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3D Coordinate Systems
(Bsc Geodesy & Geoinformation) 

6. Small and Uncertain Rotations, Relations,
Rotations from Point Pairs
Wolfgang Förstner

The slides have been created by Wolfgang Förstner. 
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3.8 Small Rotations
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Motivation

Role of small rotations
 Representing uncertain rotations
 Differential equations
 Estimating rotations if approximations are available

For this video see Förstner/Wrobel (2016), p. 337-340, 381-383 
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Differential rotations

Start: rotation matrix

For small angles we have

Differentially small rotation

 First term of exponential series
 For small angles      not a rotation matrix
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Differential rotation matrices (1/2)

Differential rotation vector
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Differential rotation matrices (2/2)

For Euler, Rodriguez, and Cayley representation
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Differential rotation vectors

For differential angles, equivalence to Rodriguez

Differentially small rotation with quaternion     Cayley
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Differentiation of rotation matrix

Starting from

with the product rule we have the total differential

hence skew matrix depending on some small vector

independent of representation of   , or differential 

? Meaning of     ?
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Differentiation close to unit matrix

For linearization point

or (see above)

 differential vector  = differential rotation vector
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Differentiation at arbitrary 

If            , assume differential multiplicative change

approximate rotation perturbed by small rotation 

Additive differential change (see above)

 = differential disturbing rotation vector 
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Differential equation for rotating point

Point        rotating around       
with differential angle        during differential time

(in the figure: no dependency of r on t)
Angular velocity

Angular/rotational velocity vector      
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Differential equation for rotating point

Current velocity of point

Velocity is perpendicular to    and

Differential equation (right hand rule)     
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Uncertain rotations

 Rotations may be uncertain
 Many representations are redundant

i.e. > 3 parameters
 Degrees of freedom of 3D rotation = 3
 rank of covariance matrix must be 3
e.g. 
 9x9 covariance matrix of 9 elements: rank 3

 Domain of rotations bounded or repetitive
 How to handle uncertain rotations? 
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Classical setup

Classical representation of uncertain entities
 Random entities (underscored)
 First moment of density: mean vector
 Second central moment: covariance matrix (two indices)

 or

 If this is the only information
 plausible: Gaussian distribution
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Uncertain rotations

Classical interpretation 
model for generating the i-th random sample

With mean vector

alternative writing
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Uncertain rotations

Model for uncertain rotation: multiplicative (         ) 

Random distortion of mean rotation matrix
Uncertainty of rotation vector = 3x3 covariance matrix

Usually: the stochastic vector           is small
Small, measured in radians, e.g. 1o = 0.017 rad  
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Concatenation of uncertain rotations

Given two uncertain rotations

then uncertain concatenated rotation

with

18

Concatenation of uncertain rotations

Proof: Linearize 
Total differential

Using

or after right multiplication with 

19

Concatenation of uncertain rotations

Using (see video 4, slide  6)

yields

or finally

Remark: same setup for quaternions  
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Uncertain rotations with quaternions

… only a sketch (one of several approaches)

 Use unit quaternions = unit 4-vectors 
 Use 4x4 covariance matrix 
 Impose length constraint 
 Variance propagation: exploit linearity  Jacobians

requires to impose length constraint 
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3.9 Relation between representations
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Relations between representations

 Orthonormal matrix
 Euler angles                                         
 Axis and angle
 Exponential of skew matrix
 Quaternion 
 Rodriguez 
 Cayley 
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Relations between representations
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Relations between representations

 Axis and angle 
 Rotation vector 
 Unit quaternion  

 Quaternion and Cayley representation

 Rotations with differential angles
 Rodriguez parameters
 Euler angles
 Quaternions
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Usefulness of representations

 Rotation matrix                             exchange format 
 Euler angles                interpretable for small angles 
 Axis and angle                                    interpretable 
 Exponential                   interpretable compact form
 Unit quaternions          interpretable, no singularities
 Rodriguez                no trigonometry,  
 Cayley                                  rational in matrix         
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3.10 Rotations from Pairs of Points
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Rotations from pairs of points

Given: sets of corresponding points/unit vectors

Known: relations, e.g.

Sought: rotation matrix

Q: How many point pairs necessary? (1, 2, or 3?)
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Rotations from pairs of points

Observation:
 Each point pair yields 2 constraints
  at least two point pairs are necessary

Outline
1. 3 vector pairs (orthogonal, non-orthogonal)
2. 2 vector pairs
3. 1 vector pair (great circle)
4. Best rotation in case of perturbated data
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Rotation from three orthogonal pairs

Given: two sets of corresponding orthogonal vectors

The two rotation matrices

contain axis of tripods as columns
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Rotation from three orthogonal pairs

From

Follows

Remark: may include a mirroring
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Rotation from three general pairs

Given: two sets of corresponding general vectors

then from

we have

Matrix    not singular, if vectors               not coplanar
May include a mirroring
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Rotation from two vector pairs

Given: two corresponding vectors

We generate third vectors

and use previous result with three general vectors
Contains no mirroring! 
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Given: one point pair
There are many rotations (circular paths)
Rotation on great circle

(valid in all dimensions)           Weber (2003)

with normalized vectors

Rotation axis           , since  

Minimal rotation from one vector pair

a

b

* https://www.quora.com/On-the-surface-of-the-sphere-from-one-point-to-the-other-is-it-different-in-different-directions

*
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Best rotation matrix

Problem: 
Observations are noisy 
 estimated matrix only approximates rotation matrix
 derive best rotation matrix     from matrix 
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Best rotation matrix

Theorem: Best approximating orthogonal matrix
For an arbitrary regular matrix     with the singular 
value decomposition (SVD)

the orthogonal matrix

minimizes the Frobenius norm of the difference

Arun (1987)  
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Best rotation matrix

Comments:
 The SVD                is the product of 
 two orthogonal matrices     and     and
 a diagonal matrix     with positive entries

 We have for the determinants

 If            then     is a proper rotation matrix
otherwise it contains a mirroring  
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Rotation from > 3 pairs

See the example: Cayley representation in last lecture

Faster algorithm in context of motion estimation
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Rotations in 3D

Summary

 Multiple representations  choose an adequate one
 Uncertainty representation = CovM of 3 parameters
 Estimation of rotation matrix from pairs of directions
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Next lecture

4. Spatial motions and similarities
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