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Alignment of 3D Data Points

* Find the parameters of the
transformation that best align
corresponding data points

= Optimization / search for parameters
= Least squares and robust least squares
» Iterative closest point (ICP)

Scan Alignment in Mapping

Goal: Find local transformation to align points

Iterative Closest Point (ICP)
[Besl & McKay 92]




Find Local Transformation to
Align Points or Surfaces

The Problem

= Given two point sets:
Q:{ql7"'7qN} P:{p177pM}
with correspondences C={(i,j)}

= Wanted: Translation ¢t and rotation R
that minimize the sum of the squared

errors.

E(Rt)= > g —Rp; —t|
(i,7)€C

Key Idea

If the correct correspondences are
known, the correct relative rotation/
translation can be computed directly
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Key Idea

If the correct correspondences are
known, the correct relative rotation/
translation can be computed directly
= Shift via the center of mass
= Rotational alignment




Center of Mass

= The centers of mass of the
correspond points in both sets

qu Hp = ZP]

(4,5)eC (w)EC

= Subtract the corresponding center of
mass from every point

Q = {a;i—pnor =14}
P = {p,—pp} ={p)}

Orthogonal Procrustes Problem

= Minimizing E(R.t)= Y |q,—Rp; —t|*
(i,5)eC

= Equivalent to minimizing

2
E'(R) = |llg}---4a,] — R[P}---p,]lF

= Called Orthogonal Procrustes problem
= Can be solved through SVD

See: Soéderkvist, Using SVD for some fitting problems
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Singular Value Decomposition

= Compute the cross-covariance matrix

= Use the SVD to decompose

W = ubDVv'
= The matrices U,V are 3 by 3 matrices
= U, V are rotation matrices
= Diagonal matrix D = Diag(o1, 02, 03)
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Singular Value Decomposition

= If rank(W) = 3, the parameters
minimizing F(R,t) are unique and
given by:

R = UV’
t = po—Rpp
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SVD-Based Alignment Summary

= Form the cross-covariance matrix
W=3 qp;

= Compute SVD
W = uUDV'

= The rotation matrix is
R=UV'

= Translate and rotate points:

p; < R(pj — 1p) + 1Q
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SVD-Based Alignment Summary

Alignment through translation and
rotation p; <+ R(p; — pp) + g
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Image courtesy: Ju 14

Unknown Data Association
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ICP with Unknown Data
Association

If the correct correspondences are not
known, it is generally impossible to
determine the optimal relative rotation
and translation in one step
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Iterative Closest Point (ICP)
Algorithm

» Idea: Iterate to find alignment

= Jterative Closest Points
[Besl & McKay 92]

= Converges if starting positions are
“close enough”
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Basic ICP Algorithm

error = inf

while (error decreased and error > threshold)
= Determine corresponding points

= Compute rotation R, translation t via SVD

= Apply R and t to the points of the set to be
registered

= error = E(R,t)

18

ICP Example
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ICP Variants

Variants on the following stages of
ICP have been proposed:

1. Point subsets (from one or both point
sets)

. Weighting the correspondences

. Data association

4. Rejecting certain (outlier) point pairs

W N
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Performance of Variants

Various aspects of performance:

= Speed

= Stability (local minima)

= Tolerance w.r.t. noise and outliers
= Basin of convergence

(maximum initial misalignment)
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ICP Variants

Variants on the following stages of
ICP have been proposed:

=) 1. Point subsets (from one or both point
sets)
2. Weighting the correspondences
3. Data association
4. Rejecting certain (outlier) point pairs
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Selecting Source Points

Use all points

Uniform sub-sampling
Random sampling
Feature based sampling

Normal-space sampling
(Ensure that samples have normals distributed as
uniformly as possible)
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Normal-Space Sampling

LI L

uniform sampling normal-space sampling
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Comparison

= Normal-space sampling better for
mostly smooth areas with sparse
features [Rusinkiewicz et al., 01]

random sampling normal-space sampling -

Comparison

= Normal-space sampling better for
mostly smooth areas with sparse
features [Rusinkiewicz et al., 01]

random sampling normal-space sampling
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Feature-Based Sampling

= Try to find “important” points

= Simplifies the search for correspondences
= Higher efficiency and higher accuracy

= Requires preprocessing

3D Scan (~200.000 Poits) Extracted Features (~5.000 Points&7

ICP with Uniform Sampling

Video courtesy: Nuechter 28




ICP Variants

Variants on the following stages of
ICP have been proposed:

1. Point subsets (from one or both point
sets)
mp 2. Weighting the correspondences
3. Data association
4. Rejecting certain (outlier) point pairs
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Re-Weighting

» Weight the corresponding pairs

* Noise: Weighting based on sensor
uncertainty

= Qutlier: Assign lower weights for
points with higher point-point
distances

»= Determine transformation that
minimizes the weighted error function
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ICP Variants

Variants on the following stages of
ICP have been proposed:

1. Point subsets (from one or both point
sets)
2. Weighting the correspondences
=) 3, Data association
4. Rejecting certain (outlier) point pairs
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Data Association

* Has greatest effect on convergence
and speed

= Matching methods:
= Closest point
= Normal shooting
» Closest compatible point
= Point-to-plane
* Projection-based approaches
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Closest-Point Matching

* Find closest point in other the point
set (using kd-trees)

Generally stable, but slow convergence
and requires preprocessing
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Normal Shooting

* Project along normal, intersect other
point set

Slightly better convergence results than
closest point for smooth structures, worse

for noisy or complex structures y

Closest Compatible Point

= Robustification by considering the
compatibility of the points
= Only matches compatible points
= Compatibility can be based on
= Normals
= Colors
= Curvature
» Higher-order derivatives
= Other local features
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Point-to-Plane Error Metric

Minimize the sum of the squared
distances between a point and the
tangent plane at its correspondence
point [Chen & Medioni 91]
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Point-to-Point vs Point-to-Plane

<770 T

point-to-point point-to-plane
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Point-to-Plane Error Metric

= Each iteration generally slower than
the point-to-point version, however,
often significantly better convergence
rates [Rrusinkiewicz01]

= Using point-to-plane distance instead
of point-to-point lets flat regions slide
along each other [chen & Medioni 91]
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ICP Variants

Variants on the following stages of
ICP have been proposed:

1. Point subsets (from one or both point
sets)
2. Weighting the correspondences
3. Data association
mm) 4, Rejecting certain (outlier) point pairs

39

Rejecting (Outlier) Point Pairs

= Point-to-point distance larger than a
given threshold
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Rejecting (Outlier) Point Pairs

» Point-to-point distance larger than a
given threshold

= Rejection of pairs that are not

consistent with their neighboring pairs
[Dorai 98]
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Rejecting (Outlier) Point Pairs

= Point-to-point distance larger than a
given threshold

= Rejection of pairs that are not

consistent with their neighboring pairs
[Dorai 98]

= Trimmed ICP: Sort correspondences

w.r.t. their error, ignore the worst t%
[Chetverikov et al. 02]

* t is related to overlap and outlier ratio

= Knowledge about the overlap has to be

estimated
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ICP Algorithm

= Potentially subsample point clouds

= Determine corresponding points

= Potentially weight or reject pairs

= Compute rotation R, translation t (SVD)

= Apply R and t to all points of the set to be
registered

= Compute the error E(R,t)

= While error decreased and error > threshold
*= Repeat to determine correspondences etc.

= Qutput final alignment
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Common IPC Applications

= Laser scan matching
= Range image matching
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6DoF ICP

| 3D point cloud i | » 3D point cloud i+1 |
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Kinect-Based Mapping LiDAR ICP & SLAM

45 R Videb courtesy: Behley 46

Summary Summary

= Alignment of 2D and 3D data points = The major problem is to determine
is an important task in perception the correct data associations

= Gold standard algorithm for calculating = Initial guess is needed for data

the transform between scans association

= Estimates translation and rotation
between the scans

Iterative approach
Several variants exist

In practice, ICP does not always
converge to the correct solution

» Given the correct data associations,
the transformation can be computed
efficiently using SVD
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