Photogrammetry & Robotics Lab

Visual Features: Keypoints
(Harris, Shi-Tomasi, Forstner, DoG)

Cyrill Stachniss

Most slides have been created by Cyrill Stachniss but for several slides
courtesy by Gil Levi, A. Efros, J. Hayes, D. Lowe and S. Savarese
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Visual Features:
Keypoints and Descriptors

= Keypoint is a (locally) distinct
location in an image

* The feature descriptor summarizes
the local structure around the keypoint




Keypoint and Descriptor
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Today’s Topics

» Keypoints: Finding distinct points
= Harris corners
= Shi-Tomasi corner detector
= Forstner operator
* Difference of Gaussians

Keypoints
“Finding locally distinct points”

Part 1: Corners

Corners

= Corners are often highly distinct points




Corners & Edges

= Corners are often highly distinct points

= Corners are invariant to translation,
rotation, and illumination

= Corner = two edges in roughly
orthogonal directions

» Edge = a sudden brightness change

Finding Corners

= To find corners we need to search for
intensity changes in two directions

= Compute the SSD of neighbor pixels
around (z,y)

flay) = > (I(w,w) = I(u+du,v+0v))
(u,v)GWzy

A

local patch
around (x,y)

sum of squared differences
of image intensity values of
pixels under a given shift
(du, dv)
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Finding Corners

= To find corners we need to search for
intensity changes in two directions

= Compute the SSD of neighbor pixels
around (z,v)

flay) = Y (I(ww)—I(u+du,v+6v))
(u, ) EW gy
= Using Taylor expansion, we obtain
I(u+du,v+dv) ~ I(u,v)+ [Jy Jyl l gu }
ﬂ v

Jacobian 11

Finding Corners

= The Taylor approximation leads to

fey ~ Y (M][gjj])z

(U,’U)EWwy

= Written in matrix form as
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Finding Corners
= Given
sul'[ J2 I, Su
fay) ~ ) [511} {ijy ng}{gv}
= Move the sums inside the matrix

rew =[] [l 3 ] (5]

structure matrix
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Structure Matrix

= The structure matrix is key to finding
edges and corners

= It encodes the changes in image
intensities in a local area

ZW JyJOL’ ZW Jy

= Built from the image gradients
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Computing the Structure Matrix

= Matrix build from the image gradients

vo— [ Swl Syl
ZW Jij ZW ‘]y

= Jacobians computed via a convolution with a
gradient kernel such as Scharr or Sobel:

J2 = (Dy*1)?
Jedy = (Dg*1)(Dyx1I)
Jo; = (DyxI)’
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Computing the Structure Matrix

= Matrix build from the image gradients

ZW Jny ZW ‘]y

= Jacobians via Scharr or Sobel Op:
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Structure Matrix

= Summarizes the dominant directions

of the gradient around a point

Structure Matrix Examples
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Structure Matrix Examples
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Corners from Structure Matrix

bt

» M = [fé ;(”YES!

Llbete,

Key idea:

Considers points as corners if their
structure matrix has two large
Eigenvalues
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Harris, Shi-Tomasi & Forstner

= Three similar approaches

* Proposed in
= 1987 (Forstner)
= 1988 (Harris)
= 1994 (Shi-Tomasi)

= All rely on the structure matrix

= Use different criterion for deciding of a
point is a corner or not

» Forstner offers subpixel estimation
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Harris Corner Criterion

= Criterion
R = det(M) -k (trace(M))?

= Ao — k(g + A)?
= with k € [0.04,0.06]

|IR| ~ 0= A\ = Ay =0 : flat region

R <0= X1 > Xy or Ay > \i: edge

R>0= A = )Xo >0 : corner
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Harris Criterion Illustrated

R>0,A>0,X>0

“corner”

R <0,A\1 > X\
\\edge"
|R| ~ 0
)\1 ~ )\2 ~0

“flat" )\1 3

Shi-Tomasi Corner Detector

= Criterion: Threshold smallest
Eigenvalue

Aumin(M) = trac;(’v’ ) _ 5/ (brace(M)? — adet(M)

Amin(M) > T : corner
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Shi-Tomasi Criterion Illustrated
Ao A

“edge” “corner”

\\flatll \\edgell
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Forstner Operator Criterion

= Very similar to Harris corner detector

» Defined on the inverse of the M
(covariance matrix of possible shifts)

= Similar criterion on size and roundness
of the error ellipse of covariance
matrix

= Extension for sub-pixel estimation
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Non-Maxima Supression

= Within a local region, looks for the
position with the maximum value
( R or M\, ) and select this point

= Example for the Férstner operator

L []
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Implementation Remarks

= RGB to gray-scale conversion first

= Real images are affected by noise,
smoothing of the input is suggested
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Summary Corner Detection

convolutions
(smoothing
& derivatives)
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Summary Corner Detection

convolutions

(smoothing  myltiplications
& derivatives) P
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Summary Corner Detection

convolutions

(smoothing  myltiplications
& derivatives) P

convolutions
(box-summing)
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Summary Corner Detection

convolutions

(smoothing  mytiplications
& derivatives) P

convolutions
(box-summing) o, itiplications,
sums, sqrt
thresholding

non-max suppression
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Example

Image courtesy: Forstner 33

Harris Corners Example
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Corner Detectors Comparison

= All three detectors perform similarly

» Férstner was the first one and
additionally described subpixel estim.

= Harris became the most famous corner
detector in the past

»= Shi-Tomasi seems to slightly
outperform Harris corners

» Most libraries use Shi-Tomasi as the
default corner detector (e.g., openCV)
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Keypoints
“Finding locally distinct points”

Part 2: Difference of Gaussians
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Difference of Gaussians
Keypoints

= A variant of corner detection

* Provides responses at corners, edges,
and blobs

= Blob = mainly constant region but
different to its surroundings
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Keypoints: Difference of Gaussians
Over Scale-Space Pyramid

Procedure
Over different image pyramid levels
= Step 1: Gaussian smoothing

= Step 2: Difference-of-Gaussians: find
extrema (over smoothing scales)

= Step 3: maxima suppression at edges
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Illustration

Scale
(first
octave)

Difference of
Gaussian (DOG)

differently
blurred images
Image courtesy: Lowe39

Illustration

Scale
(first
octave)

Difference of LT 777
Gaussian (DOG) LT 7T T 777

differently
blurred images
Image courtesy: Lowe40




Illustration

differently
sized images

Gaussian (DOG)

Gaussian

differently
blurred images
Image courtesy: Lowe41

Difference of Gaussians

= Subtract differently blurred images
from each other

» Increases visibility of corners, edges,
and other detail present in the image
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Scale Space Representation

il e
e

t=0, 1, 4, 16, 64, 265
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Difference of Gaussians

= Blurring filters out high-frequencies
(noise)

= Subtracting differently blurred images
from each other only keeps the
frequencies that lie between the blur
level of both images

= DoG acts as a band-pass filter
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Difference of Gaussians

Keypoints are extrema in the DoG

over different (smoothing) scales
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Illustration

Difference of o
Gaussian (DOG) LT 7T 7777

Image courtesy: Lowe 46

Extrema Suppression

= The DoG finds blob-like and corner-
like image structures but also leads to
strong responses along edges

= Edges are bad for matching

* Eliminate edges via Eigenvalue test
(similar to Harris corners)
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Keypoints

= Two groups of approaches for finding
locally distinct points:

= 1. Corners via structure matrix
» Harris, Shi-Tomasi, Forstner

= 2. Difference of Gaussians
» Jterates over scales and blur
* Finds corners and blobs

* These approaches are key ingredients
of most hand-designed features
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Summary

= Keypoints and descriptor together
define common visual features

= Keypoint defines the location
= Most keypoints use image gradients
= Corners and blobs are good keypoints

Outlook: Part 2 - Feature Descriptors
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the Photogrammetry courses taught in 2014 and 2019

The slides heavily reply on material by Gil Levi, Alexai Efros,
James Hayes, David Lowe, and Silvio Savarese

I tried to acknowledge all people from whom I used images or
videos. In case I made a mistake or missed someone, please
let me know.

If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-bonn.de
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