Photogrammetry & Robotics Lab

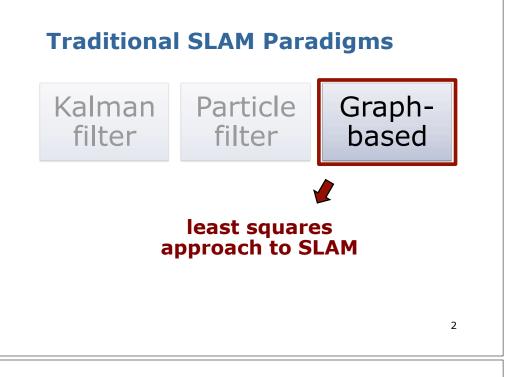
Graph-Based SLAM A Least Squares Approach to SLAM using Pose Graphs

Cyrill Stachniss

Least Squares in General

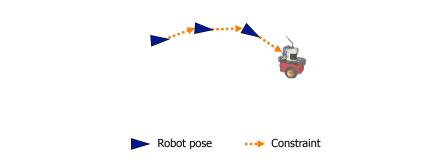
- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Today: Application to SLAM



Graph-Based SLAM

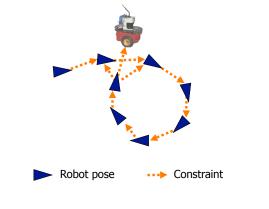
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain



3

Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses



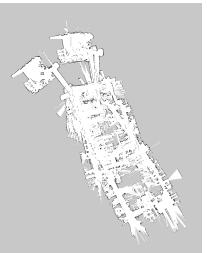
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

6

Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes

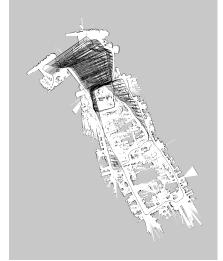


5

KUKA Halle 22, courtesy of P. Pfaff 7

Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



KUKA Halle 22, courtesy of P. Pfaff 8

Graph-Based SLAM in a Nutshell

 Once we have the graph, we determine the most likely map by correcting the nodes

9

11

Graph-Based SLAM in a Nutshell

 Once we have the graph, we determine the most likely map by correcting the nodes

... like this

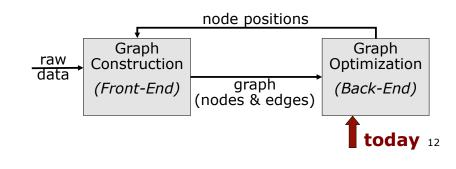
10

Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes
 - ... like this
- Then, we can render a map based on the known poses

The Overall SLAM System

- Interplay of front-end and back-end
- Map helps to determine constraints by reducing the search space
- Topic today: optimization



The Graph

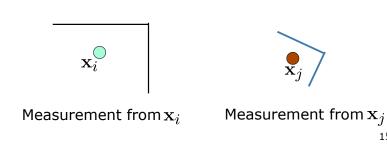
- It consists of n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
- Each \mathbf{x}_i is a pose of the robot at
- time t_i
- A constraint/edge exists between the nodes \mathbf{x}_i and \mathbf{x}_j if...

13

15

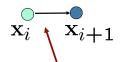
Create an Edge If... (2)

 ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j



Create an Edge If... (1)

- ...the robot moves from \mathbf{x}_i to \mathbf{x}_{i+1}
- Edge corresponds to odometry



The edge represents the odometry measurement

14

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a virtual measurement about the position of \mathbf{x}_i seen from \mathbf{x}_i

Edge represents the position of x_i seen from \mathbf{x}_i based on the **observation**

Transformations

- Transformations can be expressed using homogenous coordinates
- Odometry-Based edge

 $(\mathbf{X}_i^{-1}\mathbf{X}_{i+1})$

- Observation-Based edge
 - $(\mathbf{X}_i^{-1}\mathbf{X}_j)$

How node i sees node j

17

Homogenous Coordinates

- N-dim space expressed in N+1 dim
- 4 dim. for modeling the 3D space
- To HC: $(x, y, z)^T \to (x, y, z, 1)^T$
- Backwards: $(x, y, z, w)^T \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- Vector in HC: $v = (x, y, z, w)^T$
- Translation:
- Rotation:

$$R = \left(\begin{array}{cc} R^{3D} & 0\\ 0 & 1\end{array}\right)$$

 $T = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$

19

Homogenous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Projective geometry is an alternative representation of geometric objects and transformations
- A single matrix can represent affine transformations and projective transformations

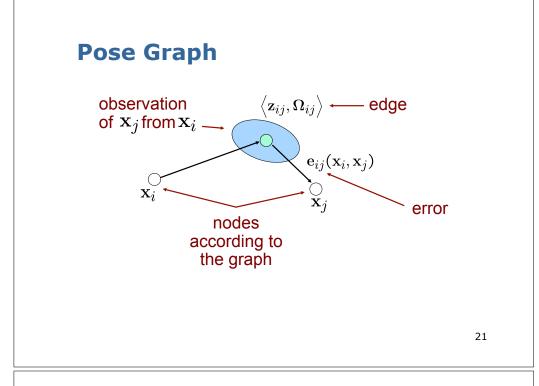
18

The Edge Information Matrices

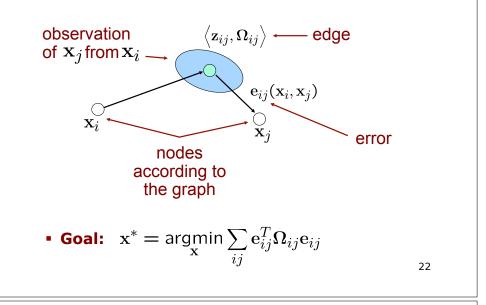
- Observations are affected by noise
- Information matrix Ω_{ij} for each edge to encode its uncertainty
- The "bigger" Ω_{ij}, the more the edge "matters" in the optimization

Questions

- How do the information matrices look like in case of scan-matching vs. odometry?
- How will these matrices look like when moving in a long, featureless corridor?



Pose Graph



Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^{*} = \operatorname{argmin}_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^{T}(\mathbf{x}_{i}, \mathbf{x}_{j}) \mathbf{\Omega}_{ij} \mathbf{e}_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \mathbf{\Omega}_{k} \mathbf{e}_{k}(\mathbf{x})$$

Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}} \sum_k \mathbf{e}_k^T(\mathbf{x}) \mathbf{\Omega}_k \mathbf{e}_k(\mathbf{x})$$

Question:

What is the state vector?

Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_k^T(\mathbf{x}) \mathbf{\Omega}_k \mathbf{e}_k(\mathbf{x})$$

Question:

What is the state vector?

 $\mathbf{x}^T = (\mathbf{x}_1^T \ \mathbf{x}_2^T \ \cdots \ \mathbf{x}_n^T)$ One vector for each node of the graph

Specify the error function!

25

The Error Function

- Error as a function of the whole state vector

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

Error takes a value of zero if

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1}\mathbf{X}_j)$$

26

Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x} + \mathbf{\Delta}\mathbf{x}) \simeq \mathbf{e}_{ij}(\mathbf{x}) + \mathbf{J}_{ij}\mathbf{\Delta}\mathbf{x}$$

with
$$\mathbf{J}_{ij} = rac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}}$$

Derivative of the Error Function • Does one error term $e_{ij}(x)$ depend on all state variables?	 Derivative of the Error Function Does one error term e_{ij}(x) depend on all state variables? Mo, only on x_i and x_j
29	30
 Derivative of the Error Function ● Ose one error term e_{ij}(x) depend on all state variables? ● No, only on x_i and x_j Ose there any consequence on the structure of the Jacobian? 	 Derivative of the Error Function Soes one error term e_{ij}(x) depend on all state variables? No, only on x_i and x_j So there any consequence on the structure of the Jacobian? Tes, it will be non-zero only in the rows corresponding to x_i and x_j deij(x) = (0deij(xi) deij(xj) dei

Jacobians and Sparsity

• Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

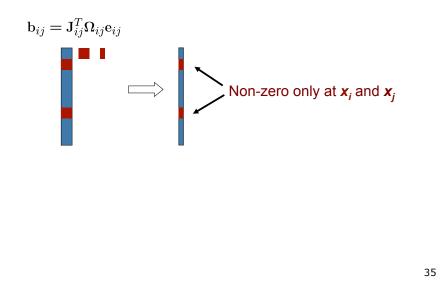
$$\mathbf{e}_{ij}(\mathbf{x}) = \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

- The Jacobian will be zero everywhere except in the columns of \mathbf{x}_i and \mathbf{x}_j

$$\mathbf{J}_{ij} \;=\; \left(egin{array}{c} \mathbf{0}\cdots\mathbf{0} \; \displaystyle rac{\partial \mathbf{e}(\mathbf{x}_i)}{\displaystyle rac{\partial \mathbf{x}_i}{\displaystyle \mathbf{A}_{ij}}} \; \mathbf{0}\cdots\mathbf{0} \; \displaystyle rac{\partial \mathbf{e}(\mathbf{x}_j)}{\displaystyle rac{\partial \mathbf{x}_j}{\displaystyle \mathbf{B}_{ij}}} \; \mathbf{0}\cdots\mathbf{0}
ight)$$

33

Illustration of the Structure



Consequences of the Sparsity

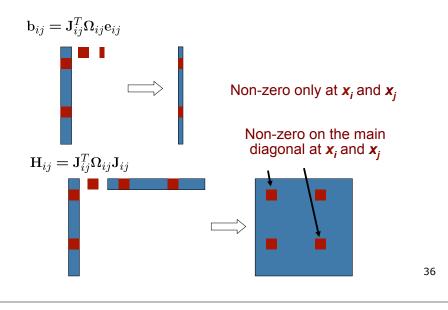
 We need to compute the coefficient vector b and matrix H:

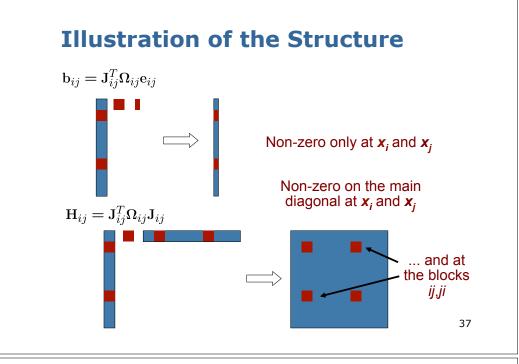
$$\mathbf{b}^{T} = \sum_{ij} \mathbf{b}_{ij}^{T} = \sum_{ij} \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$
$$\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$

- The sparse structure of ${\bf J}_{ij}$ will result in a sparse structure of ${\bf H}$
- This structure reflects the adjacency matrix of the graph

34

Illustration of the Structure





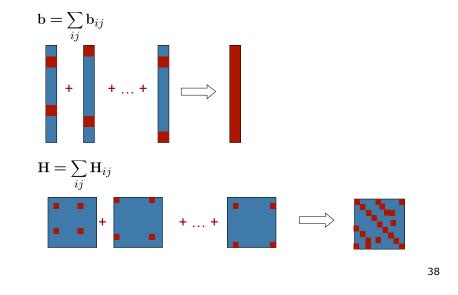
Consequences of the Sparsity

- An edge contributes to the linear system via b_{ij} and H_{ij}
- The coefficient vector is:

$$\begin{aligned} \mathbf{b}_{ij}^T &= \mathbf{e}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij} \\ &= \mathbf{e}_{ij}^T \boldsymbol{\Omega}_{ij} \left(\begin{array}{c} \mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \end{array} \right) \\ &= \left(\begin{array}{c} \mathbf{0} \cdots \mathbf{e}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} \cdots \mathbf{e}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \cdots \mathbf{0} \end{array} \right) \end{aligned}$$

- It is non-zero only at the indices corresponding to \mathbf{x}_i and \mathbf{x}_j

Illustration of the Structure



Consequences of the Sparsity

The coefficient matrix of an edge is:

$$\begin{split} \mathbf{H}_{ij} &= \mathbf{J}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij} \\ &= \begin{pmatrix} \vdots \\ \mathbf{A}_{ij}^T \\ \vdots \\ \mathbf{B}_{ij}^T \\ \vdots \end{pmatrix} \boldsymbol{\Omega}_{ij} \begin{pmatrix} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \\ \mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \end{pmatrix} \end{split}$$

Non-zero only in the blocks relating i,j

Sparsity Summary

- An edge ij contributes only to the
 - ith and the jth block of \mathbf{b}_{ij}
 - to the blocks ii, jj, ij and ji of \mathbf{H}_{ij}
- Resulting system is sparse
- System can be computed by summing up the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition
 - Conjugate gradients
 - ... many others

Building the Linear System

For each constraint:

- Compute error $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$
- Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = rac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i} \qquad \mathbf{B}_{ij} = rac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$$

• Update the coefficient vector:

$$ar{\mathbf{b}}_i^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad ar{\mathbf{b}}_j^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

• Update the normal equation matrix:

$$\begin{split} \bar{\mathbf{H}}^{ii} + &= \mathbf{A}_{ij}^T \Omega_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + &= \mathbf{A}_{ij}^T \Omega_{ij} \mathbf{B}_{ij} \\ \bar{\mathbf{H}}^{ji} + &= \mathbf{B}_{ij}^T \Omega_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + &= \mathbf{B}_{ij}^T \Omega_{ij} \mathbf{B}_{ij} \end{split}$$

The Linear System

Vector of the states increments:

$$\Delta \mathbf{x}^T = \left(\Delta \mathbf{x}_1^T \ \Delta \mathbf{x}_2^T \ \cdots \ \Delta \mathbf{x}_n^T \right)$$

Coefficient vector:

$$\mathbf{b}^T = \begin{pmatrix} \bar{\mathbf{b}}_1^T & \bar{\mathbf{b}}_2^T & \cdots & \bar{\mathbf{b}}_n^T \end{pmatrix}$$

Normal equation matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

42

Algorithm

41

43

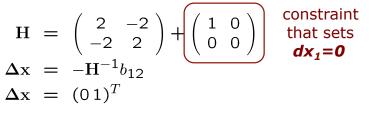
1: optimize(x): 2: while (!converged) 3: $(\mathbf{H}, \mathbf{b}) = \text{buildLinearSystem}(\mathbf{x})$ 4: $\Delta \mathbf{x} = \text{solveSparse}(\mathbf{H}\Delta \mathbf{x} = -\mathbf{b})$ 5: $\mathbf{x} = \mathbf{x} + \Delta \mathbf{x}$ 6: end 7: return \mathbf{x}

Example on the Blackboard

45

What Went Wrong?

- The constraint specifies a relative constraint between both nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be "fixed"



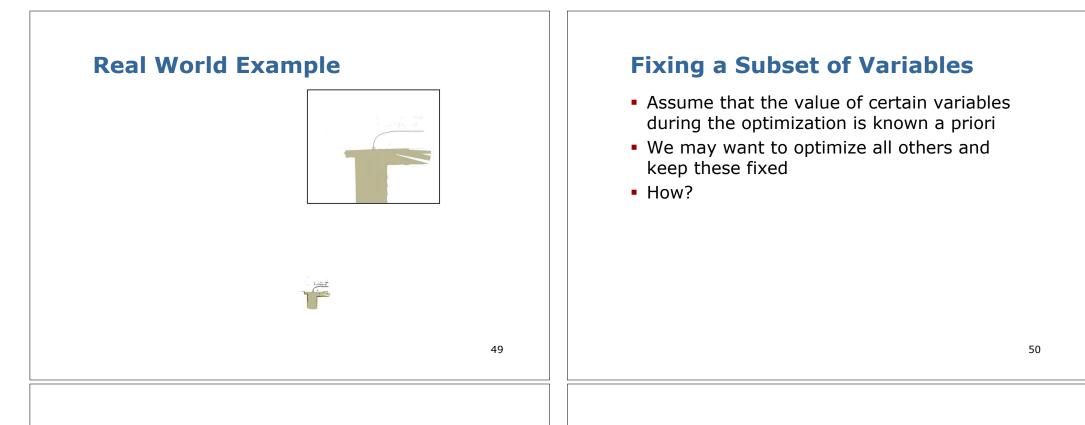
Trivial 1D Example

• Two nodes and one observation $x = (x_1 x_2)^T = (0 0)
 z_{12} = 1
 \Omega = 2
 e_{12} = z_{12} - (x_2 - x_1) = 1 - (0 - 0) = 1
 J_{12} = (1 - 1)
 b_{12}^T = e_{12}^T \Omega_{12} J_{12} = (2 - 2)
 H_{12} = J_{12}^T \Omega J_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}
 Ax = -H_{12}^{-1} b_{12}
 BUT det(H) = 0 ??? 46$

Role of the Prior

- We saw that the matrix H has not full rank (after adding the constraints)
- The global frame had not been fixed
- Fixing the global reference frame is strongly related to the prior $p(\mathbf{x}_0)$
- A Gaussian estimate about \boldsymbol{x}_0 results in an additional constraint
- E.g., first pose in the origin:

$$\mathrm{e}(\mathrm{x}_0) = t 2 \mathsf{v}(\mathrm{X}_0)$$



Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should disappear from the linear system

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should disappear from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Why Can We Simply Suppress the Rows and Columns of the Corresponding Variables?

$p(oldsymbol{lpha},oldsymbol{eta}) = \mathcal{N}(\left[egin{matrix} oldsymbol{\mu}_lpha \\ oldsymbol{\mu}_eta \end{pmatrix}, \left[egin{matrix} \Sigma_{lpha lpha} \ \Sigma_{eta lpha} \ \Sigma_{eta eta} \end{array} ight]) = \mathcal{N}^{-1}(\left[egin{matrix} oldsymbol{\eta}_lpha \\ oldsymbol{\eta}_eta \end{array} ight], \left[egin{matrix} \Lambda_{lpha lpha} \ \Lambda_{eta eta} \ \Lambda_{eta eta} \end{array} ight])$		
	MARGINALIZATION	CONDITIONING
	$p(oldsymbol{lpha}) = \int p(oldsymbol{lpha},oldsymbol{eta}) doldsymbol{eta}$	$pig(oldsymbollpha \mid oldsymboletaig) = pig(oldsymbollpha,oldsymboletaig)/pig(oldsymboletaig)$
Cov. Form	$\mu=\mu_lpha$	$\boldsymbol{\mu}' = \boldsymbol{\mu}_{\alpha} + \boldsymbol{\Sigma}_{\alpha\beta}\boldsymbol{\Sigma}_{\beta\beta}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\beta})$
	$\Sigma = \Sigma_{\alpha\alpha}$	$\Sigma' = \Sigma_{\alpha\alpha} - \Sigma_{\alpha\beta} \Sigma_{\beta\beta}^{-1} \Sigma_{\beta\alpha}$
Info. Form	$oldsymbol{\eta} = oldsymbol{\eta}_lpha - \Lambda_{lphaeta}\Lambda_{etaeta}^{-1}oldsymbol{\eta}_eta$	$oldsymbol{\eta}' = oldsymbol{\eta}_lpha - \Lambda_{lphaeta}oldsymbol{eta}$
	$\Lambda = \Lambda_{\alpha\alpha} - \Lambda_{\alpha\beta}\Lambda_{\beta}$	$\Lambda' = \Lambda_{lpha lpha}$
	•	Courtesy: R. Eustice

Uncertainty

- H represents the information matrix given the linearization point
- Inverting H gives the (dense) covariance matrix
- The diagonal blocks of the covariance matrix represent the uncertainties of the corresponding variables

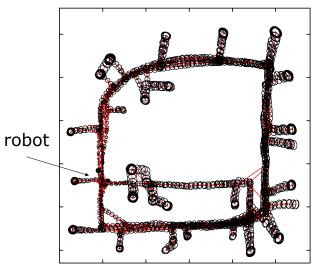
54

Relative Uncertainty

To determine the relative uncertainty between x_i and x_j :

- Construct the full matrix H
- Suppress the rows and the columns of x_i (= do not optimize/fix this variable)
- Compute the block *j*,*j* of the inverse
- This block will contain the covariance matrix of x_j w.r.t. x_i, which has been fixed

Example



Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton
- $\hfill \hfill \hfill$
- This sparsity allows for efficiently solving the linear system
- One of the state-of-the-art solutions for computing maps

Literature

Least Squares SLAM

 Grisetti, Kümmerle, Stachniss, Burgard: "A Tutorial on Graph-based SLAM", 2010

57

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.uni-bonn.de