

MSC GEODETIC ENGINEERING

MSR-02: ADVANCED TECHNIQUES FOR MOBILE SENSING AND ROBOTICS (GEODESY TRACK)

04: SENSOR SYNCHRONIZATION

DR. LASSE KLINGBEIL

INSTITUTE FOR GEODESY AND GEOINFORMATION UNIVERSITY OF BONN

ADVANCED TECHNIQUES FOR MOBILE SENSING AND ROBOTICS – LECTURE CONTENT

- (1) Mobile Laser Scanning
- (2) Trajectory Estimation
- (3) System Calibration
- (4) Sensor Synchronisation
- (5) From Images to Point Clouds (SfM)
- (6) Accuracy of Point Clouds I
- (7) Accuracy of Point Clouds II
- (8) Deformation Analysis with Point Clouds I
- (9) Deformation Analysis with Point Clouds II

CHAPTER 1: MOBILE LASER SCANNING

$$\mathbf{p}_{object}^{global}(t_s) = \mathbf{T}_{body}^{global}(t_s) \cdot \mathbf{T}_{sensor}^{body} \cdot \mathbf{p}_{object}^{sensor}(t_s)$$

$$= \mathbf{Review of involved coordinate systems / frames}$$

$$= \mathbf{Derivation of detailed georeferencing equation for the example of mobile laser scanning}$$

$$\mathbf{x}_{e}_{v_{e}} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \mathbf{R}_{n}^{e}(L,B) \mathbf{R}_{b}^{n}(\phi,\theta,\psi) \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + \mathbf{R}_{s}^{b}(\alpha,\beta,\gamma) \cdot \begin{bmatrix} 0 \\ d \cdot \sin b \\ d \cdot \cos b \end{bmatrix} \end{bmatrix}$$

CHAPTER 2: TRAJECTORY PARAMETERS

- Review of inertial navigation, strapdown integration and Kalman Filtering
- Introduced Kalman Smoothing
- Evaluation of trajectory estimation

CHAPTER 3: SYSTEM CALIBRATION

$$\begin{bmatrix} x_e \\ y_e \\ z_e \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \mathbf{R}_n^e \left(L, B \right) \mathbf{R}_b^n \left(\phi, \theta, \psi \right) \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + \mathbf{R}_s^b \left(\alpha, \beta, \gamma \right) \cdot \begin{bmatrix} 0 \\ d \cdot \sin b \\ d \cdot \cos b \end{bmatrix} \end{bmatrix}$$

From: Chiang, K.-W.; Tsai, M.-L.; Naser, E.-S.; Habib, A.; Chu, C.-H. New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads. Sensors 2015, 15, 6560-6585.

- Overview of **system calibration** methods
- Detailed derivation of plane based calibration

CHAPTER 4: SENSOR SYNCHRONISATION

$$\begin{bmatrix} x_e \\ y_e \\ z_e \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \mathbf{R}_n^e \left(L, B \right) \mathbf{R}_b^n \left(\phi, \theta, \psi \right) \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + \mathbf{R}_s^b \left(\alpha, \beta, \gamma \right) \cdot \begin{bmatrix} 0 \\ d \cdot \sin b \\ d \cdot \cos b \end{bmatrix} \end{bmatrix}$$

- Why is sensor synchronization important?
- Methods for sensor synchronization

TYPICAL DATA RATES

Sensor	Typical rates
GNSS receiver	1-10Hz
Inertial measurement Unit	100-1000Hz
Laser scanner	100-1000kHz (point rate), 10-100Hz (profile rate)
Camera	1-100Hz
Depth Cameras	1-100Hz

- Time difference dt=dt'-dt" between scanner observation and trajectory parameter leads to wrong assignement of observations to the trajectory and therefore to a wrong transformation in the georeferencing equation
- Error depends on moving speed and rotation rate

TRANSLATION ERROR DUE TO TIME SYNC ERROR

REQUIRED TIME RESOLUTION [MILLISECONDS]

			Spatial Resolution			
	km/h	m/s	1 mm	1 cm	1 dm	1 m
Ň	3,6	1,0	1	10	100	1000
eloci	10,8	3,0	0,3	3	33	333
ty	100,0	27,8	0,04	0,36	3,6	36
	200,0	55,5	0,02	0,18	1,8	18

ROTATION ERROR → SCAN POINT ERROR DUE TO TIME SYNC ERROR

MANIPULATING THE ENVIRONMENT, CONTROL AND ACTION

• Perfoming an action at a specific position also needs high snychronization accuracy, depending on movement speed

		•	
Reference			distance

Example: GNSS controlled sugar beet seeding

Problem 1) How to assign a time stamp to a measurement?

Problem 2) What clock to use for time stamping?

Problem 3) How to synchronize multiple clocks

Sa

пh

15

UNIVERSITÄT BONN

igg

PROBLEM 1

HOW TO ASSIGNE A TIME STAMP TO A MEASUREMENT?

- Option 1: The sensor already already provides you with properly time tagged measurements
 →go directly to Problem 2 (what is the time base?)
- **Option 2**: The sensor provides an electronic signal (e.g. pulse) at the moment when the measurement happens
- **Option 3**: The sensors performs the measurement at the moment it receives a trigger in form of an electronic signal (e.g. pulse)

PROBLEM 1 – OPTION 1 (STAMPED DATA)

GNSS RECEIVERS

- GNSS receivers always provide data which are properly time stamped in *Coordinated Universal Time* (UTC) (more on that later)
- Most Inertial measurement systems, which contain a GNSS receiver, also provide data (position, orientation, accelaration, velocity, angular rate) time stamped in UTC

GNSS RECEIVERS

- Higher grade GNSS receivers provide an electronic signal (PPS: Pulse Per Second) at the time a GNSS measurement is performed
- This PPS can be also used to synchronize other clocks

(More on that later)

INDUSTRY CAMERAS

 Industry cameras usually provide a trigger output synchronized with the shutter

CONSUMER CAMERAS

- With some camera the hot shoe (flash synchronization)
 - can be used to generate an
 - electronic signal
- Not possible with all cameras
- Sometimes restricts exposure time

LASER SCANNERS

 Most scanners provide a signal when the profile crosses 0°

22

UNIVERSITÄT BON

up

180

starboard

PROBLEM 1: OPTION 3 (SEND TRIGGER)

LASER SCANNERS

- Some scanner mirror rotations can be synchronized with an external oszillation
- Does not really help with time synchronization, because it synchronizes oszillations not single events

PROBLEM 1: OPTION 3 (SEND TRIGGER)

CAMERAS

- Industry Cameras usually provide a trigger input signal
- Some consumer cameras also provide similar options

 Problem: It is not always clear, what happens between the trigger signal and the actual moment of exposure (e.g. autofocus, brightness adjustments, various settings)

PROBLEM 1 – NO OPTION

USB CONNECTED DEVICES

 USB connected sensors without any extra sync possibilities are in general problematic

From: Raphael Wimmer, Andreas Schmid, and Florian Bockes. 2019. On the Latency of USB-Connected Input Devices. In Proceedings of CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3290605.3300650

Latency and jitter of button clicks in USB mice

PROBLEM 2

WHAT CLOCK TO USE FOR TIME STAMPING?

• Measuring time is based on the bbservation of a periodic process and counting the periods

Periodic process	Representative time systems
Earth rotation	Universal time (UT)
	Greenwich sidereal time (Θ_0)
Earth revolution	Terrestrial dynamic time (TDT)
	Barycentric dynamic time (BDT)
Atomic oscillations	International atomic time (TAI)
	Coordinated UT (UTC)
	Reference time in satellite-based positioning systems

TIME SYSTEMS

- Universal time (UT) is based on the Earth Rotation Different versions account for changing effects such as polar motion and changing rotation rates (e.g. UT1)
- Atomic time (TAI) is based on the duration of a state transition of the Cs₁₃₃ atom.
- Coordinated UT (UTC) is using atomic time seconds, but keeping a maximum distance of 0.9sec to UT1 (needs introduction of leap seconds).
- Unix time is the number of seconds since <u>UTC</u> 01.01.1970, ignoring leap seconds
- GPS time (GPST) is maintained by the GPS monitoring network.
 GPST = UTC -18sec
 (leap seconds change when a UTC leap seconds change)

TIME SYSTEMS

GNSS

GNSS

- If a GNSS receiver has a position fix, it also has a "time fix"
- The bias between the receiver clock and the GPS time standard is freshly estimated with about 10Hz
- A good reveiver always updates its internal clock with the estimated offsets provides an electronic signal for every GPS time second (PPS)
- These information can be used to time stamp sensor data or synchronize other clocks.
- The PPS signal is stable within nanoseconds

PPS

PROBLEM 3

HOW TO SYNCHRONIZE MULTIPLE CLOCKS?

igg

UNIVERSITÄT BONN

PROBLEM 3 – CLOCK SYNC

OPTION 1: SYNC ALL CLOCKS WITH GNSS

igg

UNIVERSITÄT BONN

PROBLEM 3 – CLOCK SYNC

OPTION 2: SYNCHRONIZE CLOCKS VIA CLOCK SYNC PROTOCOL

UNIVERSITÄT BONN

gg

PRECISE TIME PROTOCOL (PTP)

PRECISE TIME PROTOCOL (PTP)

~ microseconds accuracy

NETWORK TIME PROTOCOL (NTP)

- A client measures round trip times to one or more servers of a higher hierachy level (stratum)
- Based on different algorithms the offset is calculated
- Synchronization is accurate in the order of 10s of milliseconds
- Works well for server networks
- Control loops for time synchromization need some time to converge, not ideal for sensors

wikipedia

TIME SYNC EXAMPLE

IGG MOBILE MAPPING SYSTEM

TIME SYNC EXAMPLE: PRECISE SEEDING OF SUGARBEET

- RTK GPS
- Gyroscope
- Odometer
- Kalman Filter
- Realtime Processing

Controlled seeding wheel

TIME SYNC EXAMPLE: PRECISE SEEDING OF SUGARBEET

TIME SYNC EXAMPLE: PRECISE SEEDING OF SUGARBEET

Lammers, P.; Schmittmann, O.; Klingbeil, L.; Wieland, M.; Kuhlmann, H. (2017): Coordinate controlled placement of sugar beet seeds. Proceedings of the 45th International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, 21-24 February 2017, Opatija, Croatia, 293-301.

WHAT YOU HAVE LEARNED TODAY

- Why is synchronization between sensors important?
- What synchronization accuracy is needed?
- What are the critical points in synchronization?
- How can GNSS receivers be used for synchronization?
- How can clocks in computer networks be synchronized?
- How is sensor synchronization realized in the IGG mobile mapping system?

THANKS