
Modern C++ for
Computer Vision and
Image Processing

Lecture 8: Memory
Management
Ignacio Vizzo and Cyrill Stachniss

Working memory or RAM

http://www.clipartkid.com

Working memory has linear addressing

Every byte has an address usually
presented in hexadecimal form,
e.g. 0x7fffb7335fdc
Any address can be accessed at random

Pointer is a type to store memory
addresses

1

Pointer
<TYPE>* defines a pointer to type <TYPE>
The pointers have a type

Pointer <TYPE>* can point only to a variable
of type <TYPE>
Uninitialized pointers point to a random
address

Always initialize pointers to an address or a
nullptr

Example:

1 int* a = nullptr;
2 double* b = nullptr;
3 YourType* c = nullptr;

2

Non-owning pointers

Memory pointed to by a raw pointer is not
removed when pointer goes out of scope

Pointers can either own memory or not

Owning memory means being responsible
for its cleanup

Raw pointers should never own
memory

We will talk about smart pointers that
own memory later

3

Address operator for pointers

Operator & returns the address of the
variable in memory

Return value type is “pointer to value type”

sizeof(pointer) is 8 bytes in 64bit systems

Example:
1 int a = 42;
2 int* a_ptr = &a;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ... n

int a; int* a_ptr = &a;

&a

http://www.cplusplus.com/doc/tutorial/pointers/

4

http://www.cplusplus.com/doc/tutorial/pointers/

Pointer to pointer

Example:

1 int a = 42;
2 int* a_ptr = &a;
3 int** a_ptr_ptr = &a_ptr;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ... n

int a; int* a_ptr = &a; int** a_ptr2 = &a_ptr;

&a &a_ptr

6

Pointer dereferencing

Operator * returns the value of the variable
to which the pointer points

Dereferencing of nullptr:
Segmentation Fault

Dereferencing of uninitialized pointer:
Undefined Behavior

7

Pointer dereferencing

1 #include <iostream>
2 using std::cout; using std::endl;
3 int main() {
4 int a = 42;
5 int* a_ptr = &a;
6 int b = *a_ptr;
7 cout << "a = " << a << " b = " << b << endl;
8 *a_ptr = 13;
9 cout << "a = " << a << " b = " << b << endl;

10 return 0;
11 }

Output:

1 a = 42, b = 42
2 a = 13, b = 42

8

Uninitialized pointer

1 #include <iostream>
2 using std::cout;
3 using std::endl;
4 int main() {
5 int* i_ptr; // BAD! Never leave unitialized!
6 cout << "ptr address: " << i_ptr << endl;
7 cout << "value under ptr: " << *i_ptr << endl;
8 i_ptr = nullptr;
9 cout << "new ptr address: " << i_ptr << endl;

10 cout << "ptr size: " << sizeof(i_ptr) << " bytes";
11 cout << " (" << sizeof(i_ptr) * 8 << "bit) " << endl;
12 return 0;
13 }

1 ptr address: 0x400830
2 value under ptr: -1991643855
3 new ptr address: 0
4 ptr size: 8 bytes (64bit)

9

Important

Always initialize with a value or a nullptr
Dereferencing a nullptr causes a
Segmentation Fault

Use if to avoid Segmentation Faults

1 if(some_ptr) {
2 // only enters if some_ptr != nullptr
3 }
4 if(!some_ptr) {
5 // only enters if some_ptr == nullptr
6 }

10

Arrays in memory and pointers

0x4

ar[0]

0xc 0x14 0x1c
&ar[0] &ar[1] &ar[2]

ar[1] ar[2]Value

Address ar

Array elements are continuous in
memory

Name of an array is an alias to a pointer:

1 double ar[3];
2 double* ar_ptr = ar;
3 double* ar_ptr = &ar[0];

Get array elements with operator []

11

Careful! Overflow!

1 #include <iostream>
2 int main() {
3 int ar[] = {1, 2, 3};
4 // WARNING! Iterating too far!
5 for (int i = 0; i < 6; i++){
6 std::cout << i << ": value: " << ar[i]
7 << "\t addr:" << &ar[i] << std::endl;
8 }
9 return 0;

10 }

1 0: value: 1 addr:0x7ffd17deb4e0
2 1: value: 2 addr:0x7ffd17deb4e4
3 2: value: 3 addr:0x7ffd17deb4e8
4 3: value: 0 addr:0x7ffd17deb4ec
5 4: value: 4196992 addr:0x7ffd17deb4f0
6 5: value: 32764 addr:0x7ffd17deb4f4

12

Using pointers for classes

Pointers can point to objects of custom
classes:

1 std::vector<int> vector_int;
2 std::vector<int>* vec_ptr = &vector_int;
3 MyClass obj;
4 MyClass* obj_ptr = &obj;

Call object functions from pointer with ->
1 MyClass obj;
2 obj.MyFunc();
3 MyClass* obj_ptr = &obj;
4 obj_ptr->MyFunc();

obj->Func() ↔ (*obj).Func()
13

Pointers are polymorphic

Pointers are just like references, but have
additional useful properties:

Can be reassigned
Can point to “nothing” (nullptr)
Can be stored in a vector or an array

Use pointers for polymorphism

1 Derived derived;
2 Base* ptr = &derived;

Example: for implementing strategy store
a pointer to the strategy interface and
initialize it with nullptr and check if it is set
before calling its methods

14

1 struct AbstractShape {
2 virtual void Print() const = 0;
3 };
4 struct Square : public AbstractShape {
5 void Print() const override { cout << "Square\n"; }
6 };
7 struct Triangle : public AbstractShape {
8 void Print() const override { cout << "Triangle\n"; }
9 };

10
11 int main() {
12 std::vector<AbstractShape*> shapes;
13 Square square;
14 Triangle triangle;
15 shapes.push_back(&square);
16 shapes.push_back(&triangle);
17 for (const auto& shape : shapes) {
18 shape->Print();
19 }
20 return 0;
21 }

15

this pointer

Every object of a class or a struct holds a
pointer to itself

This pointer is called this
Allows the objects to:

Return a reference to themselves: return *this;
Create copies of themselves within a function
Explicitly show that a member belongs to the
current object: this->x();
this is a C++ keyword

https://en.cppreference.com/w/cpp/language/this

16

https://en.cppreference.com/w/cpp/language/this

Using const with pointers

Pointers can point to a const variable:
1 // Cannot change value, can reassign pointer.
2 const MyType* const_var_ptr = &var;
3 const_var_ptr = &var_other;

Pointers can be const:
1 // Cannot reassign pointer, can change value.
2 MyType* const var_const_ptr = &var;
3 var_const_ptr ->a = 10;

Pointers can do both at the same time:
1 // Cannot change in any way, read-only.
2 const MyType* const const_var_const_ptr = &var;

Read from right to left to see which const
refers to what

17

Memory management structures

Working memory is divided into two parts:

Stack and Heap

stack
http://www.freestockphotos.biz

heap
https://pixabay.com

18

Stack memory

Static memory

Available for short term storage (scope)

Small / limited (8 MB Linux typically)

Memory allocation is fast

LIFO (Last in First out) structure

Items added to top of the stack with push

Items removed from the top with pop
19

Stack memory

10

stack frame

9

8

7

6

5

4

3

2

1

0

command: 2 x pop()

20

Heap memory

Dynamic memory

Available for long time (program runtime)

Raw modifications possible with new and
delete (usually encapsulated within a class)

Allocation is slower than stack allocations

21

Operators new and new[]
User controls memory allocation (unsafe)

Use new to allocate data:
1 // pointer variable stored on stack
2 int* int_ptr = nullptr;
3 // 'new' returns a pointer to memory in heap
4 int_ptr = new int;
5
6 // also works for arrays
7 float* float_ptr = nullptr;
8 // 'new' returns a pointer to an array on heap
9 float_ptr = new float[number];

new returns an address of the variable on
the heap

Prefer using smart pointers!

22

Operators delete and delete[]
Memory is not freed automatically!

User must remember to free the memory

Use delete or delete[] to free memory:
1 int* int_ptr = nullptr;
2 int_ptr = new int;
3 // delete frees memory to which the pointer points
4 delete int_ptr;
5
6 // also works for arrays
7 float* float_ptr = nullptr;
8 float_ptr = new float[number];
9 // make sure to use 'delete[]' for arrays

10 delete[] float_ptr;

Prefer using smart pointers!

23

Example: heap memory
1 #include <iostream>
2 using std::cout; using std::endl;
3 int main() {
4 int size = 2; int* ptr = nullptr;
5 {
6 ptr = new int[size];
7 ptr[0] = 42; ptr[1] = 13;
8 } // End of scope does not free heap memory!
9 // Correct access, variables still in memory.

10 for (int i = 0; i < size; ++i) {
11 cout << ptr[i] << endl;
12 }
13 delete[] ptr; // Free memory.
14 for (int i = 0; i < size; ++i) {
15 // Accessing freed memory. UNDEFINED!
16 cout << ptr[i] << endl;
17 }
18 return 0;
19 }

24

Memory leak

Can happen when working with Heap
memory if we are not careful

Memory leak: memory allocated on Heap
access to which has been lost

25

Memory leak

Can happen when working with Heap
memory if we are not careful

Memory leak: memory allocated on Heap
access to which has been lost

25

Memory leak

Can happen when working with Heap
memory if we are not careful

Memory leak: memory allocated on Heap
access to which has been lost

ptr_1

ptr_2

Heap

LEAKED!

25

Memory leak (delete)
1 int main() {
2 int *ptr_1 = nullptr;
3 int *ptr_2 = nullptr;
4
5 // Allocate memory for two bytes on the heap.
6 ptr_1 = new int;
7 ptr_2 = new int;
8 cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
9

10 // Overwrite ptr_2 and make it point where ptr_1
11 ptr_2 = ptr_1;
12
13 // ptr_2 overwritten , no chance to access the memory.
14 cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
15 delete ptr_1;
16 delete ptr_2;
17 return 0;
18 }

26

Error: double free or corruption

1 ptr_1: 0x10a3010 , ptr_2: 0x10a3070
2 ptr_1: 0x10a3010 , ptr_2: 0x10a3010
3 *** Error: double free or corruption (fasttop): 0

x00000000010a3010 ***

The memory under address 0x10a3070 is
never freed

Instead we try to free memory under
0x10a3010 twice
Freeing memory twice is an error

27

Tools to the rescue

Standard tools like: valgrind ./my_program
Compiler flags -fsanitize=address
Stackoverflow!

28

code-fsanitize=address

1 ===
2 ==19747==ERROR: AddressSanitizer: attempting double-

free on 0x602000000010 in thread T0:
3 # ... more stuff
4 0x602000000010 is located 0 bytes inside of 4-byte
5 # ... even more stuff
6 SUMMARY: AddressSanitizer: double-free in operator

delete(void*, unsigned long)
7 # ... even more more stuff
8 ==19747==ABORTING

29

valgrind output

1 HEAP SUMMARY:
2 in use at exit: 4 bytes in 1 blocks
3 total heap usage: 4 allocs, 4 frees, 76,808 bytes

allocated
4
5 LEAK SUMMARY:
6 definitely lost: 4 bytes in 1 blocks
7 indirectly lost: 0 bytes in 0 blocks
8 possibly lost: 0 bytes in 0 blocks
9 still reachable: 0 bytes in 0 blocks

10 suppressed: 0 bytes in 0 blocks
11 Rerun with --leak-check=full to see details of leaked

memory
12
13 For counts of detected and suppressed errors, rerun

with: -v
14 ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0

from 0)

30

Memory leak example
1 int main() {
2 double *data = nullptr;
3 size_t size = pow(1024, 3) / 8; // Produce 1GB
4
5 for (int i = 0; i < 4; ++i) {
6 // Allocate memory for the data.
7 data = new double[size];
8 std::fill(data, data + size, 1.23);
9 // Do some important work with the data here.

10 cout << "Iteration: " << i << " done. " << (i + 1)
11 << " GiB has been allocated!" << endl;
12 }
13
14 // This will only free the last allocation!
15 delete[] data;
16 int unused;
17 std::cin >> unused; // Wait for user.
18 return 0;
19 } 31

Memory leak example

If we run out of memory an std::bad_alloc
error is thrown

Be careful running this example, everything
might become slow

1 # ...
2 Iteration: 19 done. 20 GiB has been allocated!
3 Iteration: 20 done. 21 GiB has been allocated!
4 Iteration: 21 done. 22 GiB has been allocated!
5 Iteration: 22 done. 23 GiB has been allocated!
6 terminate called after throwing an instance of 'std::

bad_alloc '
7 what(): std::bad_alloc
8 [1] 30561 abort (core dumped) ./memory_leak_2

32

Dangling pointer

1 int* ptr_1 = some_heap_address;
2 int* ptr_2 = some_heap_address;
3 delete ptr_1;
4 ptr_1 = nullptr;
5 // Cannot use ptr_2 anymore! Behavior undefined!

33

Dangling pointer

1 int* ptr_1 = some_heap_address;
2 int* ptr_2 = some_heap_address;
3 delete ptr_1;
4 ptr_1 = nullptr;
5 // Cannot use ptr_2 anymore! Behavior undefined!

33

Dangling pointer

1 int* ptr_1 = some_heap_address;
2 int* ptr_2 = some_heap_address;
3 delete ptr_1;
4 ptr_1 = nullptr;
5 // Cannot use ptr_2 anymore! Behavior undefined!

ptr_1

ptr_2

Heap > ptr_1 = NULL;

33

Dangling pointer

Dangling Pointer: pointer to a freed
memory

Think of it as the opposite of a memory leak

Dereferencing a dangling pointer causes
undefined behavior

34

Dangling pointer example

1 #include <iostream>
2 using std::cout; using std::endl;
3 int main() {
4 int size = 5;
5 int *ptr_1 = new int[size];
6 int *ptr_2 = ptr_1; // Point to same data!
7 ptr_1[0] = 100; // Set some data.
8 cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
9 cout << "ptr_2[0]: " << ptr_2[0] << endl;

10 delete[] ptr_1; // Free memory.
11 ptr_1 = nullptr;
12 cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
13 // Data under ptr_2 does not exist anymore!
14 cout << "ptr_2[0]: " << ptr_2[0] << endl;
15 return 0;
16 }

35

Even worse when used in

functions

1 #include <stdio.h>
2 // data processing
3 int* GenerateData(int size);
4 void UseDataForGood(const int* const data, int size);
5 void UseDataForBad(const int* const data, int size);
6 int main() {
7 int size = 10;
8 int* data = GenerateData(size);
9 UseDataForGood(data, size);

10 UseDataForBad(data, size);
11 // Is data pointer valid here? Should we free it?
12 // Should we use 'delete[]' or 'delete'?
13 delete[] data; // ?????????????
14 return 0;
15 }

36

Memory leak or

dangling pointer

1 void UseDataForGood(const int* const data, int size) {
2 // Process data, do not free. Leave it to caller.
3 }
4 void UseDataForBad(const int* const data, int size) {
5 delete[] data; // Free memory!
6 data = nullptr; // Another problem - this does

nothing!
7 }

Memory leak if nobody has freed the
memory

Dangling Pointer if somebody has freed
the memory in a function

37

RAII

Resource Allocation Is Initialization.
New object → allocate memory
Remove object → free memory
Objects own their data!

1 class MyClass {
2 public:
3 MyClass() { data_ = new SomeOtherClass; }
4 ~MyClass() {
5 delete data_;
6 data_ = nullptr;
7 }
8 private:
9 SomeOtherClass* data_;

10 };

Still cannot copy an object of MyClass!!!
38

1 struct SomeOtherClass {};
2 class MyClass {
3 public:
4 MyClass() { data_ = new SomeOtherClass; }
5 ~MyClass() {
6 delete data_;
7 data_ = nullptr;
8 }
9 private:

10 SomeOtherClass* data_;
11 };
12 int main() {
13 MyClass a;
14 MyClass b(a);
15 return 0;
16 }

1 *** Error in `raii_example ':
2 double free or corruption: 0x0000000000877c20 ***

39

Shallow vs deep copy

Shallow copy: just copy pointers, not data

Deep copy: copy data, create new pointers

Default copy constructor and assignment
operator implement shallow copying

RAII + shallow copy → dangling pointer

RAII + Rule of All Or Nothing → correct

Use smart pointers instead!

40

Smart pointers

41

Raw pointers are hard to love

1. Its declaration doesn’t indicate whether it
points to a single object or to an array.

2. Its declaration reveals nothing about
whether you should destroy what it points
to when you’re done using it, i.e., if the
pointer owns the thing it points to.

3. If you determine that you should destroy
what the pointer points to, there’s no way
to tell how. Should you use delete, or is
there a different destruction mechanism
(e.g., a dedicated destruction function the
pointer should be passed to)?

42

Raw pointers are hard to love

4. If you manage to find out that delete is the
way to go, Reason 1 means it may not be
possible to know whether to use the
single-object form (“delete”) or the array
form (“delete []”). If you use the wrong
form, results are undefined.

5. There’s typically no way to tell if the pointer
dangles, i.e., points to memory that no
longer holds the object the pointer is
supposed to point to. Dangling pointers
arise when objects are destroyed while
pointers still point to them.

43

Smart pointers

Smart pointers wrap a raw pointer into a
class and manage its lifetime (RAII)

Smart pointers are all about ownership

Always use smart pointers when the pointer
should own heap memory

Only use them with heap memory!

Still use raw pointers for non-owning
pointers and simple address storing

#include <memory> to use smart pointers

44

C++11 smart pointers types

C++11 Smart Pointers

 std::auto_ptr std::unique_ptr std::shared_ptr std::weak_ptr

We will focus on 2 types of smart pointers:

std::unique_ptr
std::shared_ptr

45

Smart pointers manage memory!

Smart pointers apart from memory allocation
behave exactly as raw pointers:

Can be set to nullptr
Use *ptr to dereference ptr
Use ptr-> to access methods

Smart pointers are polymorphic

Additional functions of smart pointers:

ptr.get() returns a raw pointer that the
smart pointer manages

ptr.reset(raw_ptr) stops using currently
managed pointer, freeing its memory if
needed, sets ptr to raw_ptr

46

std::unique_ptr example

47

std::unique_ptr example

Create an unique_ptr to a type Vehicle
1 std::unique_ptr <Vehicle> vehicle_1 =
2 std::make_unique <Bus>(20, 10, "Volkswagen", "LPM_");
3
4 std::unique_ptr <Vehicle> vehicle_2 =
5 std::make_unique <Car>(4, 60, "Ford", "Sony");

Now you can have fun as we had with raw
pointers

1 // vehicle_x is a pointer, so we can us it as it is
2 vehicle_1 ->Print();
3 vehicle_2 ->Print();

48

std::unique_ptr example

unique_ptr are unique: This means that
we can move stuff but not copy:

1 vehicle_2 = std::move(vehicle_1);

Address of the pointers before the move:
1 cout << "vehicle_1 = " << vehicle_1.get() << endl;
2 cout << "vehicle_2 = " << vehicle_2.get() << endl;

1 vehicle_1 = 0x56330247ce70
2 vehicle_2 = 0x56330247cec0

Address of the pointers after the move:
1 vehicle_2 = 0x56330247ce70
2 vehicle_1 = 0

49

std::unique_ptr example

50

std::unique_ptr example

51

Unique pointer (std::unique_ptr)

Constructor of a unique pointer takes
ownership of a provided raw pointer

No runtime overhead over a raw pointer

Syntax for a unique pointer to type Type:
1 #include <memory>
2 // Using default constructor Type();
3 auto p = std::unique_ptr <Type>(new Type);
4 // Using constructor Type(<params >);
5 auto p = std::unique_ptr <Type>(new Type(<params >));

From C++14 on:
1 // Forwards <params> to constructor of unique_ptr
2 auto p = std::make_unique <Type>(<params >);

0http://en.cppreference.com/w/cpp/memory/unique_ptr
52

http://en.cppreference.com/w/cpp/memory/unique_ptr

What makes it “unique”

Unique pointer has no copy constructor

Cannot be copied, can be moved

Guarantees that memory is always owned
by a single std::unique_ptr
A non-null std::unique_ptr always owns
what it points to.

Moving a std::unique_ptr transfers
ownership from the source pointer to the
destination pointer. (The source pointer is
set to nullptr.)

53

Shared pointer (std::shared_ptr)

What if we want to use the same pointer
for different resources?

An object accessed via std::shared_ptrs
has its lifetime managed by those pointers
through shared ownership.

No specific std::shared_ptr owns the
object.

When the last std::shared_ptr pointing to
an object stops pointing there, that
std::shared_ptr destroys the object it
points to.

54

Shared pointer (std::shared_ptr)

Constructed just like a unique_ptr
Can be copied
Stores a usage counter and a raw pointer

Increases usage counter when copied
Decreases usage counter when destructed

Frees memory when counter reaches 0
Can be initialized from a unique_ptr
Syntax:

1 #include <memory>
2 // Using default constructor Type();
3 auto p = std::shared_ptr <Type>(new Type);
4 auto p = std::make_shared <Type>();
5
6 // Using constructor Type(<params >);
7 auto p = std::shared_ptr <Type>(new Type(<params >));
8 auto p = std::make_shared <Type>(<params >);

0http://en.cppreference.com/w/cpp/memory/shared_ptr 55

http://en.cppreference.com/w/cpp/memory/shared_ptr

Shared pointer
1 class MyClass {
2 public:
3 MyClass() { cout << "I'm alive!\n"; }
4 ~MyClass() { cout << "I'm dead... :(\n"; }
5 };
6
7 int main() {
8 auto a_ptr = std::make_shared <MyClass >();
9 cout << a_ptr.use_count() << endl;

10 {
11 auto b_ptr = a_ptr;
12 cout << a_ptr.use_count() << endl;
13 }
14 cout << "Back to main scope\n";
15 cout << a_ptr.use_count() << endl;
16 return 0;
17 }

56

When to use what?

Use smart pointers when the pointer must
manage memory

By default use unique_ptr
If multiple objects must share ownership
over something, use a shared_ptr to it

Think of any free standing new or delete as
of a memory leak or a dangling pointer:

Don’t use delete
Allocate memory with make_unique, make_shared
Only use new in smart pointer constructor if
cannot use the functions above

57

Typical beginner error

1 int main() {
2 // Allocate a variable in the stack
3 int a = 42;
4
5 // Create a pointer to that part of the memory
6 int* ptr_to_a = &a;
7
8 // Know stuff about pointers eh?
9 auto a_unique_ptr = std::unique_ptr <int>(ptr_to_a);

10
11 // Same happens with std::shared_ptr.
12 auto a_shared_ptr = std::shared_ptr <int>(ptr_to_a);
13
14 std::cout << "Program terminated correctly!!!\n";
15 return 0;
16 }

58

Typical beginner error
1 int* ptr_to_a = &a;
2
3 // Know stuff about pointers eh?
4 auto a_unique_ptr = std::unique_ptr <int>(ptr_to_a);
5
6 // Same happens with std::shared_ptr.
7 auto a_shared_ptr = std::shared_ptr <int>(ptr_to_a);

1 Program terminated correctly!!!
2 munmap_chunk(): invalid pointer
3 [1] 4455 abort (core dumped) ./wrong_unique

Create a smart pointer from a pointer to a
stack-managed variable
The variable ends up being owned both by
the smart pointer and the stack and gets
deleted twice → Error!

59

Polymorphism example using

smart pointers
1 #include <memory>
2 #include <vector>
3 using std::make_unique;
4 using std::unique_ptr;
5 using std::vector;
6
7 int main() {
8 vector<unique_ptr <Rectangle >> shapes;
9 shapes.emplace_back(make_unique <Rectangle >(10, 15));

10 shapes.emplace_back(make_unique <Square >(10));
11
12 for (const auto &shape : shapes) {
13 shape->Print();
14 }
15
16 return 0;
17 }

60

Suggested Video

Smart Pointers (short)

https://youtu.be/UOB7-B2MfwA

62

https://youtu.be/UOB7-B2MfwA

Suggested Video

Smart Pointers (in deep)

https://youtu.be/xGDLkt-jBJ4

63

https://youtu.be/xGDLkt-jBJ4

References

Dynamic Memory Management
https://en.cppreference.com/w/cpp/memory

Intro to Smart Pointers
https://en.cppreference.com/book/intro/smart_pointers

Shared Pointers
https://en.cppreference.com/w/cpp/memory/shared_ptr

Unique Pointers
https://en.cppreference.com/w/cpp/memory/unique_ptr

64

https://en.cppreference.com/w/cpp/memory
https://en.cppreference.com/book/intro/smart_pointers
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

	Raw pointers
	Pointer to Classes
	Stack and Heap
	Memory Issues
	Memory leak
	Dangling pointer
	RAII

	Smart pointers
	Unique pointer
	Shared pointer

