Modern C++ for
Computer Vision and
Image Processing

Lecture O0: The basics

Ignacio Vizzo and Cyrill Stachniss

48

UNIVERSITAT

Course Organization

m Lectures: Wednesday 16:00 (CEST)

= Held at Youtube live-stream on the course
channel.
® Questions via Youtube channel during the lecture.

= Tutorials: Friday 15:00 (CEST)

= Also offline Tutorials.
= Also “on-demand” Tutorials.
= Not all the Tutorials are provided by me.

= Discord: Fastest channel to discuss.

Course structure

The course is split in two parts:
1. Learning the basics
m Lectures : Consists of 10 lectures.
= Homeworks: Consists of 9 hands-on
homeworks.
2. Working on a project

= Plan and code inverse image search
= Groups of 2 people

Workload

= 180 h per semester (Workload)
= 60 h per semester (Lectures)
= 16 weeks per semester

Doing some math:

180 - 60 .8 h
16 - week

What you will learn in course

How to work in Linux

How to write software with modern C++
Core software development techniques

= How to work with images using OpenCV

= How to implement inverse image search

Check out Google Image Search for
example: https://images.google.com/

https://images.google.com/

How is the course structured?

Part I: C++ basics tools.

Part II: The C++ core language.
Part III: Modern C++.
Part IV: Final project.

Week Date Lecture Homework Recommended Deadline Official Deadline
Part I: C++ tools
B 8-Apr. [[No Lectures 1] B s -
0 15-Apr Course Introduction, Organization, Hello world - - -
1 22-Apr C++ Tools Homework 1 3-May 10-May
Part II: The C++ core language
2 29-Apr C++ Basic syntax Homework 2 10-May. 17-May
3 6-May C++ Functions Homework 3 17-May 24-May
4 13-May C++ Containers Homework 4 24-May 31-May
5 20-May C++ STL Library Homework 5 31-May 7-Jun
Part III: Modern C++
6 27-May Classes. Homework 6 7-Jun 14-Jun
7 3-Jun 0oP Homework 7 14-Jun 21-Jun
8 10-Jun Memory Managment Homework 8 21-Jun 28-Jun
9 17-Jun Generics Programing Homework 9 28-Jun 5-Jul
Part IV: Final Project "Place recognition using Bag of Visual Words in C++"
10 24-Jun Bag of Visual Words
11 1-Jul
12 8-Jul [No Lectures]] Final Project Final Examination Date
13 15-Jul

Tools

+ GNUILinux [Tutorial]
o Filesystem
o Terminal
o standard inputioutput
Text Editor
o Configuring
o Terminal

o Compile
o Debug

« Build systems

o headers/sources

o Libraries

o Compilation flags

o CMake

o 3rd party libraries
Git [Tutorial]
« Homework submissions
Gdb [Tutorial]
« Web-based tools

o Quick Bench

o Compiler Explorer

o Cpp insights

o Cppreference.com
Clang-tools [Tutorial]

o Clang-format

o Clang-tidy

o Clangd

o Cppcheck
Google test [tutorial]
OpenCV [tutorial]

Course Content

Core C++

C++ basic syntax
The “main” function

#include statements

Variables

Control structures (i, for, while)
/0 streams

Input parameters

Builtin types
Operators

Scopes

Functions

C#+ strings

Pass by value / Pass by reference

Namespaces
Containers
std:tuple
lterators
trylcatch
enum classes

STL library
STL Algorithms.
Function overloading
Operator overloading
String streams
filesystem

Modern C++

Classes introduction
Const correctness
typedefiusing

static variables /methods
Move Semantics

Special Functions
Singleton Pattem

Inheritance
Function Overriding
Abstract classes
Interfaces

Strategy Pattern
Polymorphism
Typecasting

Memory management
Stack vs Heap
Pointers

new/delete

this pointer

Memory issues

RAII

Smart pointers

Generic programming
Template functions
Template classes
Static code generation
lambdas

Course Philosophy

Talk is cheap.

Show me the code.

Linus Torvalds

What you will do in this course

A

Please stop me!

Why?

Why C++? Why Linux? Why?

)
=, stackoverflow

Developer Survey Results
2018

= Over 50 000 developers surveyed

= Nearly half of them use Linux

m C++ is the most used systems language
(4.5 million users in 2015)

= C++ 11 is a modern language

= All companies want C++ in our field

10

https://insights.stackoverflow.com/survey/2018/
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

Why C++

UOOHHOOBOBBRANN

(AdA AR A A A ddd:

11

https://circuitdigest.com/

Companies that use C++

s
GOOS[Q == Microsoft '

(inteD
Al

Adobe

amazoncom
N

12

http://www.stroustrup.com/applications.html

Browsers written in C++

@
O

13

Software written in C++

Java

mq Mlcrosoft

Games written in C++

ASSASSING - GALEDUTY 2SS

"WORLD
vaﬂﬁﬁtﬂ?”;‘ RALD

L WAR(RAFT

15

C++ History: assembly

Benefits:

= Unbelievably simple instructions

= Extremely fast (when well-written)
= Complete control over your program

Why don’t we always use assembly?

16

C++ History: assembly

main: # Gmain
push rax
mov edi, offset std::cout
mov esi, offset .L.str
mov edx, 13
call std::basic_ostream<char, std::
char_traits<char> >& std::__ostream_insert<char, std

::char_traits<char> >(std::basic_ostream<char, std::
char_traits<char> >&, char const*, long)

Xor eax, eax

pop rex

ret

_GLOBAL__sub_I_example.cpp: #

@_GLOBAL__sub_I_example.cpp

push rax

mov edi, offset std::__ioinit

call std::ios_base::Init::Init() [complete
object constructor]

mov edi, offset std::ios_base::Init::~Init
() [complete object destructor]

mov esi, offset std::__ioinit

mov edx, offset __dso_handle

pop rax

jmp __cxa_atexit # TAILCALL

.asciz "Hello, world\n"

17

C++ History: assembly

Drawbacks:

= A |ot of code to do simple tasks
= Hard to understand

= Extremely unportable

18

C++ History: Invention of C

Problem:

m Computers only understand assembly
language.

Idea:

m Source code can be written in a more
intuitive language

= An additional program can convert it into
assembly [compiler]

19

C++ History: Invention of C

T&R created C in 1972, to much
praise.

C made it easy to write code
that was

m Fast

Ken Thompson and Dennis

u Sl m p I e Ritchie, creators of the C

language.

® Cross-platform

20

C++ History: Invention of C

C was popular since it was simple.

This was also its weakness:
" NO objects Or classes.

m Difficult to write code that worked
generically.

= Tedious when writing large programs.

21

C++ History: Welcome to C++

In 1983, the first vestiges of C++ were
created by Bjarne Stroustrup.

22

C++ History: Welcome to C++

He wanted a language that was:
= Fast

= Simple to Use

m Cross-platform

= Had high level features

23

Evolution of C++

C++14

C++20

2020

C++17

C++98

| 1998

C++11

2011

2014 2017

Move semantic
Unified initialisation
auto and decltype
Lambda functions
constexpr

= Readerwriter locks
- Generic lambda
functions

* Templates Fold expressions
« constexpr if

= Coroutines
" + Conlracts
+ Structured binding

= STL wit containers
und algorithms

- Strings

= 1O Streams

= Modules
- Concepts
. Ranges library

* stdiistring view

. Parallel algorithms of the STL

. Filesystem library

+ stdi:any, std::ioptional,
and std::variant

Multithreading and the
memory model

Regular expressions
. Smart pointers

= Hash tables

+ stdiiarray

https://www.modernescpp.com/

Design Philosophy of C++

Multi-paradigm

Express ideas and intent directly in code.
Safety

Efficiency

Abstraction

25

What is GNU/Linux?

Linux is a free Unix-like OS
Linux kernel implemented by Linus Torvalds

Extremely popular: Android, ChromeQOS,
servers, supercomputers, etc.

Many Linux distributions available
Use any distribution if you have preference
Examples will be given in Ubuntu

ubuntu®

26

Linux directory tree

SYSTEM USER

/// \
tmp opt other _home

system
i // \\folders ?

IocaI mclude bln I|b ivizzo

= Tree organization starting with root: /
= There are no volume letters, e.g. C:, D:
= User can only access his/her own folder

27

Understanding files and folders

= Folders end with / e.g. /path/folder/
= Everything else is files, e.g. /path/file

= Absolute paths start with /

while all other paths are relative:

® /home/ivizzo/folder/ — absolute path to a folder
® /home/ivizzo/file.cpp — absolute path to a file
m folder/file — relative path to a file

Paths are case sensitive:

filename is different from FileName

Extension is part of a name:
filename.cpp is different from filename.png

28

Linux terminal

® Press Ctrl|+ Alt|+

T | to open terminal

student@moderncpp2019: ~

File Edit View Search Terminal Help

yyyyy-

.it0:40/.
.++[+:400+0: "
J+++]/+: 0os0
\+/+0+++ 0440
L44.0+4+4004:
.+.0+00: .
\#+.+40+0
Tioddd
.0z

Ubuntu 18.04 bionic
Linux 4.18.0-16-generic

2055
zsh 5.4.2
1920x1080
/sssoo00. GNOME
H GNOME Shell
Adwaita
Ambiance [GTK2/3]
ubuntu-mono-dark
Ubuntu 11
Intel Xeon W-2145 @ 6x 3.696GHz
vboxdrmfb
1049MiB / 3943MiB

Welcome to the Linux terminal

[Remenber that your sudo password is "

Have fun and remember to

[/home/student]s I

" (without the quotes)
when running sudo commands

= Most tasks can be done faster from the
terminal than from the GUI

29

Navigating tree from terminal

Terminal is always in some folder
pwd: print working directory

cd <dir>: change directory to <dir>
1s <dir>: list contents of a directory

Special folders:

= / — root folder

= ~ — home folder

= . — current folder
= .. — parent folder

30

Structure of Linux commands

Typical structure
${PATH}/command [options] [parameters]

= ${PATH}/command: obsolute or relative path
to the program binary

® [options]: program-specific options
€.g. -h, Oor —-help

m [parameters]: program-specific parameters
e.g. input files, etc.

31

Use help with Linux programs

® man <command> — manual
exhaustive manual on program usage

® command -h/--help
usually shorter help message

[/home/student]$ cat --help

Usage: cat [OPTION]... [FILE]...
Concatenate FILE(s) to standard output.

-A, --show-all equivalent to -VET

-b, --number-nonblank number nonempty output lines
Examples:

cat £ - Output fs contents, then standard input.

cat Copy standard input to standard output.

32

Using command completion

Pressing while typing:

= completes name of a file, folder or program

= “beeps” if current text does not match any
file or folder uniquely

Pressing twice shows all potential
matches

Example:

[/home/student]$ cd D [TAB] [TAB]
Desktop/ Documents/ Downloads/

33

Files and folders

® mkdir [-p] <foldername> — make directory
Create a folder <foldername>
(with all parent folders [-pl)

" rm [-r] <name> — remove [recursive]
Remove file or folder <name>
(With folder contents [-r])
® cp [-r] <source> <dest> — COpY
Copy file or folder from <source> to <dest>
B mv <source> <dest> — MOVe
Move file or folder from <source> to <dest>

34

Using placeholders

Placeholder Meaning

* Any set of characters

? Any single character
[a-f] Characters in [abcdef]
["a-c] Any character not in [abc]

Can be used with most of terminal
commands: 1s, rm, mv etc.

35

[/home/student/Examples/placeholders]$

ul1l.tex vO1l.pdf vOl.tex
ul02.tex v02.pdf v02.tex
u03.tex v03.pdf v03.tex

[/home/student/Examples/placeholders]$
v01l.pdf v02.pdf vO03.pdf

[/home/student/Examples/placeholders]$
u0l.tex u02.tex ul03.tex

[/home/student/Examples/placeholders]$
ul1l.tex vOl.pdf vO1l.tex

[/home/student/Examples/placeholders]$
ull.tex v0l.pdf vO01l.tex

[/home/student/Examples/placeholders]$
u03.tex

1s

1s

1s

1s

1s

1s

* ., pdf

u*

701

[uv] 01

uo[~12]

.tex

36

Standard input/output channels

= Single input channel:
® stdin: Standard input: channel O
= Two output channels:
® stdout: Standard output: channel 1
m stderr: Standard error output: channel 2

Keyboard

std::cout
Program

shell

37

Standard input/output channels

Keyboard

std::cout

std::cin

Program
shell

38

Redirecting stdout

$ program 1>cout.txt

Keyboard

std::cin
Program

39

Redirecting stderr

$ program 2>cerr.txt

cerr.txt

std::cerr

1 L]
std::cin std::cout
Program

shell

40

Redirect stdout and stderr

$ program 1>stdout.txt 2>stderr.txt

Keyboard

stderr. txt

std::cerr

—
std::cout| _.

std::cin
Program

stdout.txt

41

Redirect stdout and stderr

progamm 1>out.txt 2>&1

Keyboard

; std::cerr

A i
1l

1] std::cout ~

~

std::cin out.txt

Program
shell /

42

Working with files

more/less/cat <filename>

Print the contents of the file

Most of the time using cat if enough
find <in-folder> -name <filename>
Search for file <filename> in folder
<in-folder>, allows wildcards

locate <filename>

Search for file <filename> in the entire
system!

just remember to sudo updatedb often
grep <what> <where>

Search for a string <what> in a file <where>
ag <what> <where>

Search for a string <what> in a dir <where>

a3

Chaining commands

B commandl; command2; command3
Calls commands one after another

B commandl && command2 && command3
Same as above but fails if any of the
commands returns an error code

® commandl | command2 | command3
Pipe stdout Of commandl t0 stdin Of command2
and stdout Of command2 t0 stdin Of command3
® Piping commonly used with grep:
1ls | grep smth look for smth in output of 1s

44

Linux Command Line Pipes and
Redirection

Linux Command Line

Pipes and Redirection

https://youtu.be/mV_8GbzwZMM

45

https://youtu.be/mV_8GbzwZMM

Canceling commands

CTRL + C

Cancel currently running command
kill -9 <pid>

Kill the process with id pid

killall <pname>

Kill all processes with name pname
htop (top)

= Shows an overview of running processes
= Allows to kill processes by pressing

46

Command history

The shell saves the history of the last
executed commands

u E: go to the previous command
u E: go to the next command

= (Ctrl]+| R | <query>: search in history

m E+: execute the 10th command
® history: show history

47

Installing software

Most of the software is available in the system
repository. To install a program in Ubuntu
type this into terminal:

sudo apt update to update information
about available packages

sudo apt install <program> to install the
program that you want

Use apt search <program> to find all
packages that provide <program>

Same for any library, just with 1ib prefix

48

Bash tutorial

Beginner's
Guide to

the Bash
Terminal

https://youtu.be/oxuRxtrO2Ag

a9

https://youtu.be/oxuRxtrO2Ag

We won’t teach you everything
about C++

Within C++, there is a much
smaller and cleaner language
struggling to get out.

-Bjarne Stroustrup

50

Where to write C++ code

There are two options here:
m Use a C++IDE
& CLion
(3 Qt Creator
S Eclipse
m Use a modern text editor [recommended]
4 Visual Studio Code [my preferencel
EJ Sublime Text 3
Atom
"/ VIM [steep learning curve]

@ Emacs [steep learning curve]

51

https://snwh.org/paper

Hello World!

Simple C++ program that prints Hello World!

#include <iostream>

int main() {
// Is this your first C++ program?
std::cout << "Hello World!" << std
return O;

}

::endl;

52

Comments and any whitespace:
completely ignored

= A comment is text:
= On one line that follows //
= Between /* and */

= All of these are valid C++:
int main() {return 0;} // Ignored comment.
int main()

{ return O;

3

int main() {
return /* Ignored comment */ 0;

3

53

Good code style is important

Programs are meant to be read
by humans and only incidentally
for computers to execute.

-Donald Knuth

Use clang_format to format your code
use cpplint to check the style

Following a style guide will save you time
and make the code more readable

We use Google Code Style Sheet
Naming and style recommendations will be

marked by tag in slides

54

https://google.github.io/styleguide/cppguide.html

Everything starts with main

Every C++ program starts with main

main iS @ function that returns an error code
Error code 0 means 0K

Error code can be any number in [1, 255]

int main() {
return 0; // Program finished without errors.

}

int main() {
return 1; // Program finished with error code 1.

3

55

#include directive

Two variants:

m #include <file> — system include files

m #include "file" — local include files

Copies the content of file into the current file

#include "some_file.hpp"
// We can use contents of file "some_file.hpp" now.
int main() { return 0; }

56

I/0 streams for simple

input and output

m Handle stdin, stdout and stderr:
B std::cin — maps to stdin
B std::cout — maps to stdout
® std::cerr — maps to stderr

® #include <iostream> to use I/O streams
= Part of C++ standard library

#include <iostream>

int main() {
int some_number;
std::cout << "please input any number" << std::endl;
std::cin >> some_number;
std::cout << "number = " << some_number << std::endl;
std::cerr << "boring error message'" << std::endl;
return O;

57

Compile and run Hello World!

= We understand text
= Computer understands machine code
= Compilation is translation

from text to machine code

= Compilers we can use on Linux:

m Clang [*] [used in examples]
= GCC

Compile and run Hello World example:

c++ -std=c++11 -o hello_world hello_world.cpp
./hello_world

58

Credits to Igor the great

CPP-00 Moder C++: Course Introduction and Hello World (2018, Igor)

m CPP-01 Modern C++: Variables, Basic Types, Control Structures (2018, Igor)
2 Cyil tachniss

Debugging Functons, Libraies, Chiake (2018, Igor)
Modern C++ Course (2018)
101ideos - 2151 views - Lostpdatedon i 1,
s Test, Namespaces, f
I it s
Moder Ges foimage Processig ectresghen by o

s

10, , Igor)

6 Gyl Stachmiss

@ CPP-06 Modern C++: Static, Numbers, Arrays, Non-owning pointers, Classes (2018, Igor)

07 : Pointers, ith poi leaks (2018, Igor)
Gyl Sachri

7
8

in summer term 2018 CPP-04 Modern C++: Move Semantics, Classes (2018, Igor)
& oo

t Igor)

. ﬁ :’I:T:::::tm C++: Templates, terators, Exceptions, Program input parameters, OpenCV (2018, Igor)
https://bit.ly/2IJmIgGs [shortened]

59

https://bit.ly/2JmIqGs

Suggested Video

"You Should Learn to Program” by
Christian Genco at TEDxSMU

https://youtu.be/xfBWk4nw440

60

https://youtu.be/xfBWk4nw440

C++ Programming Language

BJARNE ST
THE CREA OF C+-

= Website:
http://www.stroustrup.com/4th.html

61

http://www.stroustrup.com/4th.html

Best reference

C++ reference

C+498, C++03, C++11, C++14, C++17, C++20

Compiler suppo
FeeEianng plementations
Language
Basic concepts
++ keywords
Preprocessor
Expressions
Declaration
Initialization
ctions
Statements
Classes
Templates
Exceptions
Headers
Named requirements
Feature test macros (c++20)
Language support library
ot~ traits (c++11)
Program utilities
lational comparators (c++20
numeric linits — type info
initializer_list cr+11)

Technical specifications

Concepts library (C++20)
Diagnostics library
General utilities library
‘Smart pointers and allocators
Date and time
[TeTeres = e
ring conversions (c+
Utility functions

air — tuple c+411
optional (c=+17) — any (c++17)
variant (c++17) — format (c++20)

@

trings library
basic_strin
basic string view crri7
Nulhterminaed s
T itbyte = wide
Containers library

priority queue — span (c++20)
Other containers:

sequence — associative
Unordered associative — adaptors

Standard library extensions (ibrary fundamentals T)
resource adaptor — invocation t

Standard library extensions v (library fundamentals TS v2)
propagate const — ostrean joiner — randint

extensions V3 (ibrary fundamentals TS v3)
— scope_fail — scope_success — unique_resource

Concurrency library extensions (concurrency T5)

Concepts (concepts T5)
Ranges (ianges 75)

Iterators library
Ranges lbrary (C++20)

Algorithms librai

Numerics library
Common math functions
Hathematica specal function (c++17)
Numeric aigor
Peeudo.random number generation
Fioating-point environment (c++11)
conplex ~ valarray

Input/output
Stream-based 110
Synchronized output (c+-+20)
1/0 manipulators

Localizations library

Regular expressions library (c++11)
basic_regex ~ algorithm:

Atomic operations Ilbrary (cre1)

Thread support library (C++11)
system library (C++17)

Transactional Memory (11175)

External Links — Non-ANSI/ISO Libraries — Index — std Symbol Index

https://en.cppreference.com/w/cpp

https://en.cppreference.com/w/cpp

References

= C++ Reference:
https://en.cppreference.com/w/cpp

= Cpp Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines

= Google Code Styleguide:
https://google.github.io/styleguide/cppguide.html

» C++ Tutorial:
http://www.cplusplus.com/doc/tutorial/

63

https://en.cppreference.com/w/cpp
https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
http://www.cplusplus.com/doc/tutorial/

	Course Organization
	Course Motivation
	History of C++
	Linux introduction
	C++ Hello World

