
Expected Results

Figure 1 depicts the result that you should obtain after convergence for each dataset.
Additionally, the initial and the final error for each dataset should approximately
take the values in the table below.

-20

-15

-10

-5

0

5

-30 -20 -10 0 10 20

-25

-20

-15

-10

-5

0

5

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

-10 -5 0 5 10

-30

-20

-10

0

10

20

-50 -40 -30 -20 -10 0 10 20

simulation-pose-pose intel simulation-pose-landmark dlr

Figure 1: Result for each dataset.

dataset initial error final error

simulation-pose-pose.dat 138862234 8269
intel.dat 1795139 360
simulation-pose-landmark.dat 3030 474
dlr.dat 369655336 56860

Hints

• The key elements in the graph datastructure g are the node poses/locations
stored in g.x as well as the edge information g.edges consisting of the mea-
surement (measurement) between the two nodes and the corresponding infor-
mation matrix (information).

• The state vector (g.x) consists of a concatenation of robot poses (and possibly
landmark positions), i.e., x1:N with

– pose of the robot: xi = (xi yi θi)
T

Hint: Use the function v2t(·) and t2v(·) that transform a vector into
a transformation matrix (v2t(·)) and vice versa (t2v(·)). The function
invt(·) inverts a transformation.

v2t(xi) =

(
Ri ti
0 1

)
=

cos(θi) − sin(θi) xi
sin(θi) cos(θi) yi

0 0 1

 = Xi t2v(Xi) = xi

– position of a landmark: xl = (xl yl)
T

• We consider the following error functions:

– pose-pose constraint: eij = t2v(Z−1ij (X−1i Xj)), where Zij = v2t(zij ) is the
transformation matrix of the measurement zTij = (tTij, θij).

– pose-landmark constraint: eil(x) = X−1i xl − zil

2



Further Information on the Error Functions and

Jacobians for 2D Graph-Based SLAM

In the following we will provide the definitions and the derivations for the Jacobians
to implement 2D graph-based SLAM.

Error Functions and Jacobians for a Pose-Pose Constraint

The basic entities of the poses of the robot and the constraint are defined as

x>i = (t>i , θi) = (xi, yi, θi) (1)

x>j = (t>j , θj) = (xj, yj, θj) (2)

z>ij = (t>ij, θij) = (xij, yij, θij) (3)

where ti and tij are 2D vectors and θi and θij are rotation angles which are normal-
ized to [−π, π).

Error Function

The error function is

eij (x) = t2v(Z−1ij (X−1i Xj)) (4)

Jacobian

To derive the Jacobian, it is advantageous to start from:

eij(x) = eij(xi,xj) =

(
R>ij(R

>
i (tj − ti) − tij)
θj − θi − θij

)
, (5)

where Ri and Rij are the 2 × 2 rotation matrices of θi and θij with the following
structure

Ri =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
Rij =

(
cos(θij) − sin(θij)
sin(θij) cos(θij)

)
. (6)

The Jacobians of the error function become

Aij =
∂eij(x)

∂xi
=

(
−R>ijR>i R>ij

∂R>
i

∂θi
(tj − ti)

0 −1

)
(7)

Bij =
∂eij(x)

∂xj
=

(
R>ijR

>
i 0

0 1

)
. (8)

And for
∂R>

i

∂θi
we obtain

∂R>i
∂θi

=

(
− sin(θi) cos(θi)
− cos(θi) − sin(θi)

)
. (9)

3



Error Functions and Jacobians for a Pose-Landmark Con-
straint

The basic entities of the poses of the robot and the constraint are defined as

x>i = (t>i , θi) (10)

x>l = (xl, yl)
> (11)

zil = (xil, yil)
>, (12)

where ti is a 2D vector, θi is a rotation angle which is normalized to [−π, π), and
(xil, yil)

> is the measurement of xl in the local frame of xi.

Error Function

The error function is

eil(x) = X−1i xl − zil (13)

Jacobian

To derive the Jacobian, it is advantageous to start from:

eil(x) = R>i (xl − ti) − zil, (14)

where Ri is the 2 × 2 rotation matrices of θi with the following structure

Ri =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
(15)

The Jacobians of the error function becomes

Ail =
∂eil(x)

∂xi
=
(
−R>i

∂R>
i

∂θi
(xl − ti)

)
(16)

Bil =
∂eil(x)

∂xj
= R>i (17)

And for
∂R>

i

∂θi
we obtain

∂R>i
∂θi

=

(
− sin(θi) cos(θi)
− cos(θi) − sin(θi)

)
. (18)

4


