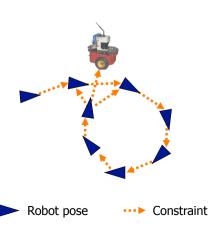
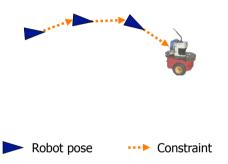
Photogrammetry & Robotics Lab


Hierarchical Pose-Graph SLAM for Online Mapping

Cyrill Stachniss

1

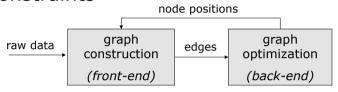

Graph-Based SLAM (Recap)

 Observing previously seen areas generates constraints between non-successive poses

Graph-Based SLAM (Recap)

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

2

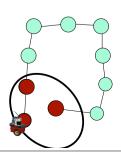

Graph-Based SLAM (Recap)

- Use a graph to represent the problem
- Every **node** in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

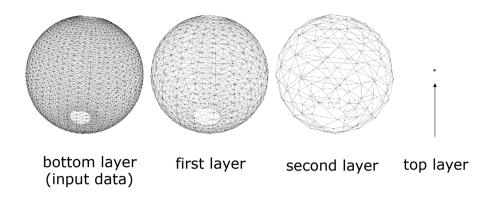
4

Front-End and Back-End

- Front-end extracts constraints from the sensor data (data association!)
- Back-end optimizes the pose-graph to reduce the error introduced by the constraints



➡ Intermediate solutions are needed to make good data associations


5

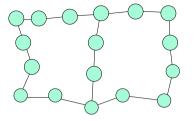
Motivation

- SLAM front-end seeks for loop-closures
- Requires to compare observations to all previously obtained ones
- In practice, limit search to areas in which the robot is likely to be
- This requires to know in which parts of the graph to search for data associations

Hierarchical Pose-Graph

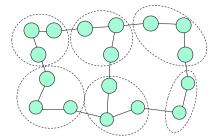
"There is no need to optimize the whole graph whenever a new observation is obtained"

6


Hierarchical Approach

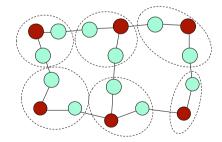
- Insight: to find loop closing points, one does not need the perfect global map
- Idea: correct only the core structure of the scene, not the overall graph
- Hierarchical pose-graph as a sparse approximation of the original problem
- It exploits the facts that in SLAM
 - Robot moved through the scene and it not "teleported" to locations
 - Sensors have a limited range

Ŭ

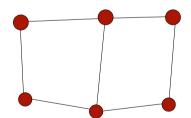

Key Idea of the Hierarchy

Input is the dense graph

Key Idea of the Hierarchy

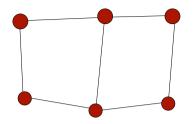

- Input is the dense graph
- Group the nodes of the graph based on their local connectivity

ç


Key Idea of the Hierarchy

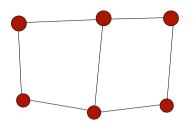
- Input is the dense graph
- Group the nodes of the graph based on their local connectivity
- For each group, select one node as a "representative"

Key Idea of the Hierarchy


 The representatives are the nodes in a new sparsified graph (upper level)

10

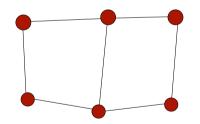
Key Idea of the Hierarchy


- The representatives are the nodes in a new sparsified graph (upper level)
- Edges of the sparse graph are determined by the connectivity of the groups of nodes
- The parameters of the sparse edges are estimated via local optimization

13

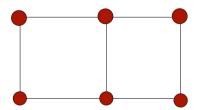
Key Idea of the Hierarchy

- The representatives are the nodes in a new sparsified graph (upper level)
- Edges of the sparse graph are determined by the connectivity of the groups of nodes
- The parameters of the sparse edges are estimated via local optimization



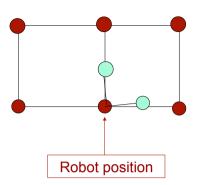
Process is repeated recursively

14


Key Idea of the Hierarchy

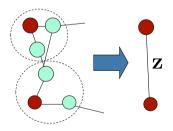
 Only the upper level of the hierarchy is optimized completely

Key Idea of the Hierarchy


 Only the upper level of the hierarchy is optimized completely

15

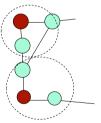
Key Idea of the Hierarchy


- Only the upper level of the hierarchy is optimized completely
- The changes are propagated to the bottom levels only close to the current robot position
- Only this part of the graph is relevant for finding constraints

17

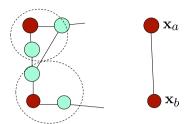
Determining Edge Parameters

- Given two connected groups
- How to compute a virtual observation Z and the information matrix Ω for the new edge?


Construction of the Hierarchy

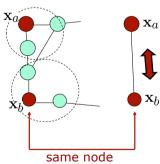
- When and how to generate a new group?
 - A (simple) distance-based decision
 - The first node of a new group is the representative
- When to propagate information downwards?
 - Only when there are inconsistencies
- How to construct an edge in the sparsified graph?
 - Next slides
- How to propagate information downwards?
 - Next slides

18

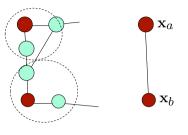

Determining Edge Parameters

 Optimize the two subgroups independently from the rest

Determining Edge Parameters


- Optimize the two subgroups independently from the rest
- The observation is the relative transformation between the two representatives

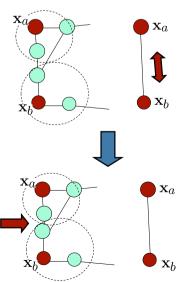
21


Propagating Information Downwards

 All representatives are nodes from the lower (bottom) level

Determining Edge Parameters

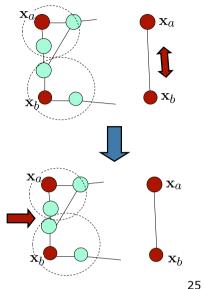
- Optimize the two subgroups independently from the rest
- The observation is the relative transformation between the two representatives
- The information matrix is computed from the diagonal block of the matrix H



Inverse of the <code>[b,b]</code> block of $\mathbf{H}^{\text{-1}}$ \downarrow $\Omega_{ab} = (\mathbf{H}^{-1}_{[b,b]})^{-1}$

22

Propagating Information Downwards


- All representatives are nodes from the lower (bottom) level
- Information is propagated downwards by transforming the group at the lower level using a rigid body transformation

Propagating Information

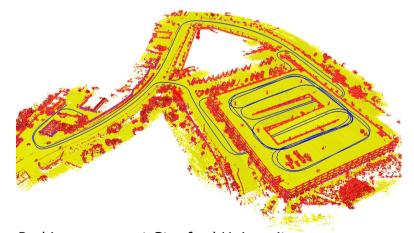
Downwards

- All representatives are nodes from the lower (bottom) level
- Information is propagated downwards by transforming the group at the lower level using a rigid body transformation
- Only if the lower level becomes inconsistent, optimize at the lower level

27

For the Best Possible Map...

- Run the optimization on the lowest level (at the end)
- For offline processing with all constraints, the hierarchy helps convergence faster in case of large errors
- In this case, one pass up the tree (to construct the edges) followed by one pass down the tree is in practice sufficient

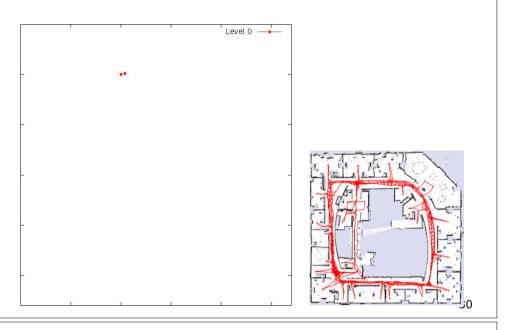

26

Stanford Garage



- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Result

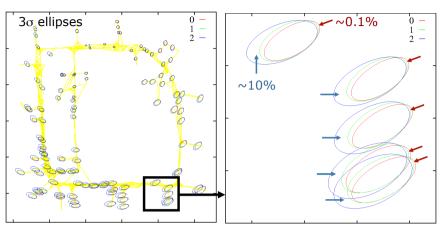

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Consistency

How well does the top level in the hierarchy represent the original input?

Intel Research Lab Video

Consistency


- How well does the top level in the hierarchy represent the original input?
- Probability mass of the marginal distribution in the highest level vs. the one of the true estimate (original problem, lowest level)

	Prob. mass not covered	Prob. mass outside
Intel	y 0.10%	, 10.18%
W-10000	2.53%	24.05%
Stanford	0.01%	7.88%
Sphere	2.75%	10.21%

low risk of becoming overly confident

one does not ignore too much information

Consistency

- Red: overly confident (~0.1% prob. mass)
- Blue: under confident (~10% prob. mass)

Literature

Hierarchical Pose-Graph Optimization

- Grisetti, Kümmerle, Stachniss, Frese, and Hertzberg: "Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping"
- Open-source implementation hosted at http://openslam.org/hog-man.html

Conclusions

Hierarchical pose-graphs

- Provide approximate solutions fast
- Support efficient data association
- Designed for online mapping (interplay of optimization and data association)
- Higher levels can be seen as simplified SLAM problems

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.uni-bonn.de₃₆