loss Function

* Jointly optimize over x and «
N

(x",0%) = argmin} " plei(x), )

(x,2) =1

= Define a probability distribution for the

general loss function

1 — e,o,C
Ple,a,c) = cZ(a)e ple,asc)
e—Plel) e

—00

Z(a) =

—
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(e,oz,c) - —logP(e,a,c)
= ple;a,c) +logeZ(a)
= with
P(e,a,c) = ! e Ple.ac)
T cZ(a)
Z(a) = / e P&l ge
—00
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pale,a,c) = —logP(e,a,c)
= ple,a,c) +logeZ(a)
= with
Ple,a,c) = ! e~ Ple:ae)
T cZ ()
oo approaches
Z(a) = / e~Ple) de | infinity for
—00 negative «
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pale,a,c) = —logP(e,a,c)
= ple,a,c) +1logeZ(a)
= with
Ple,a,c) = ! e~ Pleae)
T cZ ()
= We can limit
_ —p(e,a,l the range of
Z(a) o 4 : de outliers to

maintain a pdf
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(e,oz,c) = _logp(e7aac)
= ple;a,c) +logeZ(a)
= with
Ple,a,c) = ! e Ple.ac)
T cZ(a)

pe We can limit
_ —p(e,a,1) the range of
Z(a) - [/ € de] outliers to

-7 maintain a pdf
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Adaptive Robust Loss Function

= Adaptive loss function defined as

pa(e> &, C) = —log P<ea Q, C)
= ple;a,c) +logeZ(a)
pale, a,c) wa(e, a, c)
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Joint Optimization with the
Adaptive Robust Kernel

= In theory, we can now solve a joint
optimization problem

(x*, ") = argmian(ei(x),oz).

* in the weighted least squares sense
using pa(e, @, ¢) as our robust kernel
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Joint Optimization with the
Adaptive Robust Kernel

= Joint optimization of (x,a):
N

(x*,a") = argmian(ei(x),a).

(x,0) i=1

Problems in practice:
= New Jacobians need to be computed

= « can dominate the parameter
estimation for complex problems

= Sensitive to initial guess
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EM-Based Optimization with the
Adaptive Robust Kernel

= Solve via Expectation-Maximization
= E-Step: 1D line search problem
N

o' = argmax Z log P(e;(x'1), a1, ¢)
Y =1
= M-Step: Minimize as weighted least

squares
N
' — axgmin Y pa(ex(), o,
X =1
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Iterative Closest Point Example

wrongly aligned

! points on moving car
to moving car

- correctly treated as outliers
alignmenterrors '

I ; N
correct-alignment.

/.

Huber Loss Adaptive Robust Loss

Outlier rejection in presence of dynamic objects
68




Iterative Closest Point Example

Fixed Kernel
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EM-Based Optimization with the
Adaptive Robust Kernel

= Kernel and unknown are estimated in
a iterative fashion

= EM-based estimation provides better
results than the joint optimization

= Kernel function adapts to the current
situation by adapting o

= No need to change the least squares
problem (Jacobians stay the same)
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Dealing with Outliers

= There are different ways for dealing
with outliers during optimization

= Key question: how does the outlier
distribution look like?
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Dealing with Outliers Summary

= Max-Mixtures supports multi-model
constraints

= It approximates the sum of Gaussians
using the max operator

= Dynamic Covariance Scaling is a good
choice for a fixed kernel in SLAM

= DCS is a form of Geman-McClure

= Choice of the robust loss function
depends on the problem at hand

72




Dealing with Outliers Summary

= Robust least squares using kernels

= Choice of the rho function (kernel)
depends on the problem at hand

= Popular: Huber, L1, DCS/Geman
McClure

= Better: Don’t commit on one kernel

= Adaptive robust kernel is the most
flexible way

= We obtained best results with adaptive
kernels in an EM-style estimation
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrz405QzbIHgI3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill .stachniss@igg.uni—bonn.de75




