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Robust Least Squares  
for SLAM  

Cyrill Stachniss 

Partial slide courtesy: Nived Chebrolu, Pratik Agarwal 
2 

Least Squares Minimization 

§  Minimizes sum of squared errors  
§  ML estimation for the Gaussian case 
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Least Squares Minimization 

§  Minimizes sum of squared errors  
§  ML estimation for the Gaussian case 
§  Key assumption: No outliers! 
 
Problems:  
§  Outliers and ambiguities always occur 

in the real world  
§  Optimization is sensitive to outliers 
§  Gaussian distributions (one mode)  
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Data Association Is Ambiguous 
And Not Always Perfect 
§  Places that look identical 
§  Similar rooms in the same building 
§  Cluttered scenes 
§  GPS multi path (signal reflections) 
§  … 
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Example 

3D world belief about the 
robot’s pose 

Courtesy: E. Olson 6 

Ambiguities 

Courtesy: E. Olson, P. Agarwal 
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Committing To The Wrong Mode 
Can Lead to Mapping Failures  

Courtesy: E. Olson, P. Agarwal 8 

Data Association Is Ambiguous 
And Not Always Perfect 
§  Places that look identical 
§  Similar rooms in the same building 
§  Cluttered scenes 
§  GPS multi path (signal reflections) 
§  … 

 
How to deal with this problem  

in graph-based SLAM? 
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MaxMixtures  
or Dealing with Multiple Modes 
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Mathematical Model 

§  Can we formulate constraints 
modeling Gaussian noise differently? 
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Mathematical Model 

§  We can express a multi-modal belief 
by a sum of Gaussians 

Sum of Gaussians with k modes 
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Problem 

§  During error minimization, we consider 
the negative log likelihood 

The log cannot be moved inside the sum! 
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Max-Mixture Approximation 

§  Instead of computing the sum of 
Gaussians at   , compute the 
maximum of the Gaussians 
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Max-Mixture Approximation 

approximation error 
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Log Likelihood Of The Max-
Mixture Formulation 
§  The log can be moved inside the max 

operator 

or: 
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Integration 

§  With the max-mixture formulation, the 
log likelihood again results in local 
quadratic forms 

§  Easy to integrate in the optimizer: 
1. Evaluate all k components  
2. Select the component with the 

maximum log likelihood 
3. Perform the optimization as before 

using only the max components  
(as a single Gaussian) 
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MM For Outlier Rejection 

Courtesy: E. Olson, P. Agarwal 18 

MM For Outlier Rejection 

Courtesy: E. Olson, P. Agarwal 
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Performance (Gauss vs. MM) 

Courtesy: E. Olson, P. Agarwal 20 

Runtime 

Courtesy: E. Olson, P. Agarwal 
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MM For Outlier Rejection and 
Data Association Ambiguities 

Courtesy: E. Olson, P. Agarwal 22 

Max-Mixture and Outliers 

§  MM formulation is useful for multi-
model constraints (D.A. ambiguities) 

§  MM is also a handy tool for dealing 
with outliers  

§  Outliers: one mode represents the 
main constraint and a second model 
uses a flat Gaussian for the outlier 
hypothesis 
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Performance (1 outlier) 

Gauss-Newton MM Gauss-Newton 
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Performance (10 outliers) 

Gauss-Newton MM Gauss-Newton 
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Performance (100 outliers) 

Gauss-Newton MM Gauss-Newton 
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MaxMixtues for Dealing with 
Outliers 
§  Supports multi-model constraints 
§  Approximate the sum of Gaussians 

using the max operator 
§  Idea: “Select the best mode of a sum 

of Gaussians and use it as if it would 
be a single Gaussian” 

§  Easy to use, quite effective 
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Dynamic Covariance Scaling 
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Standard Least Squares 
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Dynamic Covariance Scaling 

30 

Scaling Parameter  
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Dynamic Covariance Scaling 
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Dynamic Covariance Scaling 

Both have  
squared error 
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Dynamic Covariance Scaling 

Original 
error 

Scaled 
error 
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Dynamic Covariance Scaling 

Linearization 
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Dynamic Covariance Scaling 
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DCS for Dealing with Outliers 

§  Add an additional weighting term to 
the error function  

§  The weight depends on the error value 
§  Idea: “Weight down constraints that 

are far away from the mean estimate” 
§  A special case of robust least squares 

estimation (Geman-McClure kernel) 
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Least Squares  
with Robust Kernels 
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Optimizing With Outliers  

§  Assuming a Gaussian error in the 
constraints is not always realistic 

§  Large errors are problematic  
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Optimizing With Outliers  

§  Assuming a Gaussian error in the 
constraints is not always realistic 

§  Large errors are problematic  
We need more  

probability mass 
in the tails 

of the distribution 
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Robust M-Estimators 

§  Assume non-normally-distributed 
noise 

§  Intuitively: PDF with “heavy tails” 
§        function used to define the PDF 

§  Minimizing the neg. log likelihood  
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Robust M-Estimators:  
Gaussian Case 
§  Kernel function        used to define the 

PDF 

§  For the Gaussian case, we set 
to be a quadratic function  
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Different Rho Functions 

§  Gaussian: 
§  Absolute values (L1 norm): 
§  Huber M-estimator 

§  Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, …)  
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Huber Loss 

§  Mixture of a quadratic and a linear 
function 

§  Quadratic around the solution (noise) 
§  Linear for outliers (error > threshold) 
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Different Robust Loss Functions 

L1 norm Huber Tukey 

Cauchy Blake-Zisserman Corrupted G. 
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Robust Estimation as  
Weighted Least Squares 
§  Weighted Least Squares 

§  Robust Estimation 
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Robust Estimation  
as Weighted Least Squares 
§  Gradient at optimum goes to zero 
§  For weighted least squares: 
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Robust Estimation  
as Weighted Least Squares 
§  Gradient at optimum goes to zero 
§  For the robust estimation: 
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Robust Estimation  
as Weighted Least Squares 
§  Compare both equations 
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Robust Estimation  
as Weighted Least Squares 
§  Compare both equations 

§  We can use weighted least squares if 
we set the weight using the kernel as: 
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Robust Least Squares 

§  We can use the weighted least squares 
approach to realize robust L.S. 

§  The kernel will impact the Jacobians 
§  The rest stays the same 
§  The choice of the kernel must align 

with the outlier distribution  
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Generalized Robust Kernels 
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Which Function to Chose? 

§  Which loss/kernel function to chose? 
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Which Function to Chose? 

§  Which loss/kernel function to chose? 
§  It depends on the type of outliers! 
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Which Function to Chose? 

§  Which loss/kernel function to chose? 
§  It depends on the type of outliers! 
  

Some approaches combine them: 
1. Start with a strong tails 

for N1 iterations 
2. N2 iteration with weaker tails 
3. Remove all outliers larger c 
4. Gaussian/Huber for the rest 

� 
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General Robust Loss Function 

Source: A General and Adaptive Robust Loss Function, Barron [CVPR 2019] 56 

Adaptive Robust Loss Function 
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Recommended Video to Watch 

https://www.youtube.com/watch?v=BmNKbnF69eY 
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Adaptive Robust Loss Function 
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Adaptive Robust Loss Function 

§  Jointly optimize over    and    

§  Define a probability distribution for the 
general loss function 
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Adaptive Robust Loss Function 

§  Adaptive loss function defined as 

 
§  with  
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Adaptive Robust Loss Function 

§  Adaptive loss function defined as 

 
§  with  

approaches 
infinity for 
negative 
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Adaptive Robust Loss Function 

§  Adaptive loss function defined as 

 
§  with  

We can limit 
the range of 
outliers to 
maintain a pdf 
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Adaptive Robust Loss Function 

§  Adaptive loss function defined as 

 
§  with  

We can limit 
the range of 
outliers to 
maintain a pdf 
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Adaptive Robust Loss Function 

§  Adaptive loss function defined as  
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Joint Optimization with the 
Adaptive Robust Kernel 
§  In theory, we can now solve a joint 

optimization problem  

§  in the weighted least squares sense 
using              as our robust kernel 
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Joint Optimization with the 
Adaptive Robust Kernel 
§  Joint optimization of       : 

Problems in practice: 
§  New Jacobians need to be computed 
§     can dominate the parameter 

estimation for complex problems 
§  Sensitive to initial guess 
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EM-Based Optimization with the 
Adaptive Robust Kernel 
§  Solve via Expectation-Maximization 
§  E-Step: 1D line search problem 

§  M-Step: Minimize as weighted least 
squares 
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Iterative Closest Point Example 

Outlier rejection in presence of dynamic objects 
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Iterative Closest Point Example 
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EM-Based Optimization with the 
Adaptive Robust Kernel 
§  Kernel and unknown are estimated in 

a iterative fashion 
§  EM-based estimation provides better 

results than the joint optimization 
§  Kernel function adapts to the current 

situation by adapting 
§  No need to change the least squares 

problem (Jacobians stay the same)  
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Dealing with Outliers 

§  There are different ways for dealing 
with outliers during optimization 

§  Key question: how does the outlier 
distribution look like? 
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Dealing with Outliers Summary 

§  Max-Mixtures supports multi-model 
constraints 

§  It approximates the sum of Gaussians 
using the max operator 

§  Dynamic Covariance Scaling is a good 
choice for a fixed kernel in SLAM 

§  DCS is a form of Geman-McClure 
§  Choice of the robust loss function 

depends on the problem at hand 
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Dealing with Outliers Summary 

§  Robust least squares using kernels 
§  Choice of the rho function (kernel) 

depends on the problem at hand 
§  Popular: Huber, L1, DCS/Geman 

McClure 
§  Better: Don’t commit on one kernel 
§  Adaptive robust kernel is the most 

flexible way  
§  We obtained best results with adaptive 

kernels in an EM-style estimation  
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Literature 
Max-Mixtures: 
§  Olson, Agarwal: “Inference on Networks of Mixtures 

for Robust Robot Mapping” 
Dynamic Covariance Scaling: 
§  Agarwal, Tipaldi, Spinello, Stachniss, Burgard: 

“Robust Map Optimization Using Dynamic Covariance 
Scaling” 

General Robust Loss Function: 
§  Barron: “A General and Adaptive Robust Loss 

Function”  
EM-based Estimation of Kernel and LS Problem: 
§  Chebrolu, Läbe, Vysotska, Behley, Stachniss: 

“Adaptive Robust Kernels for Non-Linear Least 
Squares Problems” 
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Slide Information 
§  These slides have been created by Cyrill Stachniss as part of 

the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

§  I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

§  Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

§  My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

Cyrill Stachniss, 2014 
     cyrill.stachniss@igg.uni-bonn.de 


