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Graph-Based SLAM
A Least Squares Approach
to SLAM using Pose Graphs

Cyrill Stachniss

Traditional SLAM Paradigms

Kalman Particle | Graph-
filter filter based
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least squares
approach to SLAM

Least Squares in General

= Approach for computing a solution for
an overdetermined system

= “More equations than unknowns”

* Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Today: Application to SLAM

Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain
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Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses
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Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff
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Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes
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.. like this
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Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

= Then, we can render a
map based on the
known poses
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The Overall SLAM System

= Interplay of front-end and back-end

= Map helps to determine constraints by
reducing the search space

= Topic today: optimization

node positions
¥ 1

Graph Graph
rg\t,\é Construction Optimization
Front-End graph Back-End
(Fr ) (nodes & edges) ( )
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The Graph

» [t consists of n nodes x = x1-,

* Each X; is a pose of the robot at

= time ¢;

= A constraint/edge exists between the
nodes x; and x; if... %
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Create an Edge If... (1)

= ...the robot moves from x; to x; 41
» Edge corresponds to odometry

O—@
X \ Xi4+1

The edge represents the
odometry measurement
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

Xj

Measurement from x; Measurement from x;
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;

o

X5 ‘(]

Edge represents the position of x,;seen
from x; based on the observation
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Transformations

* Transformations can be expressed
using homogenous coordinates

= Odometry-Based edge
(X 1X41)

= Observation-Based edge
(X; X))
How node i sees node j
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Homogenous Coordinates

= H.C. are a system of coordinates used
in projective geometry

* Projective geometry is an alternative
representation of geometric objects
and transformations

= A single matrix can represent
affine transformations and
projective transformations
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Homogenous Coordinates

= N-dim space expressed in N+1 dim
= 4 dim. for modeling the 3D space
» To HC: (z,v,2)" — (z,y,2,1)T
= Backwards: (@.y.zw)" - 2,
= Vector in HC: v = (z,y,2,w)T

= Translation: -
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= Rotation:
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The Edge Information Matrices

= Observations are affected by noise

= Information matrix §2;; for each edge
to encode its uncertainty

= The "bigger” Q2;;, the more the edge
“matters” in the optimization

Questions
= How do the information matrices look like in
case of scan-matching vs. odometry?

= How will these matrices look like when

moving in a long, featureless corridor?
20




Pose Graph

observation

<Zij7 QZ]> D — edge
of X;fromx; .

;i (x4, %;)
Xj error
nodes
according to
the graph
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Pose Graph

observation

<zij7 QZJ> D— edge
of X;fromx; .

e;j (x4, %;)
Xj error
nodes
according to
the graph
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» Goal: x* =argmind e Q. .e;:
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Least Squares SLAM

* This error function looks suitable for
least squares error minimization
x* = arg;ninZeg;(xi,xj)ﬂijeij(xi,xj)
ij
— ; T
= arg}r{mn%ek (x)Qper(x)
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

*

x* = argmin_ef (x)Qpex(x)
X
k

Question:
= What is the state vector?
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

x* = argmin_ el (x)Qer(x)
X k

Question:

= What is the state vector?

One vector for each

{ x3 Xgﬂ/ node of the graph

T = (x] x] .-
= Specify the error function!
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The Error Function

= Error function for a single constraint
e;j(x;,%5) = t2v(Z_;il(Xi_1Xj))
t

|measurement| | x; referenced w.rt. x; |

= Error as a function of the whole state vector
eij(x) = t2v(Z; (X7 1X;))

= Error takes a value of zero if
Zij = (X;'Xy)
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Gauss-Newton: The Overall
Error Minimization Procedure

» Define the error function

* Linearize the error function
= Compute its derivative

» Set the derivative to zero

= Solve the linear system

= [terate this procedure until
convergence
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Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x -+ AX) >~ eij(x) -+ JijAX

aeij (X)

with Jij = 5
X
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

=) No, only on x; and x;
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

= No, only on x; and Xx;
» Is there any consequence on the
structure of the Jacobian?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
=) No, only on x; and x;

» Is there any consequence on the
structure of the Jacobian?

® Yes, it will be non-zero only in the
rows corresponding to x; and x;
Oeij(x)  _ (0...aeij(xi)...aez‘j(xa‘)...o)
% ox; X
Jij = (0"'Aij"‘Bij"'0>
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Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and x;

e;j(x) = e;;(x;,%5)

= The Jacobian will be zero everywhere
except in the columns of x; and x;

Jij -
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Consequences of the Sparsity

= We need to compute the coefficient
vector b and matrix H:

bT = 3bj = > ey
©J ]
H = Y Hj; = 3 I
% 1]
= The sparse structure of J;; will result
in a sparse structure of H

= This structure reflects the adjacency
matrix of the graph
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Illustration of the Structure

—> Non-zero only at x; and x;

~
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Illustration of the Structure
bij = Jg;ﬂijeij

—> Non-zero only at x; and x;

Non-zero on the main

T diagonal at x; and x;
Hij = Jij$5335
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Illustration of the Structure

_ 1T
bij = Ji;Qijei;

—> Non-zero only at x; and x;

Non-zero on the main
diagonal at x; and x;
T i J
Hyj = J3;Q4535
E(N W |

... and at
the blocks

ijji
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Illustration of the Structure
b =7 by

ij
I+|+”+| |

H=) H;

ij
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Consequences of the Sparsity

= An edge contributes to the linear
system via b;; and H;;

» The coefficient vector is:

= eggij(o...Aij...Bij...o)

= It is non-zero only at the indices
corresponding to x; and x;
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Consequences of the Sparsity

= The coefficient matrix of an edge is:
Hy = J}Q;0;

= : Q”<A”B ..... )

T T

T T

= Non-zero only in the blocks relating i,j
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Sparsity Summary

= An edge ij contributes only to the
= ith and the jt" block of b;;
= to the blocks ii, jj, ij and ji of H;;

= Resulting system is sparse

= System can be computed by summing
up the contribution of each edge

The Linear System
= VVector of the states increments:
AxT = (Ax] Ax] - AxT)
= Coefficient vector:
bl = (B{ bl ... BZ)

= Normal equation matrix:

= Efficient solvers can be used H'l H2 ... Hn
= Sparse Cholesky decomposition H — H_21 }_122 HQ"
= Conjugate gradients I_{:”l }_I'n'Q FI:””
= ... many others
41 42
Building the Linear System Algorithm
For each constraint:
= Compute error e; = t2v(Z; (X; X)) 1:  optimize(x):
= Compute the blocks of the Jacobian: 2. while (lconverged)
Ay = Oe(xi, %)) B = Oe(xi, x;) 3: (H,b) = buildLinearSystem(x)
O o % 4: Ax = solveSparse(HAx = —b)
= Update the coefficient vector: 5: X = x + Ax
b] + = e Qi;Ay bl + = e/ Q;;B;; 6: end
T return x

» Update the normal equation matrix:

'+ =B[Q;A; B+ =BQ;By 43
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Example on the Blackboard
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@2 w)

= Two nodes and one observation
x = (z120)T =(00)

Trivial 1D Example

zio = 1
Q =2
e;p = zi2—(r2—71)=1-(0-0)=1
Ji2 = (1 -1)
bl, = e],Q12J10=(2 —2)
Hip = J{29J12=(_22 _22>
Ax = —Hleblg

BUT det(H) = 0?2?,

6

What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

= One node needs to be “fixed”
constraint
H = (22 _22> (ég) that sets
N dx,=0

Ax = —-H b5
Ax = (01)T
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Role of the Prior

= We saw that the matrix H has not full
rank (after adding the constraints)

= The global frame had not been fixed

= Fixing the global reference frame is
strongly related to the prior p(xg)

= A Gaussian estimate about xg results
in an additional constraint

= E.g., first pose in the origin:
e(xp) = t2v(Xp)
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Real World Example
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Fixing a Subset of Variables

Assume that the value of certain variables
during the optimization is known a priori

We may want to optimize all others and
keep these fixed

How?
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Fixing a Subset of Variables

Assume that the value of certain variables
during the optimization is known a priori

We may want to optimize all others and
keep these fixed

How?

If a variable is not optimized, it should
disappear from the linear system
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Fixing a Subset of Variables

Assume that the value of certain variables
during the optimization is known a priori

We may want to optimize all others and
keep these fixed

How?

If a variable is not optimized, it should
disappear from the linear system

Construct the full system

Suppress the rows and the columns
corresponding to the variables to fix
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Why Can We Simply Suppress
the Rows and Columns of the
Corresponding Variables?

_ 12 Yoo Zoc,B _ —1 Na Aaa Aa,@
penB) =N ([fz ], [T Seo ) =2 (B ] Ao a2 )
‘ MARGINALIZATION CONDITIONING

p(a) = [p(a, B)dB p(a | B) =p(e, B)/p(B)

n' =mn, — AapB ‘

- - e

Courtesy: R. Eustice 53

Uncertainty

= H represents the information matrix
given the linearization point

* Inverting H gives the (dense)
covariance matrix

= The diagonal blocks of the covariance
matrix represent the uncertainties of
the corresponding variables
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Relative Uncertainty

To determine the relative uncertainty
between x; and x;:

= Construct the full matrix H

» Suppress the rows and the columns of
X; (= do not optimize/fix this variable)

= Compute the block j,j of the inverse

= This block will contain the covariance
matrix of x; w.r.t. x;, which has been
fixed
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Example

robot
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Conclusions

= The back-end part of the SLAM
problem can be effectively solved
with Gauss-Newton

= The H matrix is typically sparse

= This sparsity allows for efficiently
solving the linear system

= One of the state-of-the-art solutions
for computing maps
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Burgard: “A Tutorial on Graph-based
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Giorgio Grisetti and myself.

= I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrz405QzbIHgI3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill .stachniss@igg.uni—bonn.de;)_9




