
Modern C++ for
Computer Vision and
Image Processing

Lecture 0: The basics

Ignacio Vizzo and Cyrill Stachniss

Course Organization

Lectures: Wednesday 16:00 (CEST)
Held at Youtube live-stream on the course
channel.
Questions via Youtube channel during the lecture.

Tutorials: Friday 15:00 (CEST)
Also offline Tutorials.
Also ”on-demand” Tutorials.
Not all the Tutorials are provided by me.

Discord: Fastest channel to discuss.

1

Course structure

The course is split in two parts:
1. Learning the basics

Lectures : Consists of 10 lectures.
Homeworks: Consists of 9 hands-on
homeworks.

2. Working on a project
Plan and code inverse image search
Groups of 2 people

2

Workload

180 h per semester (Workload)

60 h per semester (Lectures)

16 weeks per semester

Doing some math:

􏿶
180 − 60

16 􏿹 ≈ 8 􏿰
ℎ

𝑤𝑒𝑒𝑘􏿳

3

What you will learn in course

How to work in Linux

How to write software with modern C++
Core software development techniques

How to work with images using OpenCV
How to implement inverse image search

Check out Google Image Search for
example: https://images.google.com/

4

https://images.google.com/

How is the course structured?

Part I: C++ basics tools.

Part II: The C++ core language.

Part III: Modern C++.
Part IV: Final project.

5

Course Content

6

Course Philosophy

7

What you will do in this course

8

Please stop me!

9

Why?

Why C++? Why Linux? Why?

Over 50 000 developers surveyed
Nearly half of them use Linux
C++ is the most used systems language
(4.5 million users in 2015)
C++ 11 is a modern language
All companies want C++ in our field

0
Stack Overflow survey: https://insights.stackoverflow.com/survey/2018/

0
CLion survey: https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

10

https://insights.stackoverflow.com/survey/2018/
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

Why C++

0
Image taken from https://circuitdigest.com/

11

https://circuitdigest.com/

Companies that use C++

0
The following slides are adapted from Avery Wang

0
More info at http://www.stroustrup.com/applications.html

12

http://www.stroustrup.com/applications.html

Browsers written in C++

0
Slides adapted from Avery Wang

13

Software written in C++

14

Games written in C++

15

C++ History: assembly

Benefits:

Unbelievably simple instructions

Extremely fast (when well-written)

Complete control over your program

Why don’t we always use assembly?

0
The following slides are adapted from Avery Wang

16

C++ History: assembly
1 main: # @main
2 push rax
3 mov edi, offset std::cout
4 mov esi, offset .L.str
5 mov edx, 13
6 call std::basic_ostream <char, std::

char_traits <char> >& std::__ostream_insert <char, std
::char_traits <char> >(std::basic_ostream <char, std::
char_traits <char> >&, char const*, long)

7 xor eax, eax
8 pop rcx
9 ret

10 _GLOBAL__sub_I_example.cpp: #
@_GLOBAL__sub_I_example.cpp

11 push rax
12 mov edi, offset std::__ioinit
13 call std::ios_base::Init::Init() [complete

object constructor]
14 mov edi, offset std::ios_base::Init::~Init

() [complete object destructor]
15 mov esi, offset std::__ioinit
16 mov edx, offset __dso_handle
17 pop rax
18 jmp __cxa_atexit # TAILCALL
19 .L.str:
20 .asciz "Hello, world\n"

17

C++ History: assembly

Drawbacks:

A lot of code to do simple tasks

Hard to understand

Extremely unportable

18

C++ History: Invention of C

Problem:

Computers only understand assembly
language.

Idea:

Source code can be written in a more
intuitive language

An additional program can convert it into
assembly [compiler]

19

C++ History: Invention of C

T&R created C in 1972, to much
praise.

C made it easy to write code
that was

Fast

Simple

Cross-platform

Ken Thompson and Dennis
Ritchie, creators of the C

language.

20

C++ History: Invention of C

C was popular since it was simple.

This was also its weakness:

No objects or classes.
Difficult to write code that worked
generically.
Tedious when writing large programs.

21

C++ History: Welcome to C++

In 1983, the first vestiges of C++ were
created by Bjarne Stroustrup.

22

C++ History: Welcome to C++

He wanted a language that was:

Fast

Simple to Use

Cross-platform

Had high level features

23

Evolution of C++

0
Image taken from https://www.modernescpp.com/

24

https://www.modernescpp.com/

Design Philosophy of C++

Multi-paradigm

Express ideas and intent directly in code.

Safety

Efficiency

Abstraction

25

0
Icon taken from Wikipedia

What is GNU/Linux?

Linux is a free Unix-like OS

Linux kernel implemented by Linus Torvalds

Extremely popular: Android, ChromeOS,
servers, supercomputers, etc.

Many Linux distributions available

Use any distribution if you have preference

Examples will be given in Ubuntu

26

Linux directory tree

USERSYSTEM

usr home

ivizzo

opttmp

local include bin lib

other
system
folders

/

Tree organization starting with root: /
There are no volume letters, e.g. C:, D:
User can only access his/her own folder

27

Understanding files and folders

Folders end with / e.g. /path/folder/
Everything else is files, e.g. /path/file
Absolute paths start with /
while all other paths are relative:

/home/ivizzo/folder/ — absolute path to a folder
/home/ivizzo/file.cpp — absolute path to a file
folder/file — relative path to a file

Paths are case sensitive:
filename is different from FileName
Extension is part of a name:
filename.cpp is different from filename.png

28

Linux terminal

Press Ctrl + Alt + T to open terminal

Most tasks can be done faster from the
terminal than from the GUI

29

Navigating tree from terminal

Terminal is always in some folder

pwd: print working directory

cd <dir>: change directory to <dir>
ls <dir>: list contents of a directory

Special folders:
/ — root folder
~ — home folder
. — current folder
.. — parent folder

30

Structure of Linux commands

Typical structure

${PATH}/command [options] [parameters]

${PATH}/command: obsolute or relative path
to the program binary

[options]: program-specific options
e.g. -h, or --help
[parameters]: program-specific parameters
e.g. input files, etc.

31

Use help with Linux programs

man <command> — manual
exhaustive manual on program usage

command -h/--help
usually shorter help message

1 [/home/student]$ cat --help
2 Usage: cat [OPTION]... [FILE]...
3 Concatenate FILE(s) to standard output.
4 -A, --show-all equivalent to -vET
5 -b, --number-nonblank number nonempty output lines
6
7 Examples:
8 cat f - Output fs contents , then standard input.
9 cat Copy standard input to standard output.

32

Using command completion

Pressing while typing:

completes name of a file, folder or program

“beeps” if current text does not match any
file or folder uniquely

Pressing twice shows all potential
matches

Example:

1 [/home/student]$ cd D [TAB] [TAB]
2 Desktop/ Documents/ Downloads/

33

Files and folders

mkdir [-p] <foldername> — make directory
Create a folder <foldername>
(with all parent folders [-p])
rm [-r] <name> — remove [recursive]
Remove file or folder <name>
(With folder contents [-r])
cp [-r] <source> <dest> — copy
Copy file or folder from <source> to <dest>
mv <source> <dest> — move
Move file or folder from <source> to <dest>

34

Using placeholders

Placeholder Meaning

* Any set of characters
? Any single character
[a-f] Characters in [abcdef]
[̂a-c] Any character not in [abc]

Can be used with most of terminal
commands: ls, rm, mv etc.

35

1 [/home/student/Examples/placeholders]$ ls
2 u01.tex v01.pdf v01.tex
3 u02.tex v02.pdf v02.tex
4 u03.tex v03.pdf v03.tex
5
6 [/home/student/Examples/placeholders]$ ls *.pdf
7 v01.pdf v02.pdf v03.pdf
8
9 [/home/student/Examples/placeholders]$ ls u*

10 u01.tex u02.tex u03.tex
11
12 [/home/student/Examples/placeholders]$ ls ?01*
13 u01.tex v01.pdf v01.tex
14
15 [/home/student/Examples/placeholders]$ ls [uv]01*
16 u01.tex v01.pdf v01.tex
17
18 [/home/student/Examples/placeholders]$ ls u0[^12].tex
19 u03.tex

36

Standard input/output channels

Single input channel:
stdin: Standard input: channel 0

Two output channels:
stdout: Standard output: channel 1
stderr: Standard error output: channel 2

37

Standard input/output channels

$ program

38

Redirecting stdout

$ program 1>cout.txt

39

Redirecting stderr

$ program 2>cerr.txt

40

Redirect stdout and stderr

$ program 1>stdout.txt 2>stderr.txt

41

Redirect stdout and stderr

progamm 1>out.txt 2>&1

42

Working with files

more/less/cat <filename>
Print the contents of the file
Most of the time using cat if enough
find <in-folder> -name <filename>
Search for file <filename> in folder
<in-folder>, allows wildcards
locate <filename>
Search for file <filename> in the entire
system!
just remember to sudo updatedb often
grep <what> <where>
Search for a string <what> in a file <where>
ag <what> <where>
Search for a string <what> in a dir <where>

43

Chaining commands

command1; command2; command3
Calls commands one after another

command1 && command2 && command3
Same as above but fails if any of the
commands returns an error code

command1 | command2 | command3
Pipe stdout of command1 to stdin of command2
and stdout of command2 to stdin of command3
Piping commonly used with grep:
ls | grep smth look for smth in output of ls

44

Linux Command Line Pipes and

Redirection

https://youtu.be/mV_8GbzwZMM

45

https://youtu.be/mV_8GbzwZMM

Canceling commands

CTRL + C
Cancel currently running command

kill -9 <pid>
Kill the process with id pid
killall <pname>
Kill all processes with name pname
htop (top)

Shows an overview of running processes

Allows to kill processes by pressing k

46

Command history

The shell saves the history of the last
executed commands

: go to the previous command

: go to the next command

Ctrl + R <query>: search in history

! + 10 : execute the 10th command

history: show history

47

Installing software

Most of the software is available in the system
repository. To install a program in Ubuntu
type this into terminal:

sudo apt update to update information
about available packages

sudo apt install <program> to install the
program that you want

Use apt search <program> to find all
packages that provide <program>
Same for any library, just with lib prefix

48

Bash tutorial

https://youtu.be/oxuRxtrO2Ag
49

https://youtu.be/oxuRxtrO2Ag

0
Icon taken from Wikipedia

We won’t teach you everything

about C++

Within C++, there is a much
smaller and cleaner language
struggling to get out.

-Bjarne Stroustrup
50

Where to write C++ code

There are two options here:
Use a C++IDE

CLion
Qt Creator

Eclipse

Use a modern text editor [recommended]
Visual Studio Code [my preference]
Sublime Text 3
Atom
VIM [steep learning curve]
Emacs [steep learning curve]

0
Most icons are from Paper Icon Set: https://snwh.org/paper

51

https://snwh.org/paper

Hello World!

Simple C++ program that prints Hello World!
1 #include <iostream>
2
3 int main() {
4 // Is this your first C++ program?
5 std::cout << "Hello World!" << std::endl;
6 return 0;
7 }

52

Comments and any whitespace:

completely ignored

A comment is text:
On one line that follows //
Between /* and */

All of these are valid C++:

1 int main() {return 0;} // Ignored comment.

1 int main()
2
3 { return 0;
4 }

1 int main() {
2 return /* Ignored comment */ 0;
3 }

53

Good code style is important
Programs are meant to be read
by humans and only incidentally
for computers to execute.

-Donald Knuth

Use clang_format to format your code

use cpplint to check the style

Following a style guide will save you time
and make the code more readable

We use Google Code Style Sheet

Naming and style recommendations will be
marked by GOOGLE-STYLE tag in slides

0https://google.github.io/styleguide/cppguide.html
54

https://google.github.io/styleguide/cppguide.html

Everything starts with main

Every C++ program starts with main
main is a function that returns an error code

Error code 0 means OK
Error code can be any number in [1, 255]

1 int main() {
2 return 0; // Program finished without errors.
3 }

1 int main() {
2 return 1; // Program finished with error code 1.
3 }

55

#include directive

Two variants:

#include <file> — system include files

#include "file" — local include files

Copies the content of file into the current file

1 #include "some_file.hpp"
2 // We can use contents of file "some_file.hpp" now.
3 int main() { return 0; }

56

I/O streams for simple

input and output
Handle stdin, stdout and stderr:

std::cin — maps to stdin
std::cout — maps to stdout
std::cerr — maps to stderr

#include <iostream> to use I/O streams
Part of C++ standard library

1 #include <iostream>
2 int main() {
3 int some_number;
4 std::cout << "please input any number" << std::endl;
5 std::cin >> some_number;
6 std::cout << "number = " << some_number << std::endl;
7 std::cerr << "boring error message" << std::endl;
8 return 0;
9 }

57

Compile and run Hello World!

We understand text

Computer understands machine code

Compilation is translation
from text to machine code
Compilers we can use on Linux:

Clang [*] [used in examples]
GCC

Compile and run Hello World example:

1 c++ -std=c++11 -o hello_world hello_world.cpp
2 ./hello_world

58

Credits to Igor the great

https://bit.ly/2JmIqGs [shortened]
59

https://bit.ly/2JmIqGs

Suggested Video

”You Should Learn to Program” by
Christian Genco at TEDxSMU

https://youtu.be/xfBWk4nw440
60

https://youtu.be/xfBWk4nw440

C++ Programming Language

Website:
http://www.stroustrup.com/4th.html

61

http://www.stroustrup.com/4th.html

Best reference

https://en.cppreference.com/w/cpp

62

https://en.cppreference.com/w/cpp

References

C++ Reference:
https://en.cppreference.com/w/cpp

Cpp Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines

Google Code Styleguide:
https://google.github.io/styleguide/cppguide.html

C++ Tutorial:
http://www.cplusplus.com/doc/tutorial/

63

https://en.cppreference.com/w/cpp
https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
http://www.cplusplus.com/doc/tutorial/

	Course Organization
	Course Motivation
	History of C++
	Linux introduction
	C++ Hello World

