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Course Organization

Lectures: Wednesday 16:00 (CEST)
Held at Youtube live-stream on the course
channel.
Questions via Youtube channel during the lecture.

Tutorials: Friday 15:00 (CEST)
Also offline Tutorials.
Also ”on-demand” Tutorials.
Not all the Tutorials are provided by me.

Discord: Fastest channel to discuss.
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Course structure

The course is split in two parts:
1. Learning the basics

Lectures : Consists of 10 lectures.
Homeworks: Consists of 9 hands-on
homeworks.

2. Working on a project
Plan and code inverse image search
Groups of 2 people
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Workload

180 h per semester (Workload)

60 h per semester (Lectures)

16 weeks per semester

Doing some math:

􏿶
180 − 60

16 􏿹 ≈ 8 􏿰
ℎ

𝑤𝑒𝑒𝑘􏿳

3



What you will learn in course

How to work in Linux

How to write software with modern C++
Core software development techniques

How to work with images using OpenCV
How to implement inverse image search

Check out Google Image Search for
example: https://images.google.com/
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How is the course structured?

Part I: C++ basics tools.

Part II: The C++ core language.

Part III: Modern C++.
Part IV: Final project.
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Course Content
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Course Philosophy
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What you will do in this course
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Please stop me!
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Why?



Why C++? Why Linux? Why?

Over 50 000 developers surveyed
Nearly half of them use Linux
C++ is the most used systems language
(4.5 million users in 2015)
C++ 11 is a modern language
All companies want C++ in our field

0
Stack Overflow survey: https://insights.stackoverflow.com/survey/2018/

0
CLion survey: https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
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Why C++

0
Image taken from https://circuitdigest.com/
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Companies that use C++

0
The following slides are adapted from Avery Wang

0
More info at http://www.stroustrup.com/applications.html
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Browsers written in C++

0
Slides adapted from Avery Wang
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Software written in C++
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Games written in C++
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C++ History: assembly

Benefits:

Unbelievably simple instructions

Extremely fast (when well-written)

Complete control over your program

Why don’t we always use assembly?

0
The following slides are adapted from Avery Wang
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C++ History: assembly
1 main: # @main
2 push rax
3 mov edi, offset std::cout
4 mov esi, offset .L.str
5 mov edx, 13
6 call std::basic_ostream <char, std::

char_traits <char> >& std::__ostream_insert <char, std
::char_traits <char> >(std::basic_ostream <char, std::
char_traits <char> >&, char const*, long)

7 xor eax, eax
8 pop rcx
9 ret

10 _GLOBAL__sub_I_example.cpp: #
@_GLOBAL__sub_I_example.cpp

11 push rax
12 mov edi, offset std::__ioinit
13 call std::ios_base::Init::Init() [complete

object constructor]
14 mov edi, offset std::ios_base::Init::~Init

() [complete object destructor]
15 mov esi, offset std::__ioinit
16 mov edx, offset __dso_handle
17 pop rax
18 jmp __cxa_atexit # TAILCALL
19 .L.str:
20 .asciz "Hello, world\n"
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C++ History: assembly

Drawbacks:

A lot of code to do simple tasks

Hard to understand

Extremely unportable
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C++ History: Invention of C

Problem:

Computers only understand assembly
language.

Idea:

Source code can be written in a more
intuitive language

An additional program can convert it into
assembly [compiler]
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C++ History: Invention of C

T&R created C in 1972, to much
praise.

C made it easy to write code
that was

Fast

Simple

Cross-platform

Ken Thompson and Dennis
Ritchie, creators of the C

language.
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C++ History: Invention of C

C was popular since it was simple.

This was also its weakness:

No objects or classes.
Difficult to write code that worked
generically.
Tedious when writing large programs.
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C++ History: Welcome to C++

In 1983, the first vestiges of C++ were
created by Bjarne Stroustrup.
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C++ History: Welcome to C++

He wanted a language that was:

Fast

Simple to Use

Cross-platform

Had high level features
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Evolution of C++

0
Image taken from https://www.modernescpp.com/
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Design Philosophy of C++

Multi-paradigm

Express ideas and intent directly in code.

Safety

Efficiency

Abstraction
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0
Icon taken from Wikipedia



What is GNU/Linux?

Linux is a free Unix-like OS

Linux kernel implemented by Linus Torvalds

Extremely popular: Android, ChromeOS,
servers, supercomputers, etc.

Many Linux distributions available

Use any distribution if you have preference

Examples will be given in Ubuntu
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Linux directory tree

USERSYSTEM

usr home

ivizzo

opttmp

local include bin lib

other 
system 
folders

/

Tree organization starting with root: /
There are no volume letters, e.g. C:, D:
User can only access his/her own folder
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Understanding files and folders

Folders end with / e.g. /path/folder/
Everything else is files, e.g. /path/file
Absolute paths start with /
while all other paths are relative:

/home/ivizzo/folder/ — absolute path to a folder
/home/ivizzo/file.cpp — absolute path to a file
folder/file — relative path to a file

Paths are case sensitive:
filename is different from FileName
Extension is part of a name:
filename.cpp is different from filename.png
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Linux terminal

Press Ctrl + Alt + T to open terminal

Most tasks can be done faster from the
terminal than from the GUI
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Navigating tree from terminal

Terminal is always in some folder

pwd: print working directory

cd <dir>: change directory to <dir>
ls <dir>: list contents of a directory

Special folders:
/ — root folder
~ — home folder
. — current folder
.. — parent folder
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Structure of Linux commands

Typical structure

${PATH}/command [ options ] [ parameters ]

${PATH}/command: obsolute or relative path
to the program binary

[options]: program-specific options
e.g. -h, or --help
[parameters]: program-specific parameters
e.g. input files, etc.
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Use help with Linux programs

man <command> — manual
exhaustive manual on program usage

command -h/--help
usually shorter help message

1 [/home/student]$ cat --help
2 Usage: cat [OPTION]... [FILE]...
3 Concatenate FILE(s) to standard output.
4 -A, --show-all equivalent to -vET
5 -b, --number-nonblank number nonempty output lines
6
7 Examples:
8 cat f - Output fs contents , then standard input.
9 cat Copy standard input to standard output.
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Using command completion

Pressing while typing:

completes name of a file, folder or program

“beeps” if current text does not match any
file or folder uniquely

Pressing twice shows all potential
matches

Example:

1 [/home/student]$ cd D [TAB] [TAB]
2 Desktop/ Documents/ Downloads/
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Files and folders

mkdir [-p] <foldername> — make directory
Create a folder <foldername>
(with all parent folders [-p])
rm [-r] <name> — remove [recursive]
Remove file or folder <name>
(With folder contents [-r])
cp [-r] <source> <dest> — copy
Copy file or folder from <source> to <dest>
mv <source> <dest> — move
Move file or folder from <source> to <dest>
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Using placeholders

Placeholder Meaning

* Any set of characters
? Any single character
[a-f] Characters in [abcdef]
[ ̂a-c] Any character not in [abc]

Can be used with most of terminal
commands: ls, rm, mv etc.
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1 [/home/student/Examples/placeholders]$ ls
2 u01.tex v01.pdf v01.tex
3 u02.tex v02.pdf v02.tex
4 u03.tex v03.pdf v03.tex
5
6 [/home/student/Examples/placeholders]$ ls *.pdf
7 v01.pdf v02.pdf v03.pdf
8
9 [/home/student/Examples/placeholders]$ ls u*

10 u01.tex u02.tex u03.tex
11
12 [/home/student/Examples/placeholders]$ ls ?01*
13 u01.tex v01.pdf v01.tex
14
15 [/home/student/Examples/placeholders]$ ls [uv]01*
16 u01.tex v01.pdf v01.tex
17
18 [/home/student/Examples/placeholders]$ ls u0[^12].tex
19 u03.tex
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Standard input/output channels

Single input channel:
stdin: Standard input: channel 0

Two output channels:
stdout: Standard output: channel 1
stderr: Standard error output: channel 2
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Standard input/output channels

$ program
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Redirecting stdout

$ program 1>cout.txt
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Redirecting stderr

$ program 2>cerr.txt
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Redirect stdout and stderr

$ program 1>stdout.txt 2>stderr.txt
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Redirect stdout and stderr

progamm 1>out.txt 2>&1
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Working with files

more/less/cat <filename>
Print the contents of the file
Most of the time using cat if enough
find <in-folder> -name <filename>
Search for file <filename> in folder
<in-folder>, allows wildcards
locate <filename>
Search for file <filename> in the entire
system!
just remember to sudo updatedb often
grep <what> <where>
Search for a string <what> in a file <where>
ag <what> <where>
Search for a string <what> in a dir <where>
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Chaining commands

command1; command2; command3
Calls commands one after another

command1 && command2 && command3
Same as above but fails if any of the
commands returns an error code

command1 | command2 | command3
Pipe stdout of command1 to stdin of command2
and stdout of command2 to stdin of command3
Piping commonly used with grep:
ls | grep smth look for smth in output of ls
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Linux Command Line Pipes and

Redirection

https://youtu.be/mV_8GbzwZMM
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Canceling commands

CTRL + C
Cancel currently running command

kill -9 <pid>
Kill the process with id pid
killall <pname>
Kill all processes with name pname
htop (top)

Shows an overview of running processes

Allows to kill processes by pressing k
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Command history

The shell saves the history of the last
executed commands

: go to the previous command

: go to the next command

Ctrl + R <query>: search in history

! + 10 : execute the 10th command

history: show history
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Installing software

Most of the software is available in the system
repository. To install a program in Ubuntu
type this into terminal:

sudo apt update to update information
about available packages

sudo apt install <program> to install the
program that you want

Use apt search <program> to find all
packages that provide <program>
Same for any library, just with lib prefix
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Bash tutorial

https://youtu.be/oxuRxtrO2Ag
49
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0
Icon taken from Wikipedia



We won’t teach you everything

about C++

Within C++, there is a much
smaller and cleaner language
struggling to get out.

-Bjarne Stroustrup
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Where to write C++ code

There are two options here:
Use a C++IDE

CLion
Qt Creator

Eclipse

Use a modern text editor [recommended]
Visual Studio Code [my preference]
Sublime Text 3
Atom
VIM [steep learning curve]
Emacs [steep learning curve]

0
Most icons are from Paper Icon Set: https://snwh.org/paper
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Hello World!

Simple C++ program that prints Hello World!
1 #include <iostream>
2
3 int main() {
4 // Is this your first C++ program?
5 std::cout << "Hello World!" << std::endl;
6 return 0;
7 }
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Comments and any whitespace:

completely ignored

A comment is text:
On one line that follows //
Between /* and */

All of these are valid C++:

1 int main() {return 0;} // Ignored comment.

1 int main()
2
3 { return 0;
4 }

1 int main() {
2 return /* Ignored comment */ 0;
3 }
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Good code style is important
Programs are meant to be read
by humans and only incidentally
for computers to execute.

-Donald Knuth

Use clang_format to format your code

use cpplint to check the style

Following a style guide will save you time
and make the code more readable

We use Google Code Style Sheet

Naming and style recommendations will be
marked by GOOGLE-STYLE tag in slides

0https://google.github.io/styleguide/cppguide.html
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Everything starts with main

Every C++ program starts with main
main is a function that returns an error code

Error code 0 means OK
Error code can be any number in [1, 255]

1 int main() {
2 return 0; // Program finished without errors.
3 }

1 int main() {
2 return 1; // Program finished with error code 1.
3 }
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#include directive

Two variants:

#include <file> — system include files

#include "file" — local include files

Copies the content of file into the current file

1 #include "some_file.hpp"
2 // We can use contents of file "some_file.hpp" now.
3 int main() { return 0; }
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I/O streams for simple

input and output
Handle stdin, stdout and stderr:

std::cin — maps to stdin
std::cout — maps to stdout
std::cerr — maps to stderr

#include <iostream> to use I/O streams
Part of C++ standard library

1 #include <iostream>
2 int main() {
3 int some_number;
4 std::cout << "please input any number" << std::endl;
5 std::cin >> some_number;
6 std::cout << "number = " << some_number << std::endl;
7 std::cerr << "boring error message" << std::endl;
8 return 0;
9 }
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Compile and run Hello World!

We understand text

Computer understands machine code

Compilation is translation
from text to machine code
Compilers we can use on Linux:

Clang [*] [used in examples]
GCC

Compile and run Hello World example:

1 c++ -std=c++11 -o hello_world hello_world.cpp
2 ./hello_world
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Credits to Igor the great

https://bit.ly/2JmIqGs [shortened]
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Suggested Video

”You Should Learn to Program” by
Christian Genco at TEDxSMU

https://youtu.be/xfBWk4nw440
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C++ Programming Language

Website:
http://www.stroustrup.com/4th.html
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Best reference

https://en.cppreference.com/w/cpp
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References

C++ Reference:
https://en.cppreference.com/w/cpp

Cpp Core Guidelines:
https://github.com/isocpp/CppCoreGuidelines

Google Code Styleguide:
https://google.github.io/styleguide/cppguide.html

C++ Tutorial:
http://www.cplusplus.com/doc/tutorial/
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