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Traditional SLAM Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 

least squares  
approach to SLAM 

3 

Least Squares in General 

§  Approach for computing a solution for 
an overdetermined system 

§  “More equations than unknowns” 
§  Minimizes the sum of the squared 

errors in the equations 
§  Standard approach to a large set of 

problems 
 

Today: Application to SLAM 
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Robot pose Constraint  

Graph-Based SLAM 

§  Constraints connect the poses of the 
robot while it is moving 

§  Constraints are inherently uncertain 
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Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds 

to a pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-Based SLAM in a Nutshell 
§  Every node in the 

graph corresponds 
to a robot position 
and a laser 
measurement 

§  An edge between 
two nodes 
represents a spatial 
constraint between 
the nodes 
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Graph-Based SLAM in a Nutshell 

§  Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 
§  Then, we can render a 

map based on the 
known poses 
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The Overall SLAM System 

§  Interplay of front-end and back-end 
§  Map helps to determine constraints by 

reducing the search space 
§  Topic today: optimization 

Graph 
Construction 
(Front-End) 

Graph 
Optimization 
(Back-End) 

raw 
data 

graph  
(nodes & edges) 

node positions 

today 
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The Graph 

§  It consists of n nodes   
§  Each     is a pose of the robot at  
§  time ti 
§  A constraint/edge exists between the 

nodes     and     if… 
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Create an Edge If… (1) 

§  …the robot moves from     to 
§  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

§  Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

§  Transformations can be expressed 
using homogenous coordinates 

§  Odometry-Based edge 
 

§  Observation-Based edge 

How node i sees node j 
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Homogenous Coordinates 

§  H.C. are a system of coordinates used 
in projective geometry 

§  Projective geometry is an alternative 
representation of geometric objects 
and transformations  

§  A single matrix can represent 
affine transformations and 
projective transformations 
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Homogenous Coordinates 

§  N-dim space expressed in N+1 dim 
§  4 dim. for modeling the 3D space 
§  To HC:  
§  Backwards: 
§  Vector in HC: 
§  Translation: 

§  Rotation: 
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The Edge Information Matrices 

§  Observations are affected by noise 
§  Information matrix      for each edge 

to encode its uncertainty 
§  The “bigger”     , the more the edge 

“matters” in the optimization  
 

Questions 
§  How do the information matrices look like in 

case of scan-matching vs. odometry? 
§  How will these matrices look like when 

moving in a long, featureless corridor? 
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Pose Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph 

§  Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Least Squares SLAM 

§  This error function looks suitable for 
least squares error minimization 
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Least Squares SLAM 

§  This error function looks suitable for 
least squares error minimization 

 
Question: 
§  What is the state vector? 
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Least Squares SLAM 

§  This error function looks suitable for 
least squares error minimization 

 
Question: 
§  What is the state vector? 

 

§  Specify the error function! 

One vector for each  
node of the graph 
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The Error Function 
§  Error function for a single constraint  

§  Error as a function of the whole state vector 

§  Error takes a value of zero if 

xj referenced w.r.t. xi measurement 
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Gauss-Newton: The Overall 
Error Minimization Procedure  
§  Define the error function 
§  Linearize the error function  
§  Compute its derivative  
§  Set the derivative to zero 
§  Solve the linear system 
§  Iterate this procedure until 

convergence 
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Linearizing the Error Function 

§  We can approximate the error 
functions around an initial guess    
via Taylor expansion 

with 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
§  Is there any consequence on the 

structure of the Jacobian? 
 Yes, it will be non-zero only in the   
 rows corresponding to     and 
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Jacobians and Sparsity 

§  Error           depends only on the two 
parameter blocks     and 

 
 
§  The Jacobian will be zero everywhere 

except in the columns of     and  
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Consequences of the Sparsity 

§  We need to compute the coefficient 
vector    and matrix    : 

 
§  The sparse structure of      will result 

in a sparse structure of   
§  This structure reflects the adjacency 

matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Consequences of the Sparsity 

§  An edge contributes to the linear 
system via      and   

§  The coefficient vector is: 

§  It is non-zero only at the indices 
corresponding to     and  
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Consequences of the Sparsity  

§  The coefficient matrix of an edge is: 

 

§  Non-zero only in the blocks relating i,j  
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Sparsity Summary 

§  An edge ij contributes only to the  
§  ith and the jth block of   
§  to the blocks ii, jj, ij and ji of   

§  Resulting system is sparse 
§  System can be computed by summing 

up the contribution of each edge 
§  Efficient solvers can be used 

§  Sparse Cholesky decomposition  
§ Conjugate gradients 
§ … many others 
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The Linear System 

§  Vector of the states increments: 

§  Coefficient vector: 

§  Normal equation matrix: 
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Building the Linear System 

For each constraint: 
§  Compute error 
§  Compute the blocks of the Jacobian: 

 
§  Update the coefficient vector: 
 
§  Update the normal equation matrix: 
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Algorithm 
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Example on the Blackboard 
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Trivial 1D Example 

§  Two nodes and one observation 

BUT                    ??? 
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What Went Wrong? 

§  The constraint specifies a relative 
constraint between both nodes 

§  Any poses for the nodes would be fine  
as long a their relative coordinates fit 

§  One node needs to be “fixed” 

constraint 
that sets  
dx1=0 
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Role of the Prior 

§  We saw that the matrix     has not full 
rank (after adding the constraints) 

§  The global frame had not been fixed  
§  Fixing the global reference frame is 

strongly related to the prior 
§  A Gaussian estimate about      results 

in an additional constraint 
§  E.g., first pose in the origin:  
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Real World Example 
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Fixing a Subset of Variables 
§  Assume that the value of certain variables 

during the optimization is known a priori 
§  We may want to optimize all others and 

keep these fixed 
§  How? 
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Fixing a Subset of Variables 
§  Assume that the value of certain variables 

during the optimization is known a priori 
§  We may want to optimize all others and 

keep these fixed 
§  How? 
§  If a variable is not optimized, it should 

disappear from the linear system 
§  Construct the full system 
§  Suppress the rows and the columns 

corresponding to the variables to fix 
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Why Can We Simply Suppress 
the Rows and Columns of the 
Corresponding Variables? 

Courtesy: R. Eustice 54 

Uncertainty 

§      represents the information matrix 
given the linearization point 

§  Inverting     gives the (dense) 
covariance matrix 

§  The diagonal blocks of the covariance 
matrix represent the uncertainties of 
the corresponding variables 
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Relative Uncertainty 

To determine the relative uncertainty 
between     and    : 
§  Construct the full matrix  
§  Suppress the rows and the columns of   

    (= do not optimize/fix this variable) 
§  Compute the block j,j of the inverse 
§  This block will contain the covariance 

matrix of     w.r.t.    , which has been 
fixed 
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Example 

robot 
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Conclusions 

§  The back-end part of the SLAM 
problem can be effectively solved  
with Gauss-Newton  

§  The     matrix is typically sparse 
§  This sparsity allows for efficiently 

solving the linear system 
§  One of the state-of-the-art solutions  

for computing maps  
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Slide Information 
§  These slides have been created by Cyrill Stachniss as part of 

the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Giorgio Grisetti and myself. 

§  I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

§  Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

§  My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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