
Modern C++ for
Computer Vision
Lecture 1: Build Systems

Ignacio Vizzo, Rodrigo Marcuzzi, Cyrill Stachniss

SW dev ecosystem

1

What is a compiler?

A compiler is basically... a program.

Is in charge on transforming your horrible
source code into binary code.

Binary code, 0100010001, is the language
that a computer can understand.

2

What is a compiler?

3

Compilation made easy

The easiest compile command possible:

c++ main.cpp
This will build a program called a.out that
it’s ready to run.

Will be always this easy?

4

The Compiler: Behind the scenes

The compiler performs 4 distinct actions
to build your code:

1. Pre-process

2. Compile

3. Assembly

4. Link

5

The Compiler: Behind the scenes

6

Compiling step-by-step

1. Preprocess:

c++ -E main.cpp > main.i

7

Compiling step-by-step

2. Compilation:

c++ -S main.i

8

Compiling step-by-step

3. Assembly:

c++ -c main.s

9

Compiling step-by-step

4. Linking:

c++ main.o -o main

10

Compiling recap

1. c++ -E main.cpp
2. c++ -S main.i
3. c++ -c main.s
4. c++ main.o

11

Compiling recap

1. c++ main.cpp

12

Compilation flags

There is a lot of flags that can be passed
while compiling the code

We have seen some already:
-std=c++17, -o, etc.

Other useful options:

Enable all warnings, treat them as errors:
-Wall, -Wextra, -Werror
Optimization options:

-O0 — no optimizations [default]
-O3 or -Ofast — full optimizations

Keep debugging symbols: -g
0
Play with them with Compiler Explorer: https://godbolt.org/

13

https://godbolt.org/

What is a Library

Collection of symbols.

Collection of function implementations.

14

Libraries

Library: multiple object files that are
logically connected
Types of libraries:

Static: faster, take a lot of space, become part
of the end binary, named: lib*.a
Dynamic: slower, can be copied, referenced by
a program, named lib*.so

Create a static library with
ar rcs libname.a module.o module.o …
Static libraries are just archives just like
zip/tar/…

15

Declaration and definition

Function declaration can be separated from
the implementation details

Function declaration sets up an interface

1 void FuncName(int param);

Function definition holds the
implementation of the function that can
even be hidden from the user

1 void FuncName(int param) {
2 // Implementation details.
3 cout << "This function is called FuncName! ";
4 cout << "Did you expect anything useful from it?";
5 }

17

Header / Source Separation

Move all declarations to header files (*.hpp)
Implementation goes to *.cpp or *.cc

1 // tools.hpp
2 Type SomeFunc(... args...);

1 // tools.cpp
2 #include "tools.hpp"
3 Type SomeFunc(... args...) {} // implementation

1 // program.cpp
2 #include "tools.hpp"
3 int main() {
4 SomeFunc(/* args */);
5 return 0;
6 }

18

Just build it as before?

c++ -std=c++17 program.cpp -o main

Error:

1 /tmp/tools_main -0eacf5.o: In function `main':
2 tools_main.cpp: undefined reference to `SomeFunc()'
3 clang: error: linker command failed with exit code 1
4 (use -v to see invocation)

19

What is linking?

20

What is linking?

The library is a binary object that contains
the compiled implementation of some
methods

Linking maps a function declaration to its
compiled implementation
To use a library we need:
1. A header file library_api.h
2. The compiled library object libmylibrary.a

21

How to build libraries?

1 folder/
2 --- tools.hpp
3 --- tools.cpp
4 --- main.cpp

Short: we separate the code into modules
Declaration: tools.hpp

1 #pragma once // Ensure file is included only once
2 void Greet();

22

How to build libraries?

Definition: tools.cpp
1 #include "tools.hpp"
2
3 #include <iostream>
4 void Greet() { std::cout << "Hello There!\n"; }

Calling: main.cpp
1 #include "tools.hpp"
2 int main() {
3 Greet();
4 return 0;
5 }

23

Use modules and libraries!

Compile modules:
c++ -std=c++17 -c tools.cpp

Organize modules into libraries:
ar rcs libtools.a tools.o <other_modules>

Compile main appliaction:
c++ -std=c++17 -c main.cpp

Link main application to libraries:
c++ -std=c++17 main.o -L . -ltools -o main

24

Building by hand is hard

4 commands to build a simple hello world
example with 2 symbols.

How does it scales on big projects?

Impossible to mantain.

Build systems to the rescue!

25

What are build systems

Tools.

Many of them.

Automate the build process of projects.

They began as shell scripts

Then turn into MakeFiles.
And now into MetaBuild Sytems like CMake.

Accept it, CMake is not a build system.
It’s a build system generator
You need to use an actual build system like Make
or Ninja.

26

What I wish I could write

Replace the build commands:

1. c++ -std=c++17 -c tools.cpp
2. ar rcs libtools.a tools.o <other_modules>
3. c++ -std=c++17 -c main.cpp
4. c++ -std=c++17 main.o -L . -ltools -o main

For a script in the form of:

1 add_library(tools tools.cpp) # Steps 1 and 2
2 add_executable(main main.cpp) # Step 3
3 target_link_libraries(main tools) # Step 4

27

Use CMake to simplify the build

One of the most popular build tools

Does not build the code, generates a build
system

Cross-platform

Very powerful, still build receipt is readable

28

Build a CMake project

Build process from the user’s perspective
1. cd <project_folder>
2. mkdir build
3. cd build
4. cmake ..
5. make

The build process is completely defined in
CMakeLists.txt
And children src/CMakeLists.txt, etc.

29

First CMakeLists.txt

1 cmake_minimum_required(VERSION 3.1) # Mandatory.
2 project(first_project) # Mandatory.
3 set(CMAKE_CXX_STANDARD 17) # Use c++17.
4
5 # tell cmake where to look for *.hpp, *.h files
6 include_directories(include/)
7
8 # create library "libtools"
9 add_library(tools src/tools.cpp) # creates libtools.a

10
11 # add executable main
12 add_executable(main src/tools_main.cpp) # main.o
13
14 # tell the linker to bind these objects together
15 target_link_libraries(main tools) # ./main

30

Typical project structure
1 |-- project_name/
2 | |-- CMakeLists.txt
3 | |-- build/ # All generated build files
4 | |-- results/ # Executable artifacts
5 | | |-- bin/
6 | | |-- tools_demo
7 | | |-- lib/
8 | | |-- libtools.a
9 | |-- include/ # API of the project

10 | | |-- project_name
11 | | |-- library_api.hpp
12 | |-- src/
13 | | |-- CMakeLists.txt
14 | | |-- project_name
15 | | |-- CMakeLists.txt
16 | | |-- tools.hpp
17 | | |-- tools.cpp
18 | | |-- tools_demo.cpp
19 | |-- tests/ # Tests for your code
20 | | |-- test_tools.cpp
21 | | |-- CMakeLists.txt
22 | |-- README.md # How to use your code

31

Compilation options in CMake

1 set(CMAKE_CXX_STANDARD 17)
2
3 # Set build type if not set.
4 if(NOT CMAKE_BUILD_TYPE)
5 set(CMAKE_BUILD_TYPE Debug)
6 endif()
7 # Set additional flags.
8 set(CMAKE_CXX_FLAGS "-Wall -Wextra")
9 set(CMAKE_CXX_FLAGS_DEBUG "-g -O0")

-Wall -Wextra: show all warnings

-g: keep debug information in binary

-O<num>: optimization level in {0, 1, 2, 3}
0: no optimization
3: full optimization

32

CMake language

Just a scripting language

Has features of a scripting language, i.e.
functions, control structures, variables, etc.

All variables are string

Set variables with set(VAR VALUE)
Get value of a variable with ${VAR}
Show a message message(STATUS "message")
Also possible WARNING, FATAL_ERROR

33

Build process

CMakeLists.txt defines the whole build

CMake reads CMakeLists.txt sequentially
Build process:
1. cd <project_folder>
2. mkdir build
3. cd build
4. cmake ..
5. make -j2 # pass your number of cores here

34

Everything is broken, what

should I do?

Sometimes you want a clean build
It is very easy to do with CMake
1. cd project/build
2. make clean [remove generated binaries]
3. rm -rf * [make sure you are in build folder]
Short way(If you are in project/):

rm -rf build/

35

find_package

find_package calls multiple find_path and
find_library functions

To use find_package(<pkg>) CMake must
have a file Find<pkg>.cmake in
CMAKE_MODULE_PATH folders

Find<pkg>.cmake defines which libraries and
headers belong to package <pkg>
Pre-defined for most popular libraries,
e.g. OpenCV, libpng, etc.

36

Watch for Homeworks

https://youtu.be/hwP7WQkmECE

37

https://youtu.be/hwP7WQkmECE

References

CMake Documentation
cmake.org/cmake/help/v3.10/

GCC Manual
gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/

Clang Manual
releases.llvm.org/10.0.0/tools/clang/docs/index.html

38

releases.llvm.org/10.0.0/tools/clang/docs/index.html

	Compilation Process
	Libraries
	Header / Source separation
	Linking
	Build

	CMake
	Why worrying about build systems?
	Build process
	Using 3rdparty libraries

	Suggested Videos
	References

