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Photogrammetry & Robotics Lab

3D Coordinate Systems
(Bsc Geodesy & Geoinformation) 

13. Evaluation of estimated parameters 
Wolfgang Förstner

The slides have been created by Wolfgang Förstner. 
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Topics

1. How to characterize the uncertainty of the estimates
1. What is the uncertainty of the input data?
2. What is the uncertainty of the output data?

2. How to check the implementation?

3. Uncertainty of estimated parameters of 3D similarity

For this video see Förstner/Wrobel (2016), p. 86, 89-91, 137, 139-141
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5.4.1 The uncertainty 
of the estimated parameters
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Uncertainty of the estimated parameters

 Assumption: linear model  nonlinear model
 Estimated parameters: fixed values, using 

 Predicted covariance matrix of      
 model assuming    is sample from
 estimation with      :     is sample from
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Uncertainty of the estimated parameters

 If                , optimal choice

 If approximate covariance matrix e.g.

 uncertainty of parameters from LS solution
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Mean of        and
Standard deviations

Blue: arithmetic mean
error band of estimate 

Red: weighted mean
error band 

Example 1: Mean vs weighted mean
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Arithmetic mean
 Generally incorrect: 

same for all weights
 Actual uncertainty 
increases 

Weighted mean
 Drastically changes
 Actual uncertainty
decreases

Deviation from weight ratio = 1
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Example 2: Centroid with general model

Given
two points     

 Arithmetic mean
 Using               , mean of sigmas
  midpoint on connecting line  

 Weighted mean?
 best point 
 highly depending on uncertainty

 real CovM of arithmetic mean (black) 
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Arithmetic mean vs weighted centroid

For 5 points …

Arithmetic and
weighted mean
differ (possibly)
more than 
standard deviations

High precision point attract
10

5.4.2 The variance factor
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The variance factor

Assumption on uncertainty of input data

Estimate independent on scaling of covariance matrix

If covariance matrix approximately known
up to variance factor     , close to 1, unit less

Can we estimate the variance factor?
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Estimation of variance factor

Use weighted sum of squared residuals

Expectation with redundancy

See proof on extra slide +2
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Estimated variance factor

Estimate of variance factor

weighted sum of residuals very useful !
Approximate standard deviations need to be updated
 Observations, uncertainty of the input data

 Estimated parameters, uncertainty of the output data

14

Proof: Redundancy and estimated residuals

 Estimated/corrected observations

 Idempotent matrix, rank = number     of parameters 

 Estimated residuals

Hence 
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5.4.3 Proving the Validity of a Method
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Proving the validity of a method

The procedure yields
 the estimates
 the covariance matrix
 the estimated variance factor



 Why validate?
 Checking the correctness of an estimation procedure
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Why validate a method?

Questions of the programmer/the user of a program

 Is the method implemented as intended?
 Does the method what it should?
 Can the user be sure the method works correctly?

(different flavor of the same question)
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How to validate a method?

 theoretical validation (proofs*)
 practitioners never believe in the usefulness 

of a theoretically proven method

 empirical validation
 synthetic data

practitioners never accept the relevance of the simulated data

 real data
theoreticians never trust a method proven with one (or many) 
example(s)

______________________________________
* This is why we study maths … which is never enough
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Checking the correctness of a procedure

Estimation method

Three checks
1. Estimated noise level                           should be 1
2. Theoretical covariance matrix       should be correct
3. Bias of estimates                                 should be 0
see Förstner and Wrobel (2016, Sect. 4.7.2)
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Remark: covariance matrices

 Theoretical/predicted covariance matrix (internal)

 Empirical covariance matrix
 From one sample (internal)

 standard deviations of     increase linearly with  
 From K samples (external)
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Principle of checking

 Take fitted values from real data as true values
 Add noise    times
 Perform estimation
 Check noise level, covariance matrices, and bias

22

Checking the noise level

Mean of variance factor

Histogram with 
theoretical density

The reader learns:
I can rely on the estimated noise level
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Checking the covariance matrix

Empirical covariance matrix

Test statistic (see Koch (1999), Sect. 2.8.7, 4.1.2)

e.g.

 The reader learns: I can rely on 
*   better: empirical data do not contradict
** better: reader needs not have doubt about 

**

*covariance matrix C(^x) ok
X(C) = 15.1763 in [6.4467,46.797]
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Checking the bias

Empirical bias = difference of estimate and true value
Test statistic:

e.g.

The reader learns: 
Method has not shown to introduce systematic errors

mean of parameters ^x ok:
X(^x) = 5.2384 < T = 22.4577
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Properties of checks

Extremely useful for checking implementations
 Check all three software parts
 the simulation
 the estimation
 the checking

 Sensitive even to errors with small effect
 Checks linearization
 Use very small noise (say       ) within simulations

otherwise: effect of linearization is visible
26

5.4.4 The uncertainty 
in the centred model of 3D similarity
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Parameters in centred 3D similarity model 

 Covariance matrix = inverse normal equation matrix
 Three independent estimates 
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Uncertainty of scale parameter

Estimated scale parameter from

Weighted squared average of distances     to centroid

Uncertainty= f(number of points, lever arms)
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Uncertainty of rotation

… from upper left submatrix, assuming

= inverse moment matrix of points 
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Uncertainty of rotation

 Generally correlated
 If coordinate axes =

principal moment axes
of point cloud 

 matrix diagonal

Standard deviations proportional to lever arms
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Uncertainty of translation

 Estimated translation vector from 

 Uncertainty

 If                   , isotropic, homogeneous

Plausible: expected precision of arithmetic mean
32

Meaning of covariance matrix?

When using centred coordinates with

Then always

For repeated experiments with varying noise
 estimated covariance matrix = 0 !

 contradiction?
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Assume repeated experiments

Multiple    experiments, fixed        (see above)

Resulting    estimates
Empirical mean and covariance matrix of estimates

Should be consistent 
34

Interpretations

Observations refer to centroid      of observations
varying for each repeated experiment
 enforces

If centroid      fixed for all  experiments
 estimates          vary
 simulation could be used to check CovM
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5.4.5 The uncertainty in the original model
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Relation to original model

Original and centred model

 only translation different

Variance propagation using the differential relation
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Summary

Generally
 Covariance of estimate = inverse normal NE matrix
 Extended model with variance factor
Proving the validity of the estimation method
 Estimated variance factor
 Theoretical/predicted covariance matrix
 Bias of estimate
Evaluation of 3D similarity

... Code will be published

38

Next/final lecture

6. Outlier detection
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