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1: Homogeneous coordinates and transformations in 2D

Learning objective: This set of exercises should enable you to represent 2D points and apply basic 2D
transformations in homogeneous form.

A. Homogeneous coordinates

1. (15) The following task is motivated by providing exercises with coordinates not being real values, but
only rational, in order to easily check results.

Given are the following five points xi with their homogeneous coordinates:

x1 =

 3
−4
5

 , x2 =

 −11
−60
61

 , x3 =

 220
−21
−221

 , x4 =

 165
−52
173

 , x5 =

 −36
−77
−85

 . (1)

(a) (5) Give the non-homogeneous coordinates of the five points.

(b) (5) Plot the five points.

(c) (2) On which curve C do the five points lie? Why?

(d) (3) Give a 6-th point x6 = [u6, v6, w6]T, different from the other five, with the following properties:
(1) It should lie on C , (2) it should lie in the second quadrant, (3) all coordinates should be integers
with at least 4 digits, the last not zero, and (4) the third coordinate w6 should be negative. Hint:
Have a look at the concept of Pythagorean triples.

2. (20) The following exercise is meant to illustrate the usefulness of using homogeneous coordinates for
describing curves through given points. Points are generated according to the following scheme:

xi = a+ id with i = 1, . . . . (2)

(a) (2) On which curve C do these points lie?

(b) (6) Write the generating rule in homogeneous coordinates using the corresponding entities xi, a, and
d. Express them as a function of the non-homogeneous entities xi, a, and d. Explain, why the
differences in the derivation of the homogeneous from the non-homogeneous entities. Hint: have a
look at slide 20 in lecture 1.

(c) (12) Given are two points x = [2, 3, 1]T and y = [8, 10, 2]T. Plot the points

z(α) = αx + (1− α)y with α = −5,−4, ..., 4, 5 (3)

i. What curve does it represent? Be as specific as possible.

ii. What happens for α = 0, 1, 2? What points are in the direct neighbourhood of α = 2?

iii. Can you generalize this result for arbitrary pairs of distinct points? How? Under which con-
straints?

iv. Three distinct points with homogeneous coordinates x, y, and z are colinear, if the 3× 3 matrix
[x,y, z] is singular. Why? For the proof assume the points are elements of IR2. Hint: Start with
showing, that if the determinant is zero, then – in the general case – the directions from x1 to
the other two points are identical.

B. Translations, rotations, and dilations

1. (6) Give the homogeneous matrices for the following transformations of 2D points.

(a) (2) Translation Tt with translation vector t = [−4 , −1]
T

(b) (2) Rotation Rφ with φ = −90◦ around the origin
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(c) (2) Mirroring at the origin and scaling Dλ with a factor 0.5

2. (4) Given is the point p([2 , 1]
T

). Provide the non-homogeneous coordinates of the transformed points
p′, p′′, and p′′′ after applying the following transformations using the matrices from task 1:

(a) (1) translation p′ = Tt(p),

(b) (2) then rotation p′′ = Rφ(p′),
(c) (1) then signed scaling p′′′ = Dλ(p′′).

3. (6) Using your favourite drawing tool, and plot the starting point and the transformed points together
with the coordinate system. Make all entities explicit and name them. Check the result of the previous
task visually. (Useful functions in Matlab: figure, hold on, grid on, axis equal, plot, text,

axis, xlabel, ylabel)

4. (5) How many different points p′′′ could you obtain by exchanging the sequence of the three transforma-
tions? Give reasons for your answer.

total: 56
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2: Analysing and concatenating 2D transformations

Learning objective: This set of exercises should enable you to analyse and concatenate 2D transformations
in various contexts.

A. Special transformations

1. (20) Translated basic motions.

Perform the following trnaformations using homogeneous matrices and vectors.

(a) (3) Rotation Rpφ by φ = 45◦ around the point p([0,−1]
T

).

(b) (2) Scaling Dqλ by λ = 2 and the scaling centre q([−1, 0]T.

(c) (2) Reflection/mirroring Mx at the point x ([2, 1]T)

(d) (8) Reflection/mirroring Ml at the straight line l (3x+ 4y − 5 = 0).

For the given point a([5,−3]T) give the transformed coordinates

(e) (3) b1 = Rpφ(a)

(f) (3) b2 = Dqλ(a)

(g) (3) b3 = Sx(a)

(h) (3) b4 = Rl(a)

and graphically check the results using two arbitrary additional points.

2. (4) Rotation around a given point.

Prove the following: A rotation with angle φ around the point d leads to the homogeneous transformation
matrix:

Rp(φ,d) =

[
R(φ) (I 2 − R(φ))d
0T 1

]
(4)

3. (8) Mirroring at a straight line.

Prove the following: Mirroring a point at the straight line x cosφ+y sinφ−d = 0 leads to the homogeneous
transformation matrix

Y(φ, d) =

 − cos(2φ) − sin(2φ) 2d cosφ
− sin(2φ) cos(2φ) 2d sinφ

0 0 1

 (5)

B. General mappings of homogeneous coordinates

4. (20) The following exercise is meant to demonstrate that general mappings of homogeneous coordinates
may map a square to a figure which is not connected in the plane IR2.

Given are the four points on the unit square

x1

[
−1
−1

]
, x2

[
1
−1

]
, x3

[
1
1

]
, x4

[
−1
1

]
. (6)

(a) (4) Show, that the following homogeneous transformation

x′ = Hx with H =

 1 0 0
0 0 1
0 1 0

 (7)

exchanges the first two points and leaves the other two unchanged.
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(b) (10) Transform the points x5 and x6 sitting in the middle between x1 and x2 and in the middle
between x3 and x4. Plot the six points {xi} with i = (1, 5, 2, 3, 6, 4) in one figure and the points {x′i}
in a second figure. Discuss the result.

(c) (6) Generate an odd number of equally spaced on the four sides of the square, e.g., x7([−1, a]T), a ∈
[−1, 1]between x1 and x4. Plot the transformed points, without connecting them by line segments
and, best, give each side of the square individual colors. Discuss the result. Hint: Use a plot for
∆a = 2/(2k + 1), for some k ∈ IN.

5. (35) The following exercise discusses homogeneous coordinates in 1D and, what is called, the Cayley
transformation, which we will use for representing rotations in 3D.

Any 2-vector

x =

[
u
v

]
with x 6= 0 (8)

represents a point on the real axis if v 6= 0, namely

x =
u

v
if v 6= 0 and x = v

[
x
1

]
. (9)

Two homogeneous vectors x and y represent the same 1D point, if x = λy for some factor λ 6= 0.

Discuss the following motions on IR described by

x′k = Hkx with k = 1, 2, 3, 4, 5 . (10)

(a) (5) What motion on the real line do the following matrices describe:

H1 =

[
1 d
0 1

]
, H2 =

[
s 0
0 1

]
, H3 =

[
s d
0 1

]
, H4 =

[
1 0
0 m

]
, H5 =

[
0 1
1 0

]
?

(11)

(b) (5) For which points x (x) and parameters are these motions defined?

(c) (10) Give all fixed points, if any in IR, for the five transformations assuming arbitrary parameters
i.e. for which x ′ = x ?

(d) (2) The transformation y = fc(x) represented by y = HCx with

HC =

[
−1 1
1 1

]
. (12)

is the Cayley transformation of x. Give y = fC(x) explicitely. For which x is the transformation well
defined in IR?

(e) (3) Show that the inverse function is x = f−1C (y) = fC(y) hence x = fC(fC(x)). Use homogeneous
coordinates.

(f) (10) Which of the five transformations Hk in item 3a do have the property that the mapping and
its inverse are identical, possibly restricting the mappings by specifying some parameters? Interpret
the results geometrically.

C. Concatenated motions

6. (22) Moving on a slot car racing track.

On a planar slot car racing track a model-car is positioned at A , s. Fig. 1). The curves are semicircles.
The width of the car is half to the trackwidth such that it drives on one of the two parallel trails. The
car moves in two steps: First it drives to B , then it takes a left turn to C . The global coordinate system
is in the middle of the racing track, its x-axis is parallel to the straight parts. The car coordinate system
is in the middle of the car, pointing forward.
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Figure 1: Moving on a slot car racing track. Dimensions in dm

(a) (14) Give the framesMA, MB , andMC of the car at the positions A , B , and C in the global coordinate
system. Plot the scene using the function plotScene which takes the three frames as input, see Fig.
2.

(b) (8) Give the relative motions BM A
(from A to B) and CM B

(from B to C ) in the car coordinate
system at the start of the motion. Determine the positions of B and C in the car system SA at the
beginning of the ride.

7. (20) A well known motion.

A robot can move in the plane. The x-axis of its right handed local coordinate system points forward.

The robot performs the following motions

• M1: forward motion by 1 m,

• M2: left rotation by 270◦around the point p which is 1 m to the left of the robot,

• M3: forward motion by 2 m,

• M4: right rotation by 270◦around the point p which is 1 m to the right of the robot, and

• M5: forward motion by 1 m.

(a) (14) Desrcibe each of the partial motions with homogeneous matrix (M1 to M5 referring to the start
of the partial motion.

(b) (4) Determine the complete motion. Give reasons for your way of concatenating the partial motions.

(c) (2) How can you interprete the geometry of the complete motion? Which Figure describes the path?

8. (34) Two bumper cars on a fair.

Two bumper cars A and B wait for the beginning of their ride. Together with that of the cashier C , their
positions are shown in Fig. 3. Both drivers are in the centres of the coordinate systems of the two cars.
The task is to determine the direction in which each driver sees the other one and the cashier.

Two bumper cars A and B wait for the beginning of their ride. Together with that of the cashier C , their
positions are shown in Fig. 3. Both drivers are in the centres of the coordinate systems of the two cars.
The task is to determine the direction in which each driver sees the other one and the cashier.

(a) (4) Determine the displacements MA and MB of the reference coordinate system in the two car
systems.
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Figure 2: Result of ex. 6 using plotScene.

(b) (4) Determine the directions in which both drivers see the cashier, by expressing the coordinates of
the cashier in the car systems. Compare the result with the directions in the figure.

Now both cars move. Turns are performed on the spot. Car A performs the following three moves: (1) 2
m ahead, (2) right turn by 45◦, (3) 1 m ahead. Car B performs the following six moves: (1) right turn by
45◦, (2) 1 m ahead, (3) right turn by 45◦(4) 3 m backwards, (5) left turn by 90◦, (6) 3 m ahead. Answer
the following questions:

(c) (15) Determine the composite motion of both cars.

(d) (4) In what directions do the drivers see the cashier?

(e) (4) In what directions do the two drivers see each other?

(f) (2) What is the distance between the drivers now?

9. (20) Autonomeous Robot in a city with radially arranged streets.

A robot R can autonomously move in the area depicted in the ground plan of a city Fig. 4. The area
allows the robot only to move along the paths given in the ground plan. The centre of Z of the scene at
the same time is the coordinate system, whose x-axis shows towards east and its y-axis shows towards
north. There are only paths radially and circularly. One step of the robot corresponds to moving to the
next gridline.

The local x-axis of the robot is its viewing direction forward. The motion of the robot is either a translation
from the centre or a circular motion around the centre. Furthermore the robot may rotate around its own
axis.

At time t0 the robot R is at the centre and the two coordinate systems of the robot and of the city are
identical.

(a) (2) Determine the coordinates of the two lane crossings A and B . in the city system.

(b) (9) The robot now moves towards A . First it moves three steps forward, then it turns 90◦ left,
adn finally moves 30◦along the circular lane. Determine the three elementary transformations and
concatenate them.

(c) (2) Which coordinates does the robot now have in the city system?
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Figure 3: Two bumper cars A and B viewing the cashier C (in scale)

Figure 4: City plan with autonomous robot R

(d) (8) Which coordinates do the two points A and B have in the local coordinate system of the robot?

10. (11) A turning car.

The position p of the co-driver in the car system is given, by e.g. 0p0 = [0,−1]
T

. The car performs the
following two movements:

• forward motion by 6 m, followed by a

• right turn, which is a rotation by α = 45o around the point C with radius r = 4 m.

(a) Give the two partial motions, the forward and the right turn, of the car referring to the start of each
the partial motion as single homogeneous transformations.

(b) Determine the position 0pt of the point pt at time t in the original coordinate system S0. Provide
the derivation and give the reasoning for your solution.

total: 194
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Figure 5: Motion of a car with co-driver at p at time 0 and time t
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3: Orthogonal Matrices and Euler Angles

Learning objective: This set of exercises should enable you to reliably determine angles in 3D and to analyse,
represent and use 3D rotations with rotation matrices and Euler angles.

A. Angles and special orthogonal transformations

1. (16) Angle between two vectors using the atan2-function.

(a) (6) Empirical determine the range [Tc0, Tc1] for an angle α ∈ [0◦,+90◦] such that for arccos(cos(α)) 6=
0 the difference | arccos(cos(α))−α| is small, say below 10−14. Report the software and the numerical
resolution you used.

(b) (4) Empirically determine the range [Ts0, Ts1] for an angle α ∈ [0◦,+90◦] such that arcsin(sin(α)) 6=
π/2 the difference | arcsin(sin(α)) − α| is small, say < 10−14 and check whether it has the same
length.

(c) (3) Given are two 3-vectors x and y. Derive an explicit expression for the angle 6 (x,y) using the
atan2-function. Hint: Use the dot and the cross product.

(d) (3) Show that the expression can be specialized for two 2-vectors u and v to

6 (u,v) = atan2 (|u,v|,uTv) . (13)

2. (35) Reflections.

(a) (3) Give the three reflection matrices (see spanisch espejo) E i k = 1, 2, 3 in the three coordinate
planes. Chose i such that the coordinate xi is changed.

(b) (6) Show that a reflection at a plane En through the origin given by its normal n, |n| = 1, can be
represented as

En = I 3 − 2nnT (14)

Hint: Show that all points p with coordinates p = p0+λn, where p0 ∈ En and λ ∈ IR, are transformed
to the point p′ with coordinates p′ = p0 − λn, see http://mathworld.wolfram.com/Reflection.html.

(c) (6) Show, that alternatively, a reflection at a plane En through the origin given by its normal
n, |n| = 1, can be represented as

En = Rab(e1,n) E 1 Rab(n, e1) , (15)

where the rotation matrix Rab(a, b) is a minimal rotation of a to b. Hint: Show that all points p
with coordinates p = p0 + λn, where p0 ∈ En and λ ∈ IR, are transformed to the point p′ with
coordinates p′ = p0 − λn.

(d) (1) Show that En is an orthogonal matrix with determinant −1.

(e) (13) For two planes passing through the origin which have non-parallel normals n and m, show for
arbitrary dimensions:

i. (1) The concatenation
R(m,n) = EmEn (16)

is a proper rotation matrix.

ii. (1) Show that a vector a ⊥m and a ⊥ n, perpendicular to both normals, is not changed by the
rotation, i.e. R(m,n)a = a.

iii. (2) Show, that R(m,n)m = n.
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iv. (9) Show, that R(m,n) is the smallest rotation between m and n., thus

EnEm = Rab(m,n) . (17)

Hint: Show that for an arbitrary point p = Aλ + νn + µm, with arbitrary A 6= 0 following
mTA = 0 and nTA = 0, the angle between p and p′ = R(m,n)p is not larger than the angle
between m and m, and only identical if λ = 0, i.e., if the point is in the plane spanned by
(m,n).

(f) (2) Given a rotation matrix R, is there a unique way to derive the two normals m and n in (16).
Why? Explain the situation geometrically.

(g) (4) For a 2-vector p, is p′ = −p a reflection? For a 3-vector q, is q′ = −q a reflection? Explain the
situation algebraically and geometrically.

B. Rotation matrices

3. (3) Given is a 3× 3 matrix Q. How can you decide whether Q is a rotation matrix?

4. (14) The rotation matrix which rotates the unit 3-vector e3, e.g. the north pole of a sphere, into the
normalized vector x with xT

0 = [x1, x2] is given by

Rab(e3,x) =

[
I 2 − x0x

T
0 /(1 + x3) x0

−x0 x3

]
=


1− x1x1

1 + x3
− x1x2

1 + x3
x1

− x1x2
1 + x3

1− x2x2
1 + x3

x2

−x1 −x2 x3

 . (18)

(a) (6) Derive the relation using a general equation for Rab(a, b).

(b) (3) For which points is the rotation matrix not defined? Why

(c) (5) Rotate the vector y = µ [−x2, x1, 0]T 6= 0. Interprete the result.

5. (12) Using properties of a rotation matrix.

The figure shows a desk in a rectangular room. The desk stands parallel to the walls. Four right handed

x

x x
2

3

4

x
1

Figure 6: Desk in room

coordinate system Sk, k = 1, 2, 3, 4 are indicated by their x-axes kx useful for describing objects in the
room, for modeling one of the legs, for telling the pose of objects on the table, and for handling the table
top. The task is to describe the relative rotations of the four coordinate systems:

(a) (10) For each of the four systems Sk give the rotational part R k of the motion into the next system
Sk+1, counting the systems cyclically.

(b) (2) Check the four relative rotations by concatenating them, starting from S1 and ending at S1.

6. (32) Finding and interpreting a relative rotation.

The figure shows the interior of a room with a dormer. The slope of the main roof is α = 130◦ w.r.t.
vertical. The task is to determine the angle between the two blue 3D lines L1 and L2. We go through
alternative solutions.
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Figure 7: Room with dormer

(a) (12) Determine the relative rotation between the room system S0 and the two local systems S1 and
S2. Hint: You are free to choose the other axes of S1 and S2.

(b) (4) Determine the relative rotation between the two systems S1 and S2.

(c) (2) Determine the angle 6 (L1,L2).

(d) (4) For checking the previous result, determine the angle between the two direction vectors of the
two 3D lines in the room coordinate system.

.

(e) (6) For a right angled spherical triangle with rectangle at C one of Napier’s rules for right spherical
triangles is

cos(c) = cos(a) cos(b) (19)

(see slide 30 in lecture 3, and https://en.wikipedia.org/wiki/Spherical_trigonometry, Sect.
3.6, Rule (R1)). Make a sketch of the geometric configuration of the two directions 0x1 and 0x2 on
the unit sphere, identify the rectangular triangle ABC and the three sides a, b, and c. Which of the
entities of the spherical triangle is the angle between the two 3D lines? Prove the previous result.

(f) (4) Linearize (19) and collect terms up to third order. Explain why the result is plausible.

7. (18) A special rotation of the cube.

Show, that a rotation around the axis r = [1, 1, 1]T/
√

3 with 120◦ is given by

R =

 0 1 0
0 0 1
1 0 0

 (20)

For this determine the following three rotations

(a) (8) rotation R(r,a) from r into the one, say a of the three axes. Hint: Use the the rotation matrix
from ex. 4.

(b) (2) rotation R1(120◦) by 120◦around the axis a.

(c) (1) rotation R(a, r) from the axis a into the rotation axis r

(d) (7) Concatenate the three rotations. Is the result plausible? Make a sketch using the unit cube in
the first octant with a corner in the origin.

https://en.wikipedia.org/wiki/Spherical_trigonometry
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C. Euler angles

8. (8) Ambiguity of Euler angles.

The determintion of the Euler angels from a rotation matrix is not unique, see slide 29 in lecture 3:

R3(γ)R2(β)R1(α) = R3(γ + π)R2(π − β)R1(α+ π) (21)

Prove this equivalence by determining the change of the sines and cosines of the angles α, β, and γ and
check, that the entries in the rotation matrix RA(α, β, γ) do not change.

9. (40) Effect on estimated angles when choosing the wrong rotation sequence.

Given are the two rotation matrices generated according to case A (see slide 21 in lecture 3)

R1 =

 0.998705872708108 0.025411959020922 −0.044054649664433
−0.026152033653421 0.999524999872461 −0.016304777390287
0.043619387365336 0.017435795613492 0.998896061698712

 (22)

and according to case B (see slide 22)

R2 =

 0.972580906061019 0.085089803642111 0.216439613938103
−0.058266578364761 0.990134354608083 −0.127432200289005
−0.225147478358500 0.111326929091667 0.967943659438827

 (23)

(a) (4) Determine the three Euler angles α1A from R1.

(b) (6) Give explicit expressions for determining the angles for case B.

(c) (4) Determine the three Euler angles α2B from R2.

(d) (4) Determine the Euler angles α1B from R1 assuming it is a matrix constructed according to case B.
Compare the angles α′1 with the correct angles α1. How large is the squared error d21 = |(α1B−α1A)|2
in relation to the squared size of the rotation θ21 = |α1A|2?

(e) (4) Similarly, determine the Euler angles α2A from R2 assuming it is a matrix constructed according
to case A. Compare the angles α2A with the correct angles α2B . How large is the squared error
d22 = |(α2A −α2B)|2 in relation to the squared size of the rotation θ22 = |α2B |2?

(f) (6) Explain the observed effects. Argue why the relative errors are in the order of the rotation angles
in radians.

(g) (12) Assume the three angles are small random variables of the same order following α ∼ N (0, σ2
δ ),

β ∼ N (0, σ2
δ ), γ ∼ N (0, σ2

δ ).

i. Show, that by restricting to second order terms the relative squared error d2 = |α1A −α1B |2 =
(αγ)2 + (βγ)2 + (αβ)2.

ii. Show, that the ratio of the expected square error and the expected square angle is e2r =
E(|d|2)/E(|α|2) = σ2

δ , hence er = σδ.

Hint: For zero mean uncorrelated normally distributed variables ei we have E(
∑n

1=1 e
2
i /σ

2
i ) = n and

E(e21e
2
2) = σ2

1σ
2
2 .

D. Motions on the earth

10. (27) Flight direction and distance.

Frankfurt F (Germany) has the geographic coordinates with [λF , φF ] = [8◦2′, 50◦34′], San Francisco S
(USA) has the geographical coordinates [λS , φS ] = [−122◦24′, 37◦367]

T
.

(a) (7) Transform the geographic coordinates [λ, φ] into Cartesian coordinates [x, y, z]
T

and determine
the distance of the two cities. Assume the radius of the earth is rE = 6371 km.
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(b) (14) Determine the azimuth under which the aeroplane needs to leave Frankfurt in order to fly to
San Francisco on the shortest path. How long is the path?

Hint: Transform the original earth coordinate SE into a system SF , such that Frankfurt has coordi-
nates FxF = [0, 0, 1].

(c) (6) Use the Haversine-Formula (see https://en.wikipedia.org/wiki/Haversine_formula) for de-
termining the distance. Comment on the two ways (a) and (c) to determine the distance in this type
of application.

11. (15) Intermediate stop of long flights.

Long international flights often are partitioned into two parts. As an example, take the 24-hour flight from
Auckland (New Zeeland, (37◦00′ south, 174◦47′ east) ) to Frankfort (Germany, (50◦2′ north, 8◦34′ east, )),
which takes around 24 flying hours. Assume the flight would take the shortest path.

(a) (5) Given are the following airports with their geographic coordinates Use a world map, and guess

Airport latitude longitude
Bangkok 13◦41’ 100◦45’
Hongkong 22◦18’ 113◦56’
Osaka 34◦26’ 135◦13’
Peking 40◦04’ 116◦36’
Singapur 1◦21’ 103◦59’
Tokyo 35◦33’ 139◦47’

Table 1: Airports with geographic coordinates

which of these airports is best for an intermediate stop.

(b) (6) Which airport is best for a stop?

(c) (3) How do the distances between this airport and Frankfurt differ in time, if the complete flight
from Auckland to Frankfurt, without break, requires 24 hours?

(d) (4) Determine the mid point of the path on the great circle through Auckland and Frankfurt and
determine the distances of the mid point from the six airports. Compare the result with that from
11b. Discuss the result.

12. (14) The rocket.

Assume the earth is a sphere with a Cartesian coordinate system as shown in Fig. 8: the origin O in the
centre of the sphere,the x-axis lying on the equator and the zero-meridian.

q

z

y

x

O

p

Figure 8: World coordinate system with point p

A rocket starts at p(3682, 3682, 3682) km and flies into space following a very simplified motion.

https://en.wikipedia.org/wiki/Haversine_formula
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• Start: A straight path of distance d = 40000 km in the direction s = 1√
3

[1 , 1 , 1]
T

.

• Circular motion: around the axis r = 1√
3

[1 , 1 , −1]
T

.

(a) (2) Determine the position p′ after the starting path using a homogeneous motion matrix Ms. Give
Ms and the position p′ in Cartesian coordiantes.

(b) (2) Assume the rocket circumnavigate the earth. Provide the homogeneous motion matrix Me, which
describes this path until the rocket has circumnavigated the earth by a third.

(c) (3) Determine the position p′′ of the rocket after the rotational motion. Provide the motion matrix
M1 of the complete path and the Cartesian coordinates of p′′ in km.

(d) (3) After the motion M1 the rocket performs a straight path to the point a = [−3250 , 1740 , −5200]
T

where it is meant to be sunk. Determine this straight motion Ma and determine the motion M2 from
the start to the end. Provide Ma and M2.

(e) (4) Determine the geographic coordinates of the point pa of impact.

13. (17) Parachutist.

A parachutist P at a certain time t0 is at position P = [x0, y0, z0]T in a reference system. His own, local
coordinate system, positioned in his head, is defined as follows: the x-axis points downwards towards
nadir in opposite direction to the z- axis of the reference system. The local z axis points in the opposite
direction of the reference y axis. The local y axis completes the right handed local coordinate system.

At a later time t1 the parachutist has fallen down by the distance d and turned his head by φ, such that
the local coordinate system rotates around its y-axis.

The matrix MP describes the motion of the global into the local coordinate system at time t1.

(a) (5) Make a sketch which shows the relative pose of the reference and the local system at time t1.

(b) (12) Give the individual homogeneous matrices Mi which define the complete motion MP . Explain
how you concatenate the individual motions and provide arguments for your choices. – You need not
determine the concatenated motion explicitly.

total: 251



Exercises to video lectures on 3D Coordinate Systems (BSc)
Prof. Dr.-Ing. W. Förstner
StachnissLab
Institute for Geodesy and Geoinformation

4: Axis angle and exponential representation

Learning objective: This set of exercises should enable you to reliably determine angles in 3D and to analyse
and represent 3D rotations using rotation matrices and Euler angles.

A. Skew symmetric and rotation matrices

1. (15) Refer to arbitrary vectors a and unit vectors r and prove the following

S
2
r = Dr − I 3 (24)

S
2
a = Da − |a2| I 3

Rr,θR
T
r,θ = I 3

Interprete the relation (24) geometrically by multiplying both sides with an arbitrary vector x. Make a
sketch.

B. Rotation matrices

2. (12) Axis and angle from rotation matrix.

Given are the two rotation matrices

R1 =
1

7225

 7175 744 −408
600 −6905 −2040
−600 1992 −6919

 and R2 =
1

169

 −151 −24 72
−24 −137 −96
72 −96 119


(a) (4) Check whether the matrices are rotation matrices. Work with rational numbers if possible

(b) (4) Determine the rotation angles θi, i = 1, 2.

(c) (4) Determine the rotation axes ri, i = 1, 2. Work with integers.

3. (12) Axis and angle of a rotation.

Given is a rotation with angle φ = 125◦ and axis r = [3, 4, 12]/13.

(a) (4) Determine the rotation matrix using the axis angle and the exponential representation. Compare
the results.

(b) (4) From the rotation matrix Rr,θ derive the angle and the axis and compare with the given values.

(c) (4) Choose φ = 720◦ and repeat (3a) and (3b. Discuss the result.

4. (26) Rotational symmetry groups of a cube.

We have seen a rotation by 120◦ which maps a unit cube into itself, in this case assuming a corner is in
the origin. Repeating this motion again maps the cube into itself. Together with the zero rotation there
are three rotations, which of course could be applied to other corners. The task is to find the rotation
groups of the cube [±1,±1,±1] with a fixed axis which are different and finally provide the total number
of all rotations mapping the cube into itself.

(a) (13) How many rotation groups around a fixed axis having different cardinality do exist? For each
group,

i. (2) give the number of non-zero rotations,

ii. (2) give the smallest angles for a non-zero rotation,

iii. (2) describe the geometric position of the rotation axis,

iv. (2) give the number of geometrically different rotation axes.

v. (5) give an example for a rotation matrix of the cube with coordinates [±1,±1,±1].
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(b) (2) Together with the zero-rotation, how many different rotations map the cube into itself?

(c) (5) How many rotation groups of the regular tetrahedron around a fixed axis exist? Give the smallest
angles for a non-zero rotation. How many rotations map the tetrahedron into itself?

(d) (6)) If you take an image of a building in a general direction, you can infer the three directions of a
rectangular coordinate system using vanishing points. Assume you are just given the three mutually

Figure 9: Image with inferred tripod with inferred normalized 3-vectors [a, b, c]

orthonormal 3-vectors [a, b, c] with det([a, b, c]) = 1, say, in the local (camera) coordinate system,
not the image. You want to relate this tripod to the three axes of the global (world) system. How
many possibilities for defining the three coordinate axes of a right handed coordinate system do you
have? Give a geometric explanation.

See video https://www.youtube.com/watch?v=Ch95sES5D9A and lecture notes on symmetry groups
http://www-groups.mcs.st-andrews.ac.uk/~john/geometry/Lectures/L10.html and following
page.

total: 65

https://www.youtube.com/watch?v=Ch95sES5D9A
http://www-groups.mcs.st-andrews.ac.uk/~john/geometry/Lectures/L10.html
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5: Quaternions and concatenation of parametric rotations

Learning objective: This set of exercises should enable you to work with quaternions, interprete them as
rotations and build links the different representation fo rotations discussed in the lectures so far.

A. Using the algebra of quaternions

1. (15) Basics operations

Given are the two quaternions

q1 =


4
2
5
2

 and q2 =


3
5
11
13


Determine

(a) (3) the product q1q2.

(b) (2) the inverse q−12

(c) (2) the product q2q
−1
2 .

(d) (8) the ratio q1

q2
. Clarify, what the task means. Give a full explanation and the corresponding

solutions.

2. (8) Manipulating pure quaternions.

Pure quaternions have scalar part zero, i.e. are of the form q = (0, q). Similarly to general quaternions,
pure quaternions may be unit quaternions. Assume all quaternions x and y in this task are pure. Prove
the following expressions (most proofs are not longer than one line)

xy = (−x.y,x× y) (25)Multiplication

x2 = −|x|2 (26)Square

x3 = −|x|2x (27)Cube

x y = xy (28)Product of conjugates

y x = xy (29)Reverse product

0 = xz + zx (30)Constraint for Product of orthogonal quaternions

x2 = −1 , and x3 = −x (31)Square and cube of unit quaternion

(32)Product of two unit quaternions with angle α

xy = (− cosα, sinαN(x× y)) with |xy| = 1

3. (10) A 3D point x (x) is reflected at a plane A(n) with normal vector n going through the origin yielding
the point x ′(x′). This reflection can be represented with the pure quaternions x = (0,x) and n = (0,n)
as:

x′ = nxn . (33)

Prove that the corresponding transformation of the coordinates is

x′ = Enx with En = I 2 − 2nnT . (34)

See https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
index.htm

and Video 5a on rotations as pairs of reflections with quaternions.

https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
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4. (18) Deriving the product rule of quaternions.

R. W. Hamilton has defined quaternions as hypercomplex numbers q = q0 + q1i+ q2j+ q3k with the basic
numbers i, j and k fulfilling the non-commutative multiplication rules

i2 = j2 = k2 = ijk = −1 . (35)

A quaternion also can be defined by a pair q = (q, q) of a scalar q = q0 and a vector q = [q1, q2, q3]T with
the multiplication rule for two quaternions p and r

q = pr with q = pr − p.r and q = rp+ pr + p× r . (36)

The task of this exercise is to derive further multiplication rules from (35), namely

ij = k = −ji (37a)

jk = i = −kj (37b)

ki = j = −ik (37c)

and (36).

(a) (6) Prove the relations in (37a).

(b) (6) Show, that only one of the three equations, say (37a) needs to be proven.

(c) (6) Using these rules prove (36).

5. (18) Analyse the multiplication matrix Tq on slide 9, video 5.

(a) (2) Prove that Tq = T
T
q .

(b) (2) Prove that Tq−1 = T
−1
q .

(c) (1) Prove that for a unit quaternion qe = q/|q| the matrix Tqe is orthogonal.

(d) (5) Prove that for any two quaternions p and q the norm of the product is identical to the product
of the norms

|pq| = p| |q| . (38)

6. (26) Rational unit quaternions.

We have used the following quaternions

q0 =
1

2
[−1, 1, 1, 1]T and q1 =

1

85
[12,−84,−4, 3]T (39)

in lecture V5, slide 21 and exercise V4-2 for generating R1. Both contain only rational numbers as
elements, why we call them rational quaternions.

(a) (2) Show, that q0 and q1 are unit quaternions.

(b) (4) Show that for an arbitrary quaternion t = (u,v) the quaternion

q(t) =

(
u2 − |v|2

u2 + |v|2
,

2uv

u2 + |v|2

)
(40)

is a unit quaternion. Hint: Give a short expression for the function q = q(t).

(c) (4) Give two integer quaternions t2 and t3 leading to rational unit quaternions q2 and q3 with
denominators in the range [8, 10].

(d) (8) Specify two integer quaternions t0 and t1 leading to two unit quaternions q0 and q1.

(e) (8) Given is an integer quaternion q having an integer norm. Describe in your own words the relation
between the elements of the quaternion q, say (a, b, c, d) and its norm, say e. Derive an expression
for an integer quaternion t leading to q.
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B. Rotations with quaternions

7. (20) Interpretation and use of quaternions for rotations.

(a) (6) Two rotations are given by the corresponding quaternions

q1 =


7
−11

8
−16

 and q2 =


−1
0
0
0

 .
Describe the rotations.

(b) (14) Given is the point p([2,−1, 4]) and the rotation the direction d = [4,−3, 12] of its axis and its
angle θ = 75◦.

i. (2) Give the unit quaternion q which represents this rotation?

ii. (10) Use the equation [
0
p′

]
= q

[
0
p

]
q−1 ,

for determining the rotated point p′.
iii. (2) Is the angle between the original and the rotated point identical to θ. Why?

8. (10) Interpreting the rotations of the three axes.

The 24 elements of the octaheron group are the rotations represented by the following quaternions.

q0 = [1, 0, 0, 0]T

q3 = [0, 0, 0, 1]T

q6 = [1,−1, 1, 1]T

q9 = [1, 1,−1,−1]T

q12 = [1, 1, 0, 0]T

q15 = [0, 1, 1, 0]T

q18 = [1,−1, 0, 0]T

q21 = [0, 1,−1, 0]T

q1 = [0, 1, 0, 0]T

q4 = [1, 1, 1, 1]T

q7 = [1, 1,−1, 1]T

q10 = [1,−1, 1,−1]T

q13 = [1, 0, 1, 0]T

q16 = [0, 1, 0, 1]T

q19 = [1, 0,−1, 0]T

q22 = [0, 1, 0,−1]T

q2 = [0, 0, 1, 0]T

q5 = [1,−1,−1,−1]T

q8 = [1, 1, 1,−1]T

q11 = [1,−1,−1, 1]T

q14 = [1, 0, 0, 1]T

q17 = [0, 0, 1, 1]T

q20 = [1, 0, 0,−1]T

q23 = [0, 0, 1,−1]T

These rotations map an octahedron or a cube, or the three orthogonal axes of a coordinate system, onto
itself. Choose two quaternion indices l and m as a function of the number n of your university licence
or another document. For the first index take l = mod (n, 23) + 1. For the second index use the num-

ber
←
n with the reverse sequence of digits and take m = mod (

←
n, 23) + 1. If l = m, then choose l =

mod (n+ 11, 13) + 1.

Interprete the two quaternions ql and qm as rotations of the cube with corners [±1,±1,±1].

C. Rotation parametrizations

9. (25) Double rotation

A rotation x′ = Rx is provided with the three Euler angles α = −10◦, β = 20◦, γ = 30◦ following the
definition R = R3(γ)R2(β)R1(α).

(a) (8) Determine the parameters of the rotation

i. R, rotation matrix,
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ii. (r, ω), axis and angle,

iii. θ, rotation vector

iv. m, Rodriguez parameters

v. u, Cayley parameters

(b) (12) If possible, start from the parameters of the individual representations and determine the param-
eters of double the rotation Rd = R

2, i.e. for the Euler angles, for the axis and angle representation
(rd, ωd), etc. Numerically check the parameters of the double rotations, e.g., . by x′′ = Rdx = Rx′.
For which of the representation is the determination of the parameters of the double rotation, easy
(less than one line of proof), moderate (a few lines of proof), awkward (more that 10 lines of proof)

10. (20) Half a rotation

Given is the rotation matrix R = RR(m), by the Rodriguez parameters m = [1, 2,−3]T:

R =
1

9

 −4 8 1
−4 −1 −8
−7 −4 4

 =

 −0.4444 0.8889 0.1111
−0.4444 −0.1111 −0.8889
−0.7778 −0.4444 0.4444

 . (42)

Determine the parameters of half the rotation.

(a) Determine the parameters of the full rotation x′ = Rx in the various representations and give the
parameters of half the rotation Rh (x′ = R

2
hx) in the same representation

i. Rh, rotation matrix,

ii. (rh, ωh), axis and angle,

iii. θh, rotation vector

iv. mh, Rodriguez parameters

v. uh, Cayley parameters

Hint. Possibly use basic relations from trigonometry.

(b) For which of the representations is this easy (less than one line of proof), medium (several lines of
proof), awkward (more than 10 lines of proof)?

(c) Is there a unique solution? Are there multiple solutions? Discuss in detail.

11. (18) Square root of a quaternions and half rotations.

The previous exercise required to determine the square root qh of the quaternion q since q = qhqh.
The task here is to find the number of quaternions representing half of a rotation. Given are the four
quaternions

q1 =

(√
2 +
√

2,

√
2−
√

2e1

)
, q2 =

(
−
√

2−
√

2,

√
2 +
√

2e1

)
, (43)

q3 = −q1 and q4 = −q2, with e1 = [1, 0, 0]T.

(a) (2) How many rotations Ri(qi) do the four quaternions qi represent?

(b) (8) Determine the squares of the four quaternions.

(c) (1) How many different squares q2
i do you obtain?

(d) (1) How many different rotations do the squares q2
i represent?

(e) (1) Do the square roots of a single quaternion represent two different rotations?

(f) (5) Give an algorithm to determine the square root of a quaternion.
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12. (21) Interpolation of rotations.

A camera is to be panned to smoothly move from one pose at time t = 0 to another pose at time t = 1.
Given are the two sets of Euler angles

(α, β, γ)0 = (1,−45,+60)◦ (α, β, γ)1 = (1, 45,+60)◦ (44)

referring to the reference system with rotations given in this system.

(6) Provide the quaternions for both poses (rotations).

The interpolation for the parameter value t = 0.7 is to be performed in three different manners:

(a) (1) Element wise linear interpolation of the angles, e.g., α(t) = (1− t)α0 + tα1.

(b) (7) Element wise linear interpolation of the unit quaternions.

(c) (7) Linear interpolation of the unit quaternion via the rotation angle φ = arccos(qT
0qt) between

these quaternions:

q(t) =
1

sinφ
(q0 sin((1− t)φ) + q1 sin(tφ)) (45)

For each of the three cases give the three Euler angles (α, β, γ)0.7. How do you evaluate the three
interpolation methods?

13. (20) Interpolation of directions.

Show, that 45 actually is an interpolation of unit direction vectors, for the general case q0,q1 ∈ IRn.

(a): (1) q(t) = qt, t = (0, 1) (46)

(b): (3) q(t), q(0) and q(1) are coplanar (47)

(c): (8) |q(t)| = 1 (48)

(d): (8) arccos(q(t)Tq0) = tφ (49)

Eqs. (47) and (48) state, that the path q(t) is circular in IRn. The last equation (49) states, that the
motion has a constant velocity along the circle.

total: 229
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6: Small rotations and rotations from vector pairs

Learning objective: This set of exercises should enable you to handle small rotations and uncertain rotations
and determine rotations from vector pairs.

A. Small rotations

1. (9) Approximate rotation matrix

(a) Determine the matrix M(θ) = I 3 + Sθ with Sθ := θSr and r = [0, 0, 1]T, θ = 60◦. Is M(θ) a proper
rotation matrix? Provide arguments.

(b) How can you determine a proper rotation matrix R for a given approximate rotation matris M?
Determine the best approximating rotation matrix R(θ) for M(θ).

(c) Is the matrix M(θ) a good aproximation for R(θ)? Provide arguments.

2. (12) Rotation axis and angle for small angles

Given are the three small angles α = 0.1◦, β = 0.3◦, γ = −0.6◦.

(a) Determine the rotation matrix for R = R3(γ)R2(β)R1(α) .

(b) Give the rotation angle θ in degrees. How could you determine an approximation of θ from the three
given angles?

(c) Give the rotation axis r. How could you determine the axis approximately from the three angles.

Discuss the results.

3. (9) Concatenation of small angles

Show, that for small rotations the concatenation R(θ) = R(θ2)R(θ1) can be achieved by direct addition
of the rotation vectors θ = θ1 + θ2. Under which conditions is this an approximation? How good is the
approximation, say θa, i.e., how large is the relative error w.r.t. rigorously determined rotation vector θ?
Give reasons. Hint: Take as relative error the value |θ − θa|/|θ|.

B. Uncertain rotations

4. (24) Generating random rotations.

Generate I random 3-vectors θi ∼ N (0, σ2I 3).

(a) (12) Choose I = 100 and σ = 3 and generate rotation matrices Ri = Rθ(θi) using a function for

the exponential of a matrix. Derive the estimated skew symmetric matrices Ŝ i = S(θ̂i) by using a

function for calculating the logarithm of a matrix and determine the estimated rotations vectors θ̂i.
How do the estimated rotation vectors differ from the generated ones? Report on the results.

(b) (12) Repeat the experiment by choosing I = 1000 and σ = 0.001.

i. Determine the estimated means µ̂θ and µ̂θ̂ of the I generated and the I estimated rotation
vectors. Comment on the result.

ii. Determine the covariance matrices Σ̂θθ and Σ̂θ̂θ̂. Comment on the result.

Hints: In Matlab use the functions expm.m and logm.m.. Collect the generated and the estimated
rotation vectors in 1000 × 3 matrices and use functions for estimating the 3-vector of the mean of
the columns of a matrix and the 3× 3 covariance matrix. In Matlab these are the function mean.m

and cov.m .

5. (20) Uncertain rotation from uncertain Euler angles.

Given are the Euler angles α = [ω, φ, κ] with their covariance matrix Σαα. The task is to determine the
covariance matrix Σrr of the uncertain rotation matrix R = R3(κ)R2(φ)R1(ω).
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(a) Verify that with the unit 3-vectors ei the required Jacobian is

Jrα =
∂r

∂α
= [R3(κ)R2(φ)e1 | R3(κ)e2 | e3] . (50)

Hint: Evaluate the total differential. Confirm and use, e.g.,

dR1(ω) = S(e1)R1(ω) dω . (51)

(b) Show, that the determinant if this Jacobian is

|Jrα| = cosφ . (52)

Interprete the result. Especially comment on the rank of the covariance matrix Σrr as function of
the angle φ.

C. Rotations from pairs of directions

6. (18) Shortest rotation between two directions

Cid and Tojo (2018) show that for two unit n-vectors x,y ∈ Sn

Rxy = I + K +
1

1 + x.y
K

2 with K = yxT − xyT (53)

performs the smallest rotation from x to y.

(a) (3) Interpret the matrix K for 3D vectors in the context of the desired rotation.

(b) (3) Interpret Rxy in 3D by comparing it with the axis and and angle representation Rr,θ of a rotation
matrix.

(c) (12) Show that the matrix Rxy performs the same rotation as Rab presented in the lecture, indepen-
dent of the dimension.

7. (45) Plate tectonics

The earth’s continents move relative to each other. These motion can be interpreted as small rotation of
spherical plates on the earth. For different positions, see Fig. 10, the coordinates and the velocities are
given in [mm] and [mm/year], respectively, in the IRTF2000 system (International Terrestrial Reference
Frame) with its origin at the centre of the earth.

For January 1st, 2015 we find the following data for EUSK (Euskirchen, Germany), SHAO (Shanghai,
China) and NRIL (Norilsk, Russia) in the eurasian plate.

EUSK x = 4 022 106 084.755 y = 477 011 254.387 z = 4 910 840 843.753

vx = −15.522 vy = 16.572 vz = 9.689

SHAO x = −2 831 733 809.639 y = 4 675 665 817.043 z = 3 275 369 306.163

vx = −30.371 vy = −10.949 vz = −11.257

NRIL x = 64 536 969.633 y = 2 253 782 897.416 z = 5 946 363 512.268

vx = −22.037 vy = 3.248 vz = 1.009

(a) (8) Determine the positions of the three stations at January 1st, 2016. Then, determine the angular
velocities ωi for all stations and the rotation vector riw.r.t. the centre of the earth. Take care of the
numerical accuracy.

(b) i. (12) Determine the motion of the eurasian plate from the motions of the three stations in 2015.

Provide the best approximating rotation matrix R̂1. What is the rotational velocity of this
motion in arcsec/year.
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Figure 10: Velocity vectors of plate tectonics

ii. (10) Determine the motion of the eurasian plate only from the motions of the two stations

Euskirchen and Norilsk in 2015. Determine the best approximating rotation matrix R̂2. Again,
determine the rotational velocity in arcsec/year. Compare the result with the one of the previous
task.

(c) (7) Give the geographic coordinates of the fixed point on the earth, derived from R̂1. Compare the
result with the map in Fig. 10.

(d) (8) The new ,,Bundeskanzlerplatz”, the geographic centre of Bonn, has geographic coordiantes

BONN = [+50◦ 43′ 9′′,+7◦ 7′ 3′′]
T

. How many mm does it move annually in the IRTF2000 system?

total: 137
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