Modern C++ for
Computer Vision and
Image Processing

Lecture 1: Build and Tools

Ignacio Vizzo and Cyrill Stachniss

48

UNIVERSITAT

SW dev ecosystem

Text Edtior | Linters I
Static Code
Analysis
Toolchain \ 4

\ #include <iostream

D m
int main() {
cout << "Hello'\n";
return 0;
Build System p
\ cicp

’
Debugger Control (git

The compilation
process

What is a compiler?

A compiler is basically... a program.

But not any program.

Is in charge on transforming your horrible
source code into binary code.

Binary code, 0100010001, is the language
that a computer can understand.

What is a compiler?

R

#include <iostream
01100011
_/ horr[ble C++ code o . 01001100
ot << “Hellona’; e » 11001100 >
)ret“"‘ 0 00001100

Compilation made easy

The easiest compile command possible:
B clang++ main.cpp

= This will build a program called a.out that
it's ready to run.

Will be always this easy?
= Of course, not.

The Compiler: Behind the scenes

The compiler performs 4 distinct actions
to build your code:

1. Pre-process

2. Compile

3. Assembly

4. Link

The Compiler: Behind the scenes

source code
(main.cpp)

4 B
Pre-Pr main.i

—3
l Compil : > main.s

Assembler
A . .
Object file

Linker
N J

{}1 Executable

Compiling step-by-step

1. Preprocess:

® clang++ -E main.cpp > main.i

source code
(main.cpp)

main.i

main.s

Object file
(main.o)
l {} I Executable

i

Compiling step-by-step

2. Compilation:

B clang++ -S main.i

Compiling step-by-step
3. Assembly:

® clang++ -c main.s

Compiling step-by-step
4. Linking:

® clang++ main.o -o main

Bwnop

Compiling recap

source code
(main.cpp)

1)

. clang++ main.o

Linker

J

/ l Pre-Pr I' main.i
—

. l Compil main.s
clang++ -E main.cpp — |
clang++ -S main.i pus—

. L__T——J —
clang++ -c main.s ,|] Objectfile

| | (main.o)
}

Executable

=

11

Compiling recap

1. clang++ main.cpp

source code
(main.cpp)

|

{ l Executable

12

Compilation flags

= There is a lot of flags that can be passed
while compiling the code

= We have seen some already:
-std=c++17, -o, etc.

Other useful options:

= Enable all warnings, treat them as errors:

-Wall, -Wextra, -Werror

= Optimization options:
® -00 — no optimizations [default]
® -03 or -0fast — full optimizations

= Keep debugging symbols: -g

13

https://godbolt.org/

Libraries

What is a Library

= Collection of symbols.
= Collection of function implementations.

fibonaci.o

14

Libraries

= Library: multiple object files that are
logically connected

m Types of libraries:
= Static: faster, take a lot of space, become part
of the end binary, named: 1lib*.a
= Dynamic: slower, can be copied, referenced by a
program, named lib*.so

= Create a static library with
ar rcs libname.a module.o module.o ..

m Static libraries are just archives just like
zip/tar/..

15

Declaration and definition

= Function declaration can be separated from
the implementation details
= Function declaration sets up an interface

void FuncName (int param) ;

= Function definition holds the
implementation of the function that can
even be hidden from the user

void FuncName (int param) {
// Implementation details.
cout << "This function is called FuncName! ";
cout << "Did you expect anything useful from it?";

}

16

Header / Source Separation

= Move all declarations to header files (*.hpp)

= Implementation goes to *.cpp Or *.cc

// some_file.hpp
Type SomeFunc (... args...);

// some_file.cpp
#include "some_file.hpp"
Type SomeFunc(... args...) {} // implementation

// program.cpp

#include "some_file.hpp

int main() {
SomeFunc (/* args */);
return O;

}

17

Just build it as before?

clang++ -std=c++17 program.cpp -0 main

Error:

/tmp/tools_main-Oeacf5.0: In function “main':
tools_main.cpp: undefined reference to ~SomeFunc()'
clang: error: linker command failed with exit code 1
(use -v to see invocation)

18

What is linking?

J
{}1 Executable

source code
(main.cpp)
4)
Pre-Pr J main.i
—3
l Compil] > main.s
S | ’
Assembler
| N Object file
(main.o)
\ i Linker l
'}

19

What is linking?

= The library is a binary object that contains
the compiled implementation of some
methods

= Linking maps a function declaration to its
compiled implementation
= To use a library we need:

1. A header file 1ibrary_api.h
2. The compiled library object 1ibmylibrary.a

20

How to build libraries?

folder/
--- tools.hpp
--- tools.cpp
--- main.cpp

Short: we separate the code into modules
Declaration: tools.hpp

#pragma once // Ensure file is included only once
void MakeItSunny () ;
void MakeItRain();

21

How to build libraries?
Definition: tools.cpp

#include "tools.hpp"

#include <iostream>

void MakeItRain() {
// important weather manipulation code
std::cout << "Here! Now it rains! Happy?\n";

3

void MakeItSunny() { std::cerr << "Not available\n";

Calling: main.cpp

#include "tools.hpp"

int main() {
MakeItRain () ;
MakeItSunny () ;
return O0;

3

22

Use modules and libraries!

Compile modules:
c++ -std=c++17 -c tools.cpp -o tools.o

Organize modules into libraries:
ar rcs libtools.a tools.o <other_modules>

Link libraries when building code:
ct++ -std=c++17 main.cpp -L . -ltools -o main

Run the code:
./main

23

Build Systems

Building by hand is hard

4 commands to build a simple hello world
example with 2 symbols.

How does it scales on big projects?
Impossible to mantain.
Build systems to the rescue!

24

What are build systems

= Tools.

= Many of them.

= Automate the build process of projects.
= They began as shell scripts

= Then turn into MakeFiles.
= And now into MetaBuild Sytems like CMake.

® Accept it, CMake is not a build system.

= It's a build system generator

= You need to use an actual build system like Make
Oor Ninja.

25

What I wish I could write

Replace the build commands:

1. c++ —-std=c++17 -c tools.cpp -o tools.o

2. ar rcs libtools.a tools.o <other modules>
3. c++ —-std=c++17 main.cpp -L . -1ltools

For a script in the form of:

add_library(tools tools.cpp)
add_executable(main main.cpp)
target_link_libraries(main tools)

26

Use CMake to simplify the build

= One of the most popular build tools

= Does not build the code, generates files to
feed into a build system

= Cross-platform
= Very powerful, still build receipt is readable

AN

27

Build a CMake project

= Build process from the user’s perspective
1. cd <project_folder>
2. mkdir build
3. cd build
4. cmake .
5. make

m The build process is completely defined in
CMakeLists.txt

®m And childrens src/CMakeLists.txt, etc.

28

First CMakelists.txt

cmake_minimum_required (VERSION 3.1) # Mandatory.
project (first_project) # Mandatory.
set (CMAKE_CXX_STANDARD 17) # Use c++17.

tell cmake where to look for *.hpp, *.h files
include_directories (include/)

create library "libtools"
add_library(tools src/tools.cpp) # creates libtools.a

add executable main
add_executable(main src/tools_main.cpp) # main.o

tell the linker to bind these objects together
target_link_libraries(main tools) # ./main

29

CMake is easy to use

= All build files are in one place
= The build script is readable

= Automatically detects changes
= After doing changes:

1. cd <project_folder>/build
2. make

30

Typical project structure

|-- project_name/

| |-- CMakelists.txt

| |-- build/ # All generated build files
| |-- results/ # Executable artifacts
| | [-- bin/

| | |-- tools_demo

| [|-- 1lib/

| | |-- libtools.a

| |-- include/ # API of the project

| | |-- project_name

| | |-- library_api.hpp

| |-- src/

| | |-- CMakeLists.txt

| | |-- project_name

| | |-- CMakeLists.txt

| | |-- tools.hpp

| | |-~ tools.cpp

| | |-- tools_demo.cpp

| |-- tests/ # Tests for your code

| | |-~ test_tools.cpp

| | |-- CMakeLists.txt

| |-- README.md # How to use your code

Compilation options in CMake

set (CMAKE_CXX_STANDARD 17)

Set build type if not set.
if (NOT CMAKE_BUILD_TYPE)

set (CMAKE_BUILD_TYPE Debug)
endif ()
Set additional flags.
set (CMAKE_CXX_FLAGS "-Wall -Wextra")
set (CMAKE_CXX_FLAGS_DEBUG "-g -00")

m -Wall -Wextra: show all warnings

m -g: keep debug information in binary

® -O<num>: optimization level in {0, 1, 2, 3}
= 0: no optimization
= 3: full optimization

32

Useful commands in CMake

m Just a scripting language

= Has features of a scripting language, i.e.
functions, control structures, variables, etc.

= All variables are string

m Set variables with set (VAR VALUE)

» Get value of a variable with ${VAR}

= Show a message message (STATUS "message")
m Also possible WARNING, FATAL_ERROR

33

Build process

®m CMakelLists.txt defines the whole build

= CMake reads CMakeLists.txt sequentially
= Build process:

cd <project_folder>

mkdir build

cd build

cmake ..

make -j2 # pass your number of cores here

RN

34

Everything is broken, what
should I do?

= Sometimes you want a clean build
m It is very easy to do with CMake

1. cd project/build
2. make clean [remove generated binaries]
3. rm -rf * [make sure you are in build folder]

m Short way(If you are in project/):
® rm -rf build/

35

Use pre-compiled library

= Sometimes you get a compiled library
= You can use it in your build

= For example, given libtools.so it can be
used in the project as follows:

find_library (TOOLS

NAMES tools

PATHS ${LIBRARY_OUTPUT_ PATH})
Use it for linking:
target_link_libraries(<some_binary> ${TOOLS})

36

CMake find_path and find_library

= We can use an external library
= Need headers and binary library files
= There is an easy way to find them

= Headers:

find_path (SOME_PKG_INCLUDE_DIR include/some_file.hpp
<path1l> <path2> ...)
include_directories (${SOME_PKG_INCLUDE_DIR})

= Libraries:

find_library (SOME_LIB

NAMES <some_1lib>

PATHS <pathl> <path2> ...)
target_link_libraries(target ${SOME_LIB})

37

find_package

m find_package calls multiple find_path and
find_library functions

m To use find_package (<pkg>) CMake must
have a file Find<pkg>.cmake in
CMAKE_MODULE_PATH folders

® Find<pkg>.cmake defines which libraries and
headers belong to package <pkg>

= Pre-defined for most popular libraries,
e.g. OpenCV, libpng, etc.

38

CMakeLists.txt

cmake minimum_required (VERSION 3.1)
project(first_project)

CMake will search here for Find<pkg>.cmake files
SET (CMAKE_MODULE_PATH
${PROJECT_SOURCE_DIR}/cmake_modules)

Search for Findsome_pkg.cmake file and load it
find_package (some_pkg)

Add the include folders from some_pkg
include_directories (${some_pkg INCLUDE_DIRS})

Add the executable "main"

add_executable (main small_main.cpp)

Tell the linker to bind these binary objects
target_link_ libraries(main ${some_pkg LIBRARIES})

39

cmake_modules/Findsome_pkg.cmake

Find the headers that we will need

find_path(some_pkg_ INCLUDE_DIRS include/some_lib.hpp <
FOLDER_WHERE_TO_SEARCH>)

message (STATUS "headers: ${some_pkg_ INCLUDE_DIRS}")

Find the corresponding libraries
find_library(some_pkg_ LIBRARIES

NAMES some_lib_name

PATHS <FOLDER_WHERE_TO_SEARCH>)
message (STATUS "libs: ${some_pkg LIBRARIES}")

40

Watch for Homeworks

100 seconds of
‘t

BN

https://youtu.be/hwP7WQkmECE

41

https://youtu.be/hwP7WQkmECE

Watch for Homeworks

https://youtu.be/OZEGnam2M9s

42

https://youtu.be/OZEGnam2M9s

Suggested Video

“Free software, free society” by Richard
Stallman

https://youtu.be/Ag1AKII_2GM

43

https://youtu.be/Ag1AKIl_2GM

References

= CMake Documentation
cmake.org/cmake/help/v3.10/

= GCC Manual
gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/

= Clang Manual
releases.llvm.org/10.0.0/tools/clang/docs/index.html

44

releases.llvm.org/10.0.0/tools/clang/docs/index.html

	Compilation Process
	Libraries
	Header / Source separation
	Linking
	Build

	CMake
	Why worrying about build systems?
	Build process
	Using 3rdparty libraries

	Suggested Videos
	References

