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Photogrammetry & Robotics Lab

3D Coordinate Systems
(Bsc Geodesy & Geoinformation) 

14. Outlier Detection
Wolfgang Förstner

The slides have been created by Wolfgang Förstner. 
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1st system with 7 points
2nd system translated
2nd system scaled/rotated
two outliers introduced

Which are the outliers?

The problem – step by step (animated)
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1st system
2nd system
2nd system scaled/rotated
two outliers introduced

Which are the outliers? 

The problem – step by step
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(5 and 6)
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Topics

1. The notion of outliers
2. The complexity of the problem
3. Complete search
4. Random sample consensus

For this video see Förstner/Wrobel (2016), Sect. 4.7
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6.1 The notion of outliers
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The notion of outliers

Model vs. data errors
e.g. Gauss-Markov model

 No possibility to distinguish
errors in data and errors in model

 Errors in
 Function (to many, too few, wrong functions)
 Covariance matrix (wrong variance, correlations)
 Distribution (close to or far from normal, one sided, ….)
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The notion of outliers

 Errors may be 
 Random: meant to be covered by the stochastical model
 Systematic: wrong # parameters, neglected covariances

(not necessarily distinguishable)

 Blunders/outliers: anything else
mostly wrong identification of correspondences 

 Outliers may be 
 Small: negligible, hardly detectable, …
 Medium: show, but do not severely distort estimate
 Large: heavily distort estimate
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The notion of outliers

Outliers may occur
 Seldom/isolated (< 0.1 %) or often (>10 %)
 Random or mimicking good result
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6.2 The complexity of the problem
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Complexity of problem

Number     of entities/observations/points
Each may be inlier or outlier
Number of alternatives     : exponentially many
e.g. 10 points meant to be on a straight line

 1024 alternatives 
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Two types of approaches

Two alternative views on solution methods
1. Search for outliers or inliers: discrete problem

 use inliers for estimation
2. Robust estimation: continuous problem

“Estimation which is insensitive to 
deviations from model assumptions”
 identify inliers

Boundaries between both methods blurry
12

Two types of approaches

Search
Select minimal subset of observations
Check consistency with model, e.g. using
Problem: How to select? Sequence of trials?

Robust estimation
Perform estimation insensitive to errors in the model
Identify outliers
Problem: How to identify? 
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The break down point of estimator

The percentage of outlying observations which may  
allow estimator to give arbitrary wrong result

Maximum break down point: 50 %
otherwise outliers may mimic good results

e.g.
 Arithmetic mean of I points: one outlier  bad

break down point = 0 %  all LSE have BDP = 0
 Median of I points: if outliers are the minority  fine

break down point = 
14

LS estimation for finding outliers?

1. Determine LS estimate of 2D similarity
2. Analyse residuals



 All residuals are large
 Largest residual not decisive (in 7, not in 5 or 6)
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Large variety of methods depending on …

Preconditions:
availability of approximate values/direct solution 

Likelihood of success
number of observations
homogeneity of configuration
error rate

Computational complexity
number of unknown parameters
existence of large outliers
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Two algorithms
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… selection

 Direct solution: available
 Number of observations: medium       to large
 Configuration: may be inhomogeneous
 Error rate may be high (possibly > 50 %)
 Number of parameters is small 
 Large outliers exist
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Class of algorithms

 Deterministic algorithms
The algorithm’s output is determined by its input

 Stochastic algorithms
The algorithm’s output stochastically varies for same input
 no solution is guaranteed

 One deterministic/one stochastic algorithm
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Complete search

Complete search
 For all possible configurations of inliers/outliers:

Determine some evaluation function
 Choose the best configuration

Configuration: binary vector 
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Complete search

For 2D line or 2D similarity: 
configurations with      or      points

For 3D similarity, configurations with      or      points

 solutions with 2 (3) or 3 (4) to I observed points
Complexity: exponential with the number of points



21/01/2021

6

21

Complete search

Evaluation functions
1. Variance factor for inliers

 number of outliers is not counted 
2. Additional constant penalty for each outlier 
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6.4 Random sample consensus (RANSAC)
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Idea

Assumption: Probability of outliers 



Probability of choosing sample of S inliers

e.g. for          (similarity transformation) 

Looks like a few samples, say 20, may be sufficient
24

Idea

Random Sample Consensus  (RANSAC)
(Fischler/Bolles 1981)

 Randomly choose large enough number     of trial 
samples of size    , sufficient to determine 
parameters,  to hit a good one with high probability 

 Use the other         points for checking consensus
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RANSAC Algorithm for spatial similarity

Input: data
outlier rate
number    of trials 

Iterate:  for each trial
choose random set      of    points  
determine parameters
determine consistency measure

Result:  set with best consistency
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Comments

 Data: variance      for determining consistency
(methods exist to estimate the variance)

 Number    of trials:
  required probability     of success 

 Determine parameters: 
requires direct solution 

 Consistency measures:
many alternatives 
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Line fitting demo

Size of sample

Slow demo:

1. Generate in- and outliers
2. Perform inlier detection
 Complete search. Consensus = variance factor for inliers 
 RANSAC. Consensus = # of inliers

28

Direct solution

Generally: may be hard to find

Here: Similarity from 3 points
1. Shift points 1 to origin
2. Determine scaled rotation 

from two direction pairs 

3. Derive similarity
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Number of trials

Minimal number        of trials such that 
probability of finding at least one good set of    points 
is at least        , if error rate is

Approximation:                      
 complexity: 
Proof using              

30

Proof: P(      good   -samples in     trials)  

Probability to draw one good point

Probability to draw a sample of     good points

Probability to draw bad   -sample - with at least one bad point

Probability to draw only bad   -samples in     trials

Probability to draw at least one good   -sample in     trials


31

Number of trials                        for   

 Sample size               
 Error rate
 Probability of success       

32

Line fitting demo

Fast demo ( above)

 Variation of # points
 Variation of precision
 Variation of error rate up to 95 %
 Failure for 
 Too low precision
 Too low probability/number of trials
 Too low number of points
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Comments

Number of trials independent on number I of points
 big advantage for computational efficiency

Sample size          number of parameters,
(e.g. 3 points vs. 7 parameters)

 Number of necessary trials increases quickly with
 Number of parameters
 Probability approaching 1
 Only useful for small problems (          ) 

 Result only reachable with limited probability
 Evaluation of result difficult
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Modifications ..

 Estimate observational noise      during trials
 use smallest      up to current trial

 Control sampling using P of observation being good  
 use classification up to current level

 Stop consensus calculation if no change in decision
(Wald’s (1945) sequential testing) 

 Eliminate bad configurations from samples
 If prior knowledge available  exclude solutions
see Raguram, R. et al. (2013). 
USAC: A Universal Framework for Random Sample Consensus, IEEE T-PAMI
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Large number of applications 

Estimation from highly perturbed data
 Estimating transformations

(motions, similarities, affinities, perspective relations, …)

 Estimating geometric entities
2D/3D lines (2), planes (3), 
circles (3), ellipses (5), spheres (4), cylinders (5), 
algebraic curves/surfaces, …)

Estimating multiple transformations/entities
(finding multiple lines / transformations … )

36

Summary

 Classification of problems for outlier detection
 A deterministic and a stochastic algorithm
 RANSAC as efficient method for finding outliers
 Complexity exponential in minimum sample size 
 Limitations: small U, no guarantee for solution           

 There exist algorithms (medium outliers, small    )
better than            for large    
(e.g. ML-type estimators minimizing (*) on s. 21)
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Strategy

1. Find inliers with adequate method
2. Perform ML estimation + evaluation

38

Thanks for watching
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