Photogrammetry & Robotics Lab

Camera Calibration:
Zhang’'s Method

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.

3D Point to Pixel:
Estimating the Parameters of P

x = PX

pixel trans- world
coordinate formation coordinate

This time we only want the intrinsics!

Mapping (Recap)

Direct linear transform (DLT) maps any
object point X to the image point x

X object

image

R

\
camera

Direct Linear Transform (Recap)

Compute the 11 intrinsic and
extrinsic parameters

X— KR Xo]X

control point
observed coordinates
image point c, s, m, (given)

Xur YH 3 translations

3 rotations




Zhang’'s Method

Compute the 5 intrinsic parameters

x = KR[l3] — X0]X

/ control point
observed

image point c, s, m, .
Xur Yu 3 translations

3 rotations

Assumption:
You know how DLT works!

Zhang’'s Method
for Camera Calibration
Using a Checkerboard

Zhang, A Flexible New Technique for
Camera Calibration, MSR-TR-98-71

Camera Calibration
Using a 2D Checkerboard

« Observed 2D pattern (checkerboard)
« Known size and structure




Trick for Checkerboard Trick for Checkerboard

Calibration Calibration
« Set the world coordinate system - Set the world coordinate system
to the corner of the checkerboard to the corner of the checkerboard

= All points on the checkerboard
lie in the X/Y plane, i.e., Z=0

Simplification Simplification
= The Z coordinate of each point on the = The Z coordinate of each point on the
checkerboard is equal to zero checkerboard is equal to zero
X X
X C CS rH 11 T12 T13 tl Yy X C ( CS ) rH r11 T12 |T13 tl Yy
y =10 c¢l+m) vy ro1 Top T3 y | =10 cl+m) y ro1 Too |roz| t
1 0 0 f ri riz Tiz tz 1 0 0 fl 7“21 riz Tzz tz
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Simplification

* The Z coordinate of each point on the
checkerboard is equal to zero

0 c(14+m) yu To1  T22
0 0 1 r31 T32 |f33\ I3 1

<
~
[\v]

, X
c cs CUH} {7‘11 ri2 [Xi3f t1 v

= We can delete the 3 column of the
extrinsic parameter matrix
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Simplification
* The Z coordinate of each point on the

checkerboard is equal to zero

= Deleting the 3" column of the
extrinsic parameter matrix leads to

x c cs TH ri1 T2t
y = 0 c(1+m) YH 21 T22 tQ
1

X
Y
0 0 1 31 T32 t3 1

One point observed on the checkerboard
generates such an equation
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Setting Up the Equations for
Determining the Parameter

c cs Ty 11 T2 1
H=T[hi,hy, h3]= | 0 c(1+m) ynu ro1 T2 t2
0 0 1 r31 T3z i3

- J _J/
Y

K [Tla ro, t]
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Setting Up the Equations for
Determining the Parameter

(& CcS TH 11 T12 tl
H=[hi,ho, h3]=| 0 c(1+m) ym ro1 T2z 1o

0 0 1 T3y T3z 3
J

- J o
Y Y

K [r17 ro, t]

One point generates the equation:
T X
Y Y
1

1

- K[’I"]_, ro, t]
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Setting Up the Equations for
Determining the Parameter

= For multiple observed points on the
checkerboard (in the same image),
we obtain

Ly
Yi
1

'_‘:~< s>.<

H
3x3

How to proceed?
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Setting Up the Equations for
Determining the Parameter

*= For multiple observed points on the
checkerboard (in the same image),
we obtain

X;
Y;
1

= Analogous to first steps of the DLT
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DLT-Like Estimation

= We estimate a 3x3 homography
instead of a 3x4 projection matrix

= Rest is identical
= We use a] h=0

a, h=0
with
h (hy) = vec(HT)
a; = (=X, =Y, X%, —1,0,0, % 0,2, X;, x;Y;, 2)4;, x;)
a; = (0,0,%0,—X;, =i, =%, —LyiXs, yiV, v)i, vi)

19

DLT-Like Estimation

= We estimate a 3x3 homography
instead of a 3x4 projection matrix

= Rest is identical
= We use a] h=0

a, h=0
= with
h = (h)=vec(H")
ali:( -—'—IOOOle Y, x;)

Q
<A

= ( 0 Xi7 _Yvia -1 sz'L’ yz}/;a yz)
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DLT-Like Estimation

= Solving the system of linear equations
leads to an estimate of H

= How many points are needed to
estimate H?
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DLT-Like Estimation

= Solving the system of linear equations
leads to an estimate of H

= We need to identify at least 4 points
as H has 8 DoF and each point consists
of 2 observations (x and y)

This provides an estimate of H
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DLT-Like Estimation

= Solving the system of linear equations
leads to an estimate of H

= We need to identify at least 4 points
as H has 8 DoF and each point consists
of 2 observations (x and y)

After we have estimatedH,
we need to compute K from H
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Computing K Given H

r T2 t
H = [hy, ho, h3] = c(1 + m) Z/H ro1 Ta2 o

r31 732 t3
VA

[7"1 ro, t]

)

no rotation matrix, thus
QR decomposition is not
applicable as for DLT

How to obtain the matrix decomposition?
24




Computing K Given H

= We need to extract K from the matrix
H = K[ry, ro, t] we computed via SVD
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Computing K Given H

= We need to extract K from the matrix
H = K[ry, ro, t] we computed via SVD

Four step procedure:
1. Exploit constrains about K, rq, ro
2. Define a matrix B=K Tk"1

3. This B can be computed by solving
another homogeneous linear system

4. Decompose matrix B
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Computing K Given H is
Different from the DLT Solution

* Homography H has only 8 DoF
*= No direct decomposition as in DLT
= Exploit constraints on the parameters

ri1 T2t
H = [h1, ho, h3] = c(1 + m) yH ro1 Toa o

r31 32 t3
VA

[7“1 T2, t]

[h1, ho, h3] = Klry, ro, t]
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Exploiting Constraints for
Determining the Parameter

c cs Ty r11 T2 t1
H=T[hi,hy, h3]=| 0 c(1+m) yu ro1 To2 to
0 1 T31 T32 t3

“ AW

0
Y~ Y
K [r1, 7o, t]

[rla ro, t] - K_l[hla h27 h3]

# r1 = K_lh]_ Ty = K_lhz
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Exploiting Constraints for
Determining the Parameter

& CS TH T11 T12 tl
H=[hi,ho, h3]=| 0 c(1+m) ynm ro1 To2 o
0 0 1 r31 T3z I3

-

AN J
Y

~
K [r1, 7o, t]

[r1, 72, t] = K7 1[hq, ho, h3]
# r1T = K_lhl ro = K_th
As r1,75,73 form an orthonormal basis

# 7'{7'2 =0

lralf = llm2fl = 1
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Exploiting Constraints

IS K_lhl Ty = K_th

7'{7‘2 =0

m) /K TK lh,=0
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Exploiting Constraints

r1 = K_lhl ro = K_th

7‘{7‘2 =0

m) KTk lh,=0
lrall = [lr2fl =1

) A KTk lhy = BIKTK1h,
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Exploiting Constraints

r1 = K_lh,l ro = K_th

r{rg =0

m) KTk lh,=0
rall = [lr2fl =1

) A KTk lhy = BIKTK1h,

hIK-TK=1h; — hIK"TK=1hy =0
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Exploiting Constraints

ri =K 1hg ro = K 1hs

[ hiKTK=lhy, =0 ]

hi{K-TK=1h; = hAK-TK~1h,

[ hIK=TK=1h; — hIK-TK=1hy =0 ]
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Exploiting Constraints
hIK-TK=1hy =0
hIK-TK=1h; — hIK-TK=1hy =0

» Define symmetric and positive definite
matrix B := K TK-1
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Exploiting Constraints
hiBhy =0
hiBh; — hgghz =0

» Define symmetric and positive definite
matrix B := K Tk-1
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Exploiting Constraints
h{Bhy =0
hiBh; — hgghg =0
» Define symmetric and positive definite
matrix B : =K TK-1
* From B, the calibration matrix can be
recovered through Cholesky decomp.

bi1 b1z D13 Chol(B) — AAT
B=| b2 b2 b23 » A — K_T

biz b23 b33
»If we know B, then we can compute K s




Exploiting Constraints
hf{’EhQ =0
hiBhy — hiBhy =0

» Define symmetric and positive definite

matrix B := K TKk-1
= If we know B, we can compute K
» Inspect equations above:

» B consists of the unknowns

* h are known
= Two equations that relate B and h
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Next Step: Compute B

= Define a vector b = (b11,b12,b13,b22,b23,b33)

of unknowns
bi1 b1z 013
B=| bi>xVb22 b23
b1z bo3~b33 |
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Exploiting Constraints

» Define a vector b = (b11,b12,b13,b22,b23,b33)

of unknowns
bi1 b1z 013
B=| bi>xVb22 b23
b1z b2333 |

= Construct a system of linear equations
Vb = 0 exploiting the prev constraints:

T — T T p —
v1,0 =0 v11b—v5,0 =0
(first constraint) (second constraint)
rTry=0 el =llr2fl =1
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The Matrix V

= The matrix Vv is given as
[ hiihi;
. hiihoj + hoihyj
v . hzih1; + h1:h3;
V = 12 with v;; = vvLg J
( vi; —vh, ) ” haiho;
h3ihoj + hoih3;
h3ih3z;

I

elements of H

= For one image, we obtain

T
( T”12T >b=0
V11 — V%0

40




The Matrix V

= For multiple images, we stack the

matrices to a 2n X 6 matrix

oT
image 1 —1{-. 7 > 1
V11 — Y22
.. b=0
image n —- TvIQ .
V11 — Y22

= We need to solve the linear system

Vb =0 to obtain b and thus K
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Solving the Linear System

= The system vb =0 has a trivial
solution which (invalid matrix B)

= Impose additional constraint||b|| =1
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Solving the Linear System

* The system vb =0 has a trivial

solution which (invalid matrix B)
Impose additional constraint ||| =1
Real measurements are noisy

Find the solution that minimizes the
squares error

b* = arg mbin |Vb|| with ||b]] =1

Solve as in DLT computation
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What is Needed?

= We need at least 4 points per plane
to compute the matrix H

= Each plane gives us two equations

» Since B has 5/6 DoF, we need at least
3 different views of a plane

= Solve Vb = 0 to compute K

44




Non-Linear Parameters?
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General Calibration Matrix

= General calibration matrix is obtained
by combining the one of the affine
camera with the general mapping

“Klz,q) = “Hs(z,q) K
1 0 Az(x,q)
= 0 1 Ay(x,q) | K
0 0 1

see lecture on camera parameters 46

Lens Distortion Example
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Example: Barrel Distortion

= A standard approach for wide angle
lenses is to model the barrel distortion

‘= ax(l+qri+qrt)
o= y(A+qar’+ert)
= with [z,4]" being point as projected by
an ideal pin-hole camera
= with 7 being the distance of the pixel
in the image to the principal point
= Additional non-linear parameters q¢i, g2

see lecture on camera parameters 48




Error Minimization

Lens distortion can be calculated by
minimizing a non-linear error function

min x,; — X(K, q, Rn, tn, X)) |2
(Kaq,Rn,tn)%:zz:“ ne ( q‘ n n ’I’Ll)”

...linearize to obtain a quadratic
function, compute derivative, set
it to 0, solve linear system, iterate...
(solved using Levenberg-Marquardt,
K by Zhang’s m. as initial value)
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Example Results

= Before calibration:

Summary on Camera Calibration
Using a Checkerboard

* Pinhole camera model (first step)

= Non-linear model for lens distortion
(second step)
= Approach to camera calibration that

= accurately determines the camera
parameters

= is relatively easy to realize in practice
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Camera Calibration Summary

= Calibration means estimating the
(intrinsic) parameters of a camera

= Linear and non-linear errors
= Linear: 5 parameters

= Zhang: estimate the 5 linear
parameters using a checkerboard

= Estimate non-linear parameters in a
second step
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Literature

= Zhang, A Flexible New Technique for
Camera Calibration, MSR-TR-98-71
(uses a slightly different notation)

* Forstner & Wrobel, Photogrammetric
Computer Vision, Chapter 11.2

53

Slide Information

= The slides have been created by Cyrill Stachniss as part of the
photogrammetry and robotics courses.

= I tried to acknowledge all people from whom I used
images or videos. In case I made a mistake or missed
someone, please let me know.

= The photogrammetry material heavily relies on the very well
written lecture notes by Wolfgang Forstner and the
Photogrammetric Computer Vision book by Forstner & Wrobel.

= Parts of the robotics material stems from the great
Probabilistic Robotics book by Thrun, Burgard and Fox.

= If you are a university lecturer, feel free to use the course
material. If you adapt the course material, please make sure
that you keep the acknowledgements to others and please
acknowledge me as well. To satisfy my own curiosity, please
send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de 54




