An Informal Introduction to Least Squares

Cyrill Stachniss

Least Squares in General

- Approach for computing a solution for an **overdetermined system**
- “More equations than unknowns”
- Minimizes the **sum of the squared errors** in the equations
- Standard approach to a large set of problems
- Often used to **estimate** model parameters given observations

Least Squares History

- Method developed by Carl Friedrich Gauss in 1795 (he was 18 years old)
- First showcase: predicting the future location of the asteroid Ceres in 1801
Our Problem

- Given a system described by a set of \(n \) observation functions \(\{f_i(x)\}_{i=1:n} \)
- Let
 - \(x \) be the state vector
 - \(z_i \) be a measurement of the state \(x \)
 - \(\tilde{z}_i = f_i(x) \) be a function which maps \(x \) to a predicted measurement \(\tilde{z}_i \)
- Given \(n \) noisy measurements \(z_1:n \) about the state \(x \)

Goal: Estimate the state \(x \) which best explains the measurements \(z_1:n \)

Graphical Explanation

\[
\begin{align*}
 x & \quad f_1(x) = \tilde{z}_1 \quad z_1 \\
 f_2(x) = \tilde{z}_2 \quad z_2 \\
 \vdots \\
 f_n(x) = \tilde{z}_n \quad z_n
\end{align*}
\]

- **state (unknown)**
- **predicted measurements**
- **real measurements**

Example

- \(x \) position of 3D features
- \(z_i \) coordinates of the 3D features projected on camera images
- Estimate the most likely 3D position of the features based on the image projections (given the camera poses)

Error Function

- Error \(e_i(x) \) is typically the **difference** between **actual and predicted** measurement
 \[
 e_i(x) = z_i - f_i(x)
 \]
- We assume that the error has **zero mean** and is **normally distributed**
- Gaussian error with information matrix \(\Omega_i \)
- The squared error of a measurement depends only on the state and is a scalar
 \[
 e_i(x) = e_i(x)^T \Omega_i e_i(x)
 \]
Goal: Find the Minimum

- Find the state x^* which minimizes the error given all measurements

$$
\begin{align*}
 x^* &= \arg\min_x F(x) \quad \text{global error (scalar)} \\
 &= \arg\min_x \sum_i e_i(x) \quad \text{squared error terms (scalar)} \\
 &= \arg\min_x \sum_i e_i^T(x)\Omega_i e_i(x) \quad \text{error terms (vector)}
\end{align*}
$$

Assumption

- A “good” initial guess is available
- The error functions are “smooth” in the neighborhood of the (hopefully global) minima
- Then, we can solve the problem by iterative local linearizations

Solve Via Iterative Local Linearizations

- Linearize the error terms around the current solution/initial guess
- Compute the first derivative of the squared error function
- Set it to zero and solve linear system
- Obtain the new state (that is hopefully closer to the minimum)
- Iterate
Linearizing the Error Function

- Approximate the error functions around an initial guess x via Taylor expansion
 $$e_i(x + \Delta x) \approx e_i(x) + J_i(x)\Delta x$$

- Reminder: Jacobian
 \[
 J_f(x) =
 \begin{pmatrix}
 \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \ldots & \frac{\partial f_1(x)}{\partial x_n} \\
 \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \ldots & \frac{\partial f_2(x)}{\partial x_n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \ldots & \frac{\partial f_m(x)}{\partial x_n}
 \end{pmatrix}
 \]

Squared Error

- With the previous linearization, we can fix x and carry out the minimization in the increments Δx
- We replace the Taylor expansion in the squared error terms:
 $$e_i(x + \Delta x) = \ldots$$

Squared Error

- With the previous linearization, we can fix x and carry out the minimization in the increments Δx
- We replace the Taylor expansion in the squared error terms:
 $$e_i(x + \Delta x) = e_i^T(x + \Delta x)\Omega_i e_i(x + \Delta x)$$
 $$\approx (e_i + J_i\Delta x)^T\Omega_i(e_i + J_i\Delta x)$$
Squared Error

- With the previous linearization, we can fix \mathbf{x} and carry out the minimization in the increments $\Delta \mathbf{x}$
- We replace the Taylor expansion in the squared error terms:

\[
e_i(x + \Delta x) = e_i^T (x + \Delta x) \Omega_i e_i(x + \Delta x) \\
\approx (e_i + \mathbf{J}_i \Delta x)^T \Omega_i (e_i + \mathbf{J}_i \Delta x) \\
= e_i^T \Omega_i e_i + \\
e_i^T \Omega_i \mathbf{J}_i \Delta x + \Delta x^T \mathbf{J}_i^T \Omega_i e_i + \\
\Delta x^T \mathbf{J}_i^T \Omega_i \mathbf{J}_i \Delta x
\]

Squared Error (cont.)

- All summands are scalar so the transposition has no effect
- By grouping similar terms, we obtain:

\[
e_i(x + \Delta x) \\
\approx e_i^T \Omega_i e_i + \\
e_i^T \Omega_i J_i \Delta x + \Delta x^T J_i^T \Omega_i e_i + \\
\Delta x^T J_i^T \Omega_i J_i \Delta x
\]
Global Error

- The global error is the sum of the squared errors terms corresponding to the individual measurements.
- Forms a new expression, which approximates the global error in the neighborhood of the current solution \mathbf{x}.

\[F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_i (c_i + b_i^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H_i \Delta \mathbf{x}) \]

\[= \sum_i c_i + 2(\sum_i b_i^T) \Delta \mathbf{x} + \Delta \mathbf{x}^T (\sum_i H_i) \Delta \mathbf{x} \]

Quadratic Form

- We can write the global error terms as a quadratic form in $\Delta \mathbf{x}$.

\[F(\mathbf{x} + \Delta \mathbf{x}) \simeq c + 2b^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H \Delta \mathbf{x} \]

- How to compute the minimum of a quadratic form?

Global Error (cont.)

\[F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_i (c_i + b_i^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H_i \Delta \mathbf{x}) \]

\[= \sum_i c_i + 2(\sum_i b_i^T) \Delta \mathbf{x} + \Delta \mathbf{x}^T (\sum_i H_i) \Delta \mathbf{x} \]

\[= c + 2b^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H \Delta \mathbf{x} \]

with

\[b^T = \sum_i e_i^T \Omega_i J_i \]

\[H = \sum_i J_i^T \Omega J_i \]

Quadratic Form

- We can write the global error terms as a quadratic form in $\Delta \mathbf{x}$.

\[F(\mathbf{x} + \Delta \mathbf{x}) \simeq c + 2b^T \Delta \mathbf{x} + \Delta \mathbf{x}^T H \Delta \mathbf{x} \]

- Compute the derivative of $F(\mathbf{x} + \Delta \mathbf{x})$ w.r.t. $\Delta \mathbf{x}$ (given \mathbf{x}).

- Set the first derivative to zero.

- Solve.
Deriving a Quadratic Form

- Assume a quadratic form
 \[f(x) = x^T H x + b^T x \]
- The first derivative is
 \[\frac{\partial f}{\partial x} = (H + H^T)x + b \]

See: The Matrix Cookbook, Section 2.2.4

Quadratic Form

- We can write the global error terms as a quadratic form in \(\Delta x \)
 \[F(x + \Delta x) \approx c + 2b^T \Delta x + \Delta x^T H \Delta x \]
- The derivative of \(F(x + \Delta x) \)
 \[\frac{\partial F(x + \Delta x)}{\partial \Delta x} \approx 2b + 2H \Delta x \]

Minimizing the Quadratic Form

- Derivative of \(F(x + \Delta x) \)
 \[\frac{\partial F(x + \Delta x)}{\partial \Delta x} \approx 2b + 2H \Delta x \]
- Setting it to zero leads to
 \[0 = 2b + 2H \Delta x \]
- Which leads to the linear system
 \[H \Delta x = -b \]
- The solution for the increment \(\Delta x^* \) is
 \[\Delta x^* = -H^{-1}b \]

Gauss-Newton Solution

Iterate the following steps:

- Linearize around \(x \) and compute for each measurement
 \[e_i(x + \Delta x) \approx e_i(x) + J_i \Delta x \]
- Compute the terms for the linear system
 \[b^T = \sum_i e_i^T \Omega_i J_i \quad H = \sum_i J_i^T \Omega_i J_i \]
- Solve the linear system
 \[\Delta x^* = -H^{-1}b \]
- Updating state \(x \leftarrow x + \Delta x^* \)
Example: Odometry Calibration

- Odometry measurements u_i
- Eliminate systematic error through calibration
- Assumption: Ground truth odometry u_i^* is available
- Ground truth by motion capture, scan-matching, or a SLAM system

Example: Odometry Calibration

- There is a function $f_i(x)$ which, given some bias parameters x, returns an unbiased (corrected) odometry for the reading u'_i as follows

$$u'_i = f_i(x) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} u_i$$

- To obtain the correction function $f(x)$, we need to find the parameters x

Odometry Calibration (cont.)

- The state vector is
 $$x = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \end{pmatrix}^T$$
- The error function is
 $$e_i(x) = u_i^* - \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} u_i$$
- Its derivative is:
 $$J_i = \frac{\partial e_i(x)}{\partial x} = \begin{pmatrix} u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \end{pmatrix}$$

Questions

- How do the parameters look like if the odometry is perfect?
- How many measurements are needed to find a solution for the calibration problem?
- H is symmetric. Why?
- How does the structure of the measurement function affects the structure of H?
How to Efficiently Solve the Linear System?

- Linear system $H \Delta x = -b$
- Can be solved by matrix inversion (in theory)
- In practice:
 - Cholesky factorization
 - QR decomposition
 - Iterative methods such as conjugate gradients (for large systems)

Cholesky Decomposition for Solving a Linear System

- A symmetric and positive definite
- System to solve $Ax = b$
- Cholesky leads to $A = LL^T$ with L being a lower triangular matrix

Cholesky Decomposition for Solving a Linear System

- A symmetric and positive definite
- System to solve $Ax = b$
- Cholesky leads to $A = LL^T$ with L being a lower triangular matrix
- Solve first
 \[Ly = b \]
- an then
 \[L^T x = y \]

Gauss-Newton Summary

Method to minimize a squared error:
- Start with an initial guess
- Linearize the individual error functions
- This leads to a quadratic form
- One obtains a linear system by settings its derivative to zero
- Solving the linear systems leads to a state update
- Iterate
Least Squares vs. Probabilistic State Estimation

- So far, we minimized an error function
- How does this relate to state estimation in the probabilistic sense?

Log Likelihood

- Written as the log likelihood, leads to

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \text{const.} + \log p(x_0) + \sum_t [\log p(x_t \mid x_{t-1}, u_t) + \log p(z_t \mid x_t)]
\]

Start with State Estimation

- Bayes rule, independence and Markov assumptions allow us to write

\[
p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \eta p(x_0) \prod_t [p(x_t \mid x_{t-1}, u_t) p(z_t \mid x_t)]
\]

Gaussian Assumption

- Assuming Gaussian distributions

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \text{const.} + \log p(x_0) + \sum_t \left[\log p(x_t \mid x_{t-1}, u_t) + \log p(z_t \mid x_t) \right]
\]
Log of a Gaussian

- Log likelihood of a Gaussian

\[
\log \mathcal{N}(x, \mu, \Sigma) = \text{const.} - \frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)
\]

Error Function as Exponent

- Log likelihood of a Gaussian

\[
\log \mathcal{N}(x, \mu, \Sigma) = \text{const.} - \frac{1}{2} (x - \mu)^T \Sigma^{-1}(x - \mu) \]

\[\underbrace{\exp^2(x) \Omega}_{e(x)}\]

is up to a constant equivalent to the error functions used before

Log Likelihood with Error Terms

- Assuming Gaussian distributions

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \text{const.} - \frac{1}{2} e_p(x) - \frac{1}{2} \sum_t [e_{u_t}(x) + e_{z_t}(x)]
\]

Maximizing the Log Likelihood

- Assuming Gaussian distributions

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \text{const.} - \frac{1}{2} e_p(x) - \frac{1}{2} \sum_t [e_{u_t}(x) + e_{z_t}(x)]
\]

Maximizing the log likelihood leads to

\[
\arg\max \log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \arg\min e_p(x) + \sum_t [e_{u_t}(x) + e_{z_t}(x)]
\]
Minimizing the Squared Error is Equivalent to Maximizing the Log Likelihood of Independent Gaussian Distributions

with individual error terms for the controls, measurements, and a prior:

\[
\arg\max \log p(x_{0:t} \mid z_{1:t}, u_{1:t}) = \arg\min e_p(x) + \sum_t [e_{u_t}(x) + e_{z_t}(x)]
\]

Summary

- Technique to minimize squared error functions
- Gauss-Newton is an iterative approach for non-linear problems
- Uses linearization (approximation!)
- Equivalent to maximizing the log likelihood of independent Gaussians
- Popular method in a lot of disciplines

Literature

Least Squares and Gauss-Newton
- Basically every textbook on numeric calculus or optimization
- Wikipedia (for a brief summary)

Relation to State Estimation
- Thrun et al.: “Probabilistic Robotics”, Chapter 11.4

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-bonn.de