
Modern C++ for
Computer Vision and
Image Processing

Lecture 7: Object Oriented
Design
Ignacio Vizzo and Cyrill Stachniss



Inheritance

0https://www.geeksforgeeks.org/inheritance-in-c/
1

https://www.geeksforgeeks.org/inheritance-in-c/


C vs C++ Inheritance Example

C Code
1 // "Base" class, Vehicle
2 typedef struct vehicle {
3 int seats_; // number of seats on the vehicle
4 int capacity_; // amount of fuel of the gas tank
5 char* brand_; // make of the vehicle
6 } vehicle_t;

C++ Code
1 class Vehicle {
2 private:
3 int seats_ = 0; // number of seats on the vehicle
4 int capacity_ = 0; // amount of fuel of the gas tank
5 string brand_; // make of the vehicle

2



Inheritance

Class and struct can inherit data and
functions from other classes
There are 3 types of inheritance in C++:
public [used in this course] GOOGLE-STYLE
protected
private

public inheritance keeps all access
specifiers of the base class

0https://google.github.io/styleguide/cppguide.html#Inheritance
3

https://google.github.io/styleguide/cppguide.html#Inheritance


Public inheritance

Public inheritance stands for “is a”
relationship, i.e. if class Derived inherits
publicly from class Base we say, that
Derived is a kind of Base

1 class Derived : public Base {
2 // Contents of the derived class.
3 };

Allows Derived to use all public and
protected members of Base
Derived still gets its own special functions:
constructors, destructor, assignment
operators

4



1 #include <iostream>
2 using std::cout; using std::endl;
3 class Rectangle {
4 public:
5 Rectangle(int w, int h) : width_{w}, height_{h} {}
6 int width() const { return width_; }
7 int height() const { return height_; }
8 protected:
9 int width_ = 0;

10 int height_ = 0;
11 };
12 class Square : public Rectangle {
13 public:
14 explicit Square(int size) : Rectangle{size, size} {}
15 };
16 int main() {
17 Square sq(10); // Short name to save space.
18 cout << sq.width() << " " << sq.height() << endl;
19 return 0;
20 }

5



Function overriding

A function can be declared virtual
1 virtual Func(<PARAMS >);

If function is virtual in Base class it can be
overridden in Derived class:

1 Func(<PARAMS >) override;

Base can force all Derived classes to override
a function by making it pure virtual

1 virtual Func(<PARAMS >) = 0;

6



Overloading vs overriding

Do not confuse function overloading and
overriding
Overloading:
Pick from all functions with the same name, but
different parameters
Pick a function at compile time
Functions don’t have to be in a class

Overriding:
Pick from functions with the same arguments
and names in different classes of one class
hierarchy
Pick at runtime

7



Abstract classes and interfaces

Abstract class: class that has at least one
pure virtual function

Interface: class that has only pure virtual
functions and no data members

8



How virtual works

A class with virtual functions has a virtual
table

When calling a function the class checks
which of the virtual functions that match
the signature should be called

Called runtime polymorphism

Costs some time but is very convenient

9



Using interfaces

Use interfaces when you must enforce
other classes to implement some
functionality

Allow thinking about classes in terms of
abstract functionality

Hide implementation from the caller

Allow to easily extend functionality by
simply adding a new class

10



1 #include <iostream>
2 using std::cout;
3 using std::endl;
4 struct Printable { // Saving space. Should be a class.
5 virtual void Print() const = 0;
6 };
7 struct A : public Printable {
8 void Print() const override { cout << "A" << endl; }
9 };

10 struct B : public Printable {
11 void Print() const override { cout << "B" << endl; }
12 };
13 void Print(const Printable& var) { var.Print(); }
14 int main() {
15 Print(A());
16 Print(B());
17 return 0;
18 }

11



Geometry2D and Image
Open3D::Geometry::Geometry2D

1 class Geometry2D {
2 public:
3 Geometry& Clear() = 0;
4 bool IsEmpty() const = 0;
5 virtual Eigen::Vector2d GetMinBound() const = 0;
6 virtual Eigen::Vector2d GetMaxBound() const = 0;
7 };

Open3D::Geometry::Image
1 class Image : public Geometry2D {
2 public:
3 Geometry& Clear() override;
4 bool IsEmpty() const override;
5 virtual Eigen::Vector2d GetMinBound() const override;
6 virtual Eigen::Vector2d GetMaxBound() const override;
7 };

12



Polymorphism

From Greek polys, "many, much"
and morphē, "form, shape"

-Wiki

Allows morphing derived classes into their
base class type:
const Base& base = Derived(…)

13



Polymorphism Example 1

1 class Rectangle {
2 public:
3 Rectangle(int w, int h) : width_{w}, height_{h} {}
4 int width() const { return width_; }
5 int height() const { return height_; }
6
7 protected:
8 int width_ = 0;
9 int height_ = 0;

10 };
11
12 class Square : public Rectangle {
13 public:
14 explicit Square(int size) : Rectangle{size, size} {}
15 };

14



Polymorphism Example 1

No real Polymorphism, just use all the
objects as they are

1 #include <iostream>
2 using std::cout;
3 using std::endl;
4 int main() {
5 Square sq(10);
6 cout << "Sq:" << sq.width() << " " << sq.height();
7
8 Rectangle rec(10, 15);
9 cout << "Rec:" << sq.width() << " " << sq.height();

10 return 0;
11 }

15



Polymorphism Example 2

1 class Rectangle {
2 public:
3 Rectangle(int w, int h) : width_{w}, height_{h} {}
4 int width() const { return width_; }
5 int height() const { return height_; }
6
7 void Print() const {
8 cout << "Rec:" << width_ << " " << height_ << endl;
9 }

1 class Square : public Rectangle {
2 public:
3 explicit Square(int size) : Rectangle{size, size} {}
4 void Print() const {
5 cout << "Sq:" << width_ << " " << height_ << endl;
6 }
7 };

16



Polymorphism Example 2

Better than manually calling the getter
methods, but still need to explicitly call the
Print() function for each type of object.
Again, no real Polymorphism

1 int main() {
2 Square sq(10);
3 sq.Print();
4
5 Rectangle rec(10, 15);
6 rec.Print();
7
8 return 0;
9 }

17



1 virtual void Rectangle::Print() const {
2 cout << "Rec:" << width_ << " " << height_ << endl;
3 }

1 void Square::Print() const override {
2 cout << "Sq:" << width_ << " " << height_ << endl;
3 }

1 void PrintShape(const Rectangle& rec) { rec.Print(); }

1 int main() {
2 Square sq(10);
3 Rectangle rec(10, 15);
4
5 PrintShape(rec);
6 PrintShape(sq);
7
8 return 0;
9 }

18



Now we are using Runtime Polymorphism,
we are printing shapes to the std::cout and
deciding at runtime with type of shape it is

19



std::vector<Rectangle>

1 #include <memory>
2 #include <vector>
3 using std::make_unique;
4 using std::unique_ptr;
5 using std::vector;
6
7 int main() {
8 vector<unique_ptr <Rectangle >> shapes;
9 shapes.emplace_back(make_unique <Rectangle >(10, 15));

10 shapes.emplace_back(make_unique <Square >(10));
11
12 for (const auto &shape : shapes) {
13 shape->Print();
14 }
15
16 return 0;
17 }

20



When is it useful?

Allows encapsulating the implementation
inside a class only asking it to conform to a
common interface
Often used for:
Working with all children of some Base class in
unified manner
Enforcing an interface in multiple classes to force
them to implement some functionality
In strategy pattern, where some complex
functionality is outsourced into separate classes
and is passed to the object in a modular fashion

21



Creating a class hierarchy

Sometimes classes must form a hierarchy
Distinguish between is a and has a to test
if the classes should be in one hierarchy:
Square is a Shape: can inherit from Shape
Student is a Human: can inherit from Human
Car has a Wheel: should not inherit each other

GOOGLE-STYLE Prefer composition,
i.e. including an object of another class as a
member of your class

NACHO-STYLE Don’t get too excited, use it
only when improves
code performance/readability.
0https://google.github.io/styleguide/cppguide.html#Inheritance

22

https://google.github.io/styleguide/cppguide.html#Inheritance


Casting type of variables

Every variable has a type

Types can be converted from one to another

Type conversion is called type casting

23



Casting type of variables

There are 5 ways of type casting:
static_cast
reinterpret_cast
const_cast
dynamic_cast
C-style cast(unsafe), will try to:

const_cast
static_cast
static_cast, then const_cast (change type + remove
const)
reinterpret_cast
reinterpret_cast, then const_cast (change type +
remove const)

24



static_cast

Syntax: static_cast<NewType>(variable)
Convert type of a variable at compile time

Rarely needed to be used explicitly

Can happen implicitly for some types,
e.g. float can be cast to int
Pointer to an object of a Derived class can
be upcast to a pointer of a Base class

Enum value can be caster to int or float
Full specification is complex!

0
Full specs: http://en.cppreference.com/w/cpp/language/static_cast

25

http://en.cppreference.com/w/cpp/language/static_cast


dynamic_cast

Syntax: dynamic_cast<Base*>(derived_ptr)
Used to convert a pointer to a variable of
Derived type to a pointer of a Base type
Conversion happens at runtime

If derived_ptr cannot be converted to Base*
returns a nullptr
GOOGLE-STYLE Avoid using dynamic casting

0
Full specs: http://en.cppreference.com/w/cpp/language/dynamic_cast

26

http://en.cppreference.com/w/cpp/language/dynamic_cast


reinterpret_cast

Syntax:
reinterpret_cast<NewType>(variable)
Reinterpret the bytes of a variable as
another type

We must know what we are doing!

Mostly used when writing binary data

0
Full specs: http://en.cppreference.com/w/cpp/language/reinterpret_cast

27

http://en.cppreference.com/w/cpp/language/reinterpret_cast


const_cast

Syntax: const_cast<NewType>(variable)
Used to “constify” objects

Used to “de-constify” objects

Not widely used

0
Full specs: http://en.cppreference.com/w/cpp/language/const_cast

28

http://en.cppreference.com/w/cpp/language/const_cast


Google Style

GOOGLE-STYLE Do not use C-style casts.
Instead, use these C++-style casts when
explicit type conversion is necessary.

GOOGLE-STYLEUse brace initialization to
convert arithmetic types (e.g. int64{x}).
This is the safest approach because code
will not compile if conversion can result in
information loss. The syntax is also
concise.

29



Google Style

GOOGLE-STYLE Use static_cast as the
equivalent of a C-style cast that does value
conversion, when you need to explicitly
up-cast a pointer from a class to its
superclass, or when you need to explicitly
cast a pointer from a superclass to a
subclass. In this last case, you must be
sure your object is actually an instance of
the subclass.

30



Google Style

GOOGLE-STYLE Use const_cast to remove the
const qualifier (see const).

GOOGLE-STYLE Use reinterpret_cast to do
unsafe conversions of pointer types to and
from integer and other pointer types. Use
this only if you know what you are doing
and you understand the aliasing issues.

31



Using strategy pattern

If a class relies on complex external
functionality use strategy pattern

Allows to add/switch functionality of the
class without changing its implementation

All strategies must conform to one strategy
interface

32



1 class Strategy {
2 public:
3 virtual void Print() const = 0;
4 };

1 class StrategyA : public Strategy {
2 public:
3 void Print() const override { cout << "A" << endl; }
4 };
5
6 class StrategyB : public Strategy {
7 public:
8 void Print() const override { cout << "B" << endl; }
9 };

So far, nothing is new with this source code.
We just defined an interface and then we
derived 2 classes from this interface and
implemented the virtual methods.

33



1 class MyClass {
2 public:
3 explicit MyClass(const Strategy& s) : strategy_(s) {}
4 void Print() const { strategy_.Print(); }
5
6 private:
7 const Strategy& strategy_;
8 };

MyClass holds a const reference to an
object of type Strategy.
The strategy will be “picked” when we
create an object of the class MyClass.
We don’t need to hold a reference to all the
types of available strategies.
The Print method has nothing to do with
the one we’ve defined in Strategy.

34



Create two different strategies objects
1 StrategyA strategy_a = StrategyA();
2 StrategyB strategy_b = StrategyB();

Create 2 objects that will use the Strategy
pattern. We pick which Print strategy to
use when we construct these objects.

1 MyClass obj_1(strategy_a);
2 MyClass obj_2(strategy_b);

Use the objects in a “ polymorphic” fashion.
Both objects will have a Print method but
they will call different functions according
to the Strategy we picked when we build
the objects.

1 obj_1.Print();
2 obj_2.Print();

35



Do not overuse it

Only use these patterns when you need to

If your class should have a single method
for some functionality and will never need
another implementation don’t make it
virtual

Used mostly to avoid copying code and to
make classes smaller by moving some
functionality out

36



Singleton Pattern

We want only one instance of a given class.
Without C++ this would be a if/else mess.
C++ has a powerfull compiler, we can use it.
We can make sure that nobody creates
more than 1 instance of a given class, at
compile time.

Don’t over use it, it’s easy to learn, but
usually hides a design error in your code.

Sometimes is still necessary, and makes
your code better.

You need to use it in homework_7.
37



Singleton Pattern: How?

We can delete any class member functions.
This also holds true for the special
functions:

MyClass()
MyClass(const MyClass& other)
MyClass& operator=(const MyClass& other)
MyClass(MyClass&& other)
MyClass& operator=(MyClass&& other)
~MyClass()

Any private function can only be accessed
by member of the class.

38



Singleton Pattern: How?

Let’s hide the default Constructor and also
the destructor.

1 class Singleton {
2 private:
3 Singleton() = default;
4 ~Singleton() = default;
5 };

This completely disable the possibility to
create a Singleton object or destroy it.

39



Singleton Pattern: How?

And now let’s delete any copy capability:
Copy Constructor.
Copy Assigment Operator.

1 class Singleton {
2 public:
3 Singleton(const Singleton&) = delete;
4 void operator=(const Singleton&) = delete;
5 };

This completely disable the possibility to
copy any existing Singleton object.

40



Singleton Pattern: What now?

Now we need to create at least one
instance of the Singleton class.
How? Compiler to the rescue:
We can create one unique instance of the class.
At compile time …
Using static !.

1 class Singleton {
2 public:
3 static Singleton& GetInstance() {
4 static Singleton instance;
5 return instance;
6 }
7 };

41



Singleton Pattern: Completed

1 class Singleton {
2 private:
3 Singleton() = default;
4 ~Singleton() = default;
5
6 public:
7 Singleton(const Singleton&) = delete;
8 void operator=(const Singleton&) = delete;
9 static Singleton& GetInstance() {

10 static Singleton instance;
11 return instance;
12 }
13 };

42



Singleton Pattern: Usage

1 #include "Singleton.hpp"
2
3 int main() {
4 auto& singleton = Singleton::GetInstance();
5 // ...
6 // do stuff with singleton , the only instance.
7 // ...
8
9 Singleton s1; // Compiler Error!

10 Singleton s2(singleton); // Compiler Error!
11 Singleton s3 = singleton; // Compiler Error!
12
13 return 0;
14 }

43



CRPT Pattern

1 #include <boost/core/demangle.hpp>
2 using boost::core::demangle;
3
4 template <typename T>
5 class Printable {
6 public:
7 explicit Printable() {
8 // Always print its type when created
9 cout << demangle(typeid(T).name()) << " created\n";

10 }
11 };
12
13 class Example1 : public Printable <Example1 > {};
14 class Example2 : public Printable <Example2 > {};
15 class Example3 : public Printable <Example3 > {};

44



CRPT Pattern

Usage:

1 int main() {
2 const Example1 obj1;
3 const Example2 obj2;
4 const Example3 obj3;
5 return 0;
6 }

Output:

1 Example1 Created
2 Example2 Created
3 Example3 Created

45



Suggested Video

Object Oriented Design

https://youtu.be/pTB0EiLXUC8

47

https://youtu.be/pTB0EiLXUC8


Suggested Video

Polymorphism

https://youtu.be/bP-Trkf8hNA

48

https://youtu.be/bP-Trkf8hNA


Must Watch

Raw Pointers: Skip min 30

https://www.youtube.com/watch?v=mIrOcFf2crk&t=1729s

0
Image Courtesy of Micriochip

49

https://www.youtube.com/watch?v=mIrOcFf2crk&t=1729s


References

Object Oriented Design

https://en.cppreference.com/w/cpp/language/derived_class

https://en.cppreference.com/w/cpp/language/virtual

https://en.cppreference.com/w/cpp/language/abstract_class

https://en.cppreference.com/w/cpp/language/override

https://en.cppreference.com/w/cpp/language/final

https://en.cppreference.com/w/cpp/language/friend

Type Conversion

https://en.cppreference.com/w/cpp/language/static_cast

https://en.cppreference.com/w/cpp/language/dynamic_cast

https://en.cppreference.com/w/cpp/language/reinterpret_cast

https://en.cppreference.com/w/cpp/language/const_cast

50

https://en.cppreference.com/w/cpp/language/derived_class
https://en.cppreference.com/w/cpp/language/virtual
https://en.cppreference.com/w/cpp/language/abstract_class
https://en.cppreference.com/w/cpp/language/override
https://en.cppreference.com/w/cpp/language/final
https://en.cppreference.com/w/cpp/language/friend
https://en.cppreference.com/w/cpp/language/static_cast
https://en.cppreference.com/w/cpp/language/dynamic_cast
https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/cpp/language/const_cast


References: Patterns

Strategy Pattern

https://en.wikipedia.org/wiki/Strategy_pattern

https://refactoring.guru/design-patterns/strategy/cpp/example

https://stackoverflow.com/a/1008289/11525517

Singleton Pattern

https://en.wikipedia.org/wiki/Singleton_pattern

https://refactoring.guru/design-patterns/singleton/cpp/example

CRPT Pattern

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

51

https://en.wikipedia.org/wiki/Strategy_pattern
https://refactoring.guru/design-patterns/strategy/cpp/example
https://stackoverflow.com/a/1008289/11525517
https://en.wikipedia.org/wiki/Singleton_pattern
https://refactoring.guru/design-patterns/singleton/cpp/example
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

	Inheritance
	Inheritance Motivation
	Function overriding
	Abstract classes
	Interfaces

	Polymorphism
	Type casting
	static_cast
	dynamic_cast
	reinterpret_cast
	const_cast

	Patterns
	Strategy Pattern
	Singleton Pattern
	CRPT Pattern


