Topic of the Course Photogrammetry & Robotics Lab Simultaneous Localization and Mapping Graph-based SLAM using pose graphs **Introduction to SLAM** Graph-based SLAM with landmarks Robust optimization in SLAM **Cyrill Stachniss** Relative pose estimation using vision 1 2 **Localization Example** What is SLAM? Computing the robot's poses and the Estimate the robot's poses given map of the environment at the same landmarks time • Localization: estimating the robot's

• Mapping: building a map

location

 SLAM: building a map and localizing the robot simultaneously

Mapping Example

Estimate the landmarks given the robot's poses

Simultaneous Localization and Mapping or SLAM

- Build a map of the environment from a mobile sensor platform
- At the same time, localize a mobile sensor platform in the map build so far
- Online variant of the bundle adjustment problem for arbitrary sensors

SLAM Example

The SLAM Problem

- SLAM is a chicken-or-egg problem:
 - \rightarrow a map is needed for localization and
 - \rightarrow a pose estimate is needed for mapping

SLAM is Relevant

- It is considered a fundamental problem for truly autonomous robots
- SLAM is the basis for most navigation systems

autonomous navigation

9

11

SLAM Applications

 SLAM is central to a range of indoor, outdoor, air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

10

SLAM Applications

SLAM Showcase – Mint

SLAM Showcase – EUROPA

Courtesy: ZDF 13

Definition of the SLAM Problem

Given

- The robot's controls $u_{1:T} = \{u_1, u_2, u_3, ..., u_T\}$
- Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

- Map of the environment m
- Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Probabilistic Approaches

Mapping Freiburg CS Campus

 Uncertainty in the robot's motions and observations

14

 Use the probability theory to explicitly represent the uncertainty

 Z_{t-1}

 \mathbf{Z}_{t}

 $p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1})$

 Online SLAM seeks to recover only the most recent pose

 $p(x_t, m \mid z_{1:t}, u_{1:t})$

Online SLAM

 Online SLAM means marginalizing out the previous poses

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \dots \int p(x_{0:t}, m \mid z_{1:t}, u_{1:t}) \, dx_{t-1} \dots \, dx_0$$

21

 Integrals are typically solved recursively, one at at time

Graphical Model of Online SLAM

Why is SLAM a Hard Problem?

1. Robot path and map are both **unknown**

Why is SLAM a Hard Problem?

Why is SLAM a Hard Problem?

- The mapping between observations and the map is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)

Volumetric vs. Feature-Based SLAM

Courtesy: D. Hähnel

Courtesy: E. Nebot 26

Three Traditional Paradigms

Motion and Observation Model

Courtesy: Thrun, Burgard, Fox 28

distribution observation given pose

Model for Virtual Observations

 Relate pairs of poses from which observations have been recorded

Summary

- Mapping is the task of modeling the environment
- Localization means estimating the robot's pose
- SLAM = simultaneous localization and mapping

34

• Full SLAM vs. Online SLAM

Reading Material

Read SLAM overview

Springer "Handbook on Robotics", Chapter on Simultaneous Localization and Mapping, subsection 1 & 2 (see E-Campus)

Revisit the math basics slide set

See: sse2-00-background-math-basics.pdf

35