Photogrammetry & Robotics Lab

3D Coordinate Systems (Bsc Geodesy & Geoinformation)

6. Small and Uncertain Rotations, Relations, Rotations from Point Pairs

Wolfgang Förstner

The slides have been created by Wolfgang Förstner.

3.8 Small Rotations

Motivation

Role of small rotations

- Representing uncertain rotations
- Differential equations
- Estimating rotations if approximations are available

For this video see Förstner/Wrobel (2016), p. 337-340, 381-383

Differential rotations

Start: rotation matrix $R_{r,\theta} = I_3 + \sin \theta S_r + (1 - \cos \theta) S_r^2$ For small angles we have $\sin(d\theta) \approx d\theta$ and $\cos(d\theta) \approx 1$ Differentially small rotation

 $R_{r,\theta}(\mathrm{d}\theta) pprox I_3 + \mathrm{d}\theta S_r$

- First term of exponential series
- For small angles $\Delta \theta$ not a rotation matrix

Differential rotation matrices (1/2)

Differential rotation vector

$$d\boldsymbol{\theta} = \boldsymbol{r} d\theta = \begin{bmatrix} r_1 d\theta \\ r_2 d\theta \\ r_3 d\theta \end{bmatrix} = \begin{bmatrix} d\theta_1 \\ d\theta_2 \\ d\theta_3 \end{bmatrix}$$
$$R(d\boldsymbol{\theta}) \approx I_3 + S_{d\theta} = \begin{bmatrix} 1 & -d\theta_3 & d\theta_2 \\ d\theta_3 & 1 & -d\theta_1 \\ -d\theta_2 & d\theta_1 & 1 \end{bmatrix}$$
$$= I_3 + S_r d\theta = I_3 + \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix} d\theta$$

Differential rotation matrices (2/2)							
For Euler, Rodriguez, and Cayley representation $d\boldsymbol{\theta} = \begin{bmatrix} d\alpha \\ d\beta \\ d\gamma \end{bmatrix} d\boldsymbol{m} = \begin{bmatrix} da \\ db \\ dc \end{bmatrix} d\boldsymbol{u} = \begin{bmatrix} du \\ dv \\ dw \end{bmatrix}$							
$R(d\theta) \approx \begin{bmatrix} 1 & -d\gamma & d\beta \\ d\gamma & 1 & -d\alpha \\ -d\beta & d\alpha & 1 \end{bmatrix} = \begin{bmatrix} 1 & -dc & db \\ dc & 1 & -da \\ -db & da & 1 \end{bmatrix}$							
$= \begin{bmatrix} 1 & -\frac{1}{2} dw & \frac{1}{2} dv \\ \frac{1}{2} dw & 1 & -\frac{1}{2} du \\ -\frac{1}{2} dv & \frac{1}{2} du & 1 \end{bmatrix}$	6						

Differential rotation vectors For differential angles, equivalence to Rodriguez $d\theta = d\alpha = dm = r d\theta \text{ or } \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} d\alpha \\ d\beta \\ d\gamma \end{bmatrix} = \begin{bmatrix} da \\ db \\ dc \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} d\theta$ Differentially small rotation with quaternion \equiv Cayley $\begin{bmatrix} 1 \\ dq_1 \\ dq_2 \\ dq_3 \end{bmatrix} = \begin{bmatrix} 1 \\ dq \end{bmatrix} = \begin{bmatrix} 1 \\ du \end{bmatrix}$

Differentiation of rotation matrix

Starting from

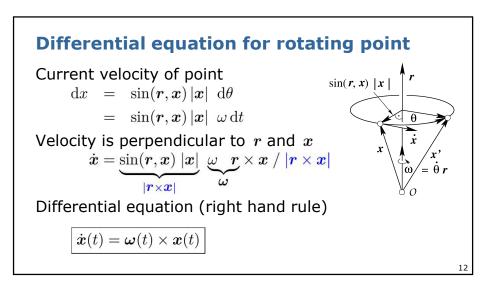
$$RR^{\mathsf{T}} = I_3$$

with the product rule we have the total differential $dRR^{T} + RdR^{T} = 0$ hence skew matrix depending on some small vector $S(dr) = dR R^{T} = -R dR^{T}$ independent of representation of *R*, or differential dR = S(dr)R? Meaning of d*r*?

Differentiation close to unit matrix

For linearization point $R^a = I_3$ $dR_0(d\mathbf{r}) = S_{dr} = \begin{bmatrix} 0 & -dr_3 & dr_2 \\ dr_3 & 0 & -dr_1 \\ -dr_2 & dr_1 & 0 \end{bmatrix}$ or (see above) $R(d\mathbf{r}) \approx I_3 + dR_0(d\mathbf{r}) = \begin{bmatrix} 1 & -dr_3 & dr_2 \\ dr_3 & 1 & -dr_1 \\ -dr_2 & dr_1 & 1 \end{bmatrix}$ \Rightarrow differential vector = differential rotation vector $d\mathbf{r} = d\mathbf{\theta} = d\mathbf{\theta} \mathbf{r}$ **Differentiation at arbitrary** R^a If $R^{(a)} \neq I_3$, assume differential **multiplicative** change $R = R(d\theta) R^{(a)}$ approximate rotation perturbed by small rotation \Rightarrow $R \approx (I_3 + dR_0(d\theta)) R^{(a)}$ $= R^{(a)} + S_{d\theta}R^{(a)}$ $= R^{(a)} + dR_a(d\theta)$ Additive differential change (see above) $dR_a(d\theta) = S_{d\theta}R^{(a)}$ $\Rightarrow d\theta = d\theta r$ = differential disturbing rotation vector

Differential equation for rotating point Point x(t) rotating around r(t)with differential angle $d\theta(t)$ during differential time dt(in the figure: no dependency of r on t) Angular velocity $\omega(t) := \dot{\theta}(t) = \frac{d\theta(t)}{dt}$ Angular/rotational velocity vector $\omega(t) = \omega(t) r(t)$



 $=\mathbb{E}((\underline{x}-\mu_{x})(\underline{y}-\mu_{y})^{\mathsf{T}})$

14

Uncertain rotations

- Rotations may be uncertain
- Many representations are redundant
 - i.e. > 3 parameters
- Degrees of freedom of 3D rotation = 3
 → rank of covariance matrix must be 3

e.g.
$$(\alpha, \beta, \gamma) \rightarrow R(\alpha, \beta, \gamma)$$

 \rightarrow 9x9 covariance matrix of 9 elements: rank 3

 $\sum_{\substack{9\times9\\9\times9}} = \left(\frac{\partial r}{\partial \alpha}\right) \sum_{\substack{\alpha\alpha\\3\times3}}$

- Domain of rotations bounded or repetitive
- \rightarrow How to handle uncertain rotations?

Classical setup

Classical representation of uncertain entities

- Random entities (underscored)
 - First moment of density: mean vector
 - Second central moment: covariance matrix (two indices) $\underline{x} \sim \mathcal{M}(\mathbb{E}(\underline{x}), \mathbb{D}(\underline{x})) = \mathcal{M}(\mu_x, \Sigma_{xx}) \qquad \begin{array}{c} \mathbb{D}(\underline{x}) = \mathbb{C}_{\mathrm{ov}(\underline{x}, \underline{x})} \\ \mathbb{C}_{\mathrm{ov}(\underline{x}, y)} = \Sigma_{xy} \end{array}$

• or
$$\[\underline{\chi}: \quad \{oldsymbol{\mu}_x, oldsymbol{\Sigma}_{xx}\} \]$$

• If this is the only information \rightarrow plausible: Gaussian distribution $\mathcal{N}(\mu_x, \Sigma_{xx})$

Uncertain rotations

Classical interpretation

 \rightarrow model for generating the *i*-th random sample

$$\underline{x}_i = \mathbb{E}(\underline{x}) + \underline{e}_i, \quad \underline{e}_i \sim \mathcal{M}(\mathbf{0}, \Sigma_{xx})$$

With mean vector

 $\overline{m{x}} := \mathbb{E}(\underline{m{x}})$ alternative writing

$$\underline{x}_i = \overline{x} + \underline{e}_i \,, \quad \underline{e}_i \sim \mathcal{M}(\mathbf{0}, \Sigma_{xx})$$

15

13

Uncertain rotations

Model for uncertain rotation: multiplicative ($\underline{r} := \underline{ heta}$)

$$\underline{R} = R(\underline{r}) \,\overline{R} \,, \quad \underline{r} \sim \mathcal{M}(\mathbf{0}, \Sigma_{rr})$$

Random distortion of mean rotation matrix Uncertainty of rotation vector = 3x3 covariance matrix

$$\underline{R}: \{\overline{R}, \Sigma_{rr}\}$$

Usually: the stochastic vector $\underline{r} := \underline{\theta}$ is small Small, measured in radians, e.g. $1^{\circ} = 0.017$ rad

Concatenation of uncertain rotations

Given two uncertain rotations

$$\underline{\mathcal{R}}_{1}: \quad \{\overline{R}_{1}, \boldsymbol{\Sigma}_{r_{1}r_{1}}\}, \quad \text{und} \quad \underline{\mathcal{R}}_{2}: \quad \{\overline{R}_{2}, \boldsymbol{\Sigma}_{r_{2}r_{2}}\}$$

then uncertain concatenated rotation

$$\underline{\mathcal{R}} = \underline{\mathcal{R}}_2 \underline{\mathcal{R}}_1 : \quad \{\overline{R}, \Sigma_{rr}\}$$

with

$$\overline{R} = \overline{R}_2 \overline{R}_1, \qquad \Sigma_{rr} = \Sigma_{r_2 r_2} + \overline{R}_2 \Sigma_{r_1 r_1} \overline{R}_2^{\mathsf{T}}$$

17

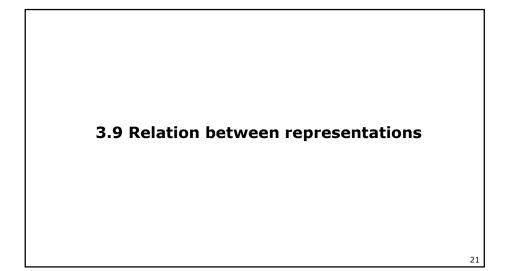
19

Concatenation of uncertain rotations

Proof: Linearize $R = R_2 R_1$ Total differential $dR = dR_2 R_1 + R_2 dR_1$ Using dR = S(dr)R $S(dr)R = S(dr_2)R_2 R_1 + R_2 S(dr_1)R_1$ or after right multiplication with $R^T = R_1^T R_2^T$ $S(dr) = S(dr_2) + R_2 S(dr_1)R_2^T$

Concatenation of uncertain rotations Using (see video 4, slide 6) $R S(a) R^{T} = S(R a)$ yields $S(dr) = S(dr_{2}) + S(R_{2} dr_{1})$ or finally $dr = dr_{2} + R_{2} dr_{1}$ Remark: same setup for quaternions $\underline{q} = N \begin{bmatrix} 1 \\ \underline{u} \end{bmatrix} \overline{q}, \quad \underline{u} \sim \mathcal{M}(\mathbf{0}, \Sigma_{uu}) \rightarrow \qquad \underline{\mathcal{R}}: \quad \{\overline{\mathbf{q}}, \Sigma_{uu}\}$

Uncertain rotations with quaternions ... only a sketch (one of several approaches) • Use unit quaternions = unit 4-vectors \mathbf{q} , $|\mathbf{q}| = 1$ • Use 4x4 covariance matrix $\Sigma_{qq} = \mathbb{D}(\underline{q})$ • Impose length constraint \rightarrow $\operatorname{rk}(\Sigma_{qq}) = 3$ • Variance propagation: exploit linearity \rightarrow Jacobians $\mathbf{p} = \mathbf{rs} = \underbrace{\mathsf{M}_r}_{\partial p/\partial s} \stackrel{\mathbf{s}}{=} \underbrace{\mathsf{M}_s}_{\partial p/\partial r} \mathbf{r}$ requires to impose length constraint



Relations between representations

 Orthonormal matrix 	R
 Euler angles 	$(lpha,eta,\gamma)$
 Axis and angle 	$(oldsymbol{r}, heta)$
 Exponential of skew matrix 	$\exp(m{S}(m{ heta}))$
 Quaternion 	\mathbf{q}
 Rodriguez 	m
 Cayley 	\boldsymbol{u}
	22

	rotation vector	axis + angle	quaternion	$\begin{array}{c} \text{Rodriguez} \\ \theta \neq 180^{\circ} \end{array}$	Cayley $\theta \neq 180^{\circ}$
	θ	$\left[\begin{array}{c} \boldsymbol{r} \\ \boldsymbol{\theta} \end{array}\right] \equiv \left[\begin{array}{c} -\boldsymbol{r} \\ -\boldsymbol{\theta} \end{array}\right]$	$\mathbf{q}=\left[egin{array}{c} q_0 \ m{q} \end{array} ight]\equiv-\mathbf{q}$	m	u
$\theta =$	θ	r heta	$2N(\boldsymbol{q}) \operatorname{atan2}(\boldsymbol{q} , q_0)$	$2N(\boldsymbol{m}) \operatorname{atan}(\boldsymbol{m} /2)$	$2N(\boldsymbol{u}) \operatorname{atan}(\boldsymbol{u})$
$\begin{bmatrix} \boldsymbol{r} \\ \boldsymbol{\theta} \end{bmatrix} =$	$\left[\begin{array}{c} N(\boldsymbol{\theta}) \\ \boldsymbol{\theta} \end{array}\right]$	$\left[\begin{array}{c} r\\ \theta \end{array} \right]$	$\left[\begin{array}{c} N(\boldsymbol{q})\\ 2\mathrm{atan2}(\boldsymbol{q} ,q_0) \end{array}\right]$	$\left[\begin{array}{c}N(\boldsymbol{m})\\2\operatorname{atan}(\boldsymbol{m} /2)\end{array}\right]$	$\left[\begin{array}{c} N(\boldsymbol{u})\\ 2\operatorname{atan}(\boldsymbol{u}) \end{array}\right]$
$\mathbf{q} =$	$\begin{bmatrix} \cos \frac{ \boldsymbol{\theta} }{2} \\ N(\boldsymbol{\theta}) \sin \frac{ \boldsymbol{\theta} }{2} \end{bmatrix}$	$\left[egin{array}{c} \cos rac{ heta}{2} \ r \sin rac{ heta}{2} \end{array} ight]$	q	$\left[egin{array}{c} 1 \ rac{1}{2} m{m} \end{array} ight]$	$\left[egin{array}{c} 1 \\ u \end{array} ight]$
m =	$2N(\boldsymbol{\theta}) an rac{ \boldsymbol{\theta} }{2}$	$2 r an rac{ heta}{2}$	$2oldsymbol{q}/q_0$	m	2 u
$\boldsymbol{u} =$	$N(\boldsymbol{\theta}) an \frac{ \boldsymbol{\theta} }{2}$	$r an rac{ heta}{2}$	$oldsymbol{q}/q_0$	$rac{1}{2}m$	u

Relations between representations

Axis and angle

Euler angles

Quaternions

- $oldsymbol{ heta} = oldsymbol{r} heta$ Rotation vector
- $\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\boldsymbol{r}\right)$ Unit quaternion
- Quaternion and Cayley representation $\mathbf{q} = (1, \boldsymbol{u})$
- Rotations with differential angles
 - $\mathrm{d}\boldsymbol{\theta} = \mathrm{d}[a, b, c]^{\mathsf{T}}$ Rodriguez parameters $= \mathbf{d}[\alpha,\,\beta,\,\gamma]^{\mathsf{T}}$ $\mathbf{q} = (1, \frac{1}{2} \mathrm{d}\boldsymbol{\theta})$

Usefulness of representations

- Rotation matrix R
- Euler angles α
- Axis and angle (r, θ)
- Exponential $\exp(S(\theta))$
- Unit quaternions q
- Rodriguez m
- Cayley *u*

exchange format interpretable for small angles interpretable interpretable compact form

- interpretable, no singularities
- no trigonometry, $\mathrm{d}m = \mathrm{d}\theta = \mathrm{d}\alpha$
 - rational in matrix S(u)

25

27

3.10 Rotations from Pairs of Points

Rotations from pairs of points

Given: sets of corresponding points/unit vectors $\{a', b', ...\}$ and $\{a'', b'', ...\}$ **Known:** relations, e.g. a'' = Ra'**Sought:** rotation matrix R

Q: How many point pairs necessary? (1, 2, or 3?)

Rotations from pairs of points Observation: Each point pair yields 2 constraints → at least two point pairs are necessary

Outline

- 1. 3 vector pairs (orthogonal, non-orthogonal)
- 2. 2 vector pairs
- 3. 1 vector pair (great circle)
- 4. Best rotation in case of perturbated data

28

Rotation from three orthogonal pairs

Given: two sets of corresponding orthogonal vectors

$$\{e_1', e_2', e_3'\}$$
 and $\{e_1'', e_2'', e_3''\}$

The two rotation matrices

$$R' = [e'_1, e'_2, e'_3]$$
 and $R'' = [e''_1, e''_2, e''_3]$

contain axis of tripods as columns

Rotation from three orthogonal pairs

From

$${{\cal R}}'' = [{m e}_1'', {m e}_2'', {m e}_3''] = {{\cal R}} \, [{m e}_1', {m e}_2', {m e}_3'] = {{\cal R}} \, {{\cal R}}'$$

Follows

29

31

$$R = R'' R'^{\mathsf{T}} = [e_1'', e_2'', e_3''] \begin{bmatrix} e_1'^{\mathsf{T}} \\ e_2'^{\mathsf{T}} \\ e_3'^{\mathsf{T}} \end{bmatrix}$$

Remark: may include a mirroring

Rotation from three general pairs

Given: two sets of corresponding general vectors $\{a',b',c'\}$ and $\{a'',b'',c''\}$

then from $u^{(u,v)}$

$$A'' = [a'', b'', c''] = R[a', b', c'] = RA'$$

we have

 $R = A''(A')^{-1} = [a'', b'', c''][a', b', c']^{-1}$

Matrix A' not singular, if vectors $\{a', b', c'\}$ not coplanar May include a mirroring

Rotation from two vector pairs

Given: two corresponding vectors $a \not\parallel b$

$$\{\boldsymbol{a}', \boldsymbol{b}'\}$$
 and $\{\boldsymbol{a}'', \boldsymbol{b}''\}$

We generate third vectors

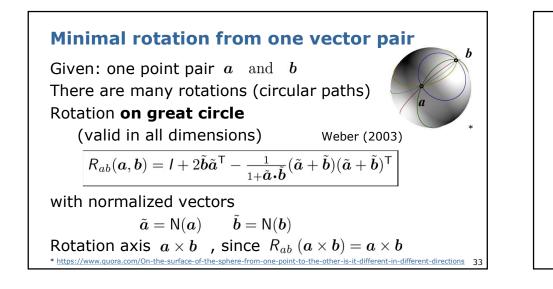
$$oldsymbol{c}' = oldsymbol{a}' imes oldsymbol{b}'$$
 and $oldsymbol{c}'' = oldsymbol{a}'' imes oldsymbol{b}''$

and use previous result with three general vectors Contains no mirroring!

32

34

36



Best rotation matrix

Problem:

Observations are noisy

- \rightarrow estimated matrix only approximates rotation matrix
- \rightarrow derive best rotation matrix *R* from matrix *Q*

Best rotation matrix

Theorem: Best approximating orthogonal matrix For an arbitrary regular matrix *Q* with the singular

value decomposition (SVD)

$$Q = USV$$

the orthogonal matrix

$$R = UV^{\mathsf{T}}$$

minimizes the Frobenius norm of the difference

$$||R - Q||_F = \sqrt{\sum_{ij} (r_{ij} - q_{ij})^2}$$
 Arun (1987)

Best rotation matrix

Comments:

- The SVD $Q = USV^{T}$ is the product of
 - two orthogonal matrices U and V and
 - a diagonal matrix S with positive entries s_i
- We have for the determinants

 $\operatorname{sign}|\boldsymbol{Q}| = \operatorname{sign}(|\boldsymbol{U}| |\boldsymbol{S}| |\boldsymbol{V}^{\mathsf{T}}|) \stackrel{|\boldsymbol{S}| > 0}{=} \operatorname{sign}(|\boldsymbol{U}| |\boldsymbol{V}^{\mathsf{T}}|) = \operatorname{sign}(|\boldsymbol{R}|)$

 If |Q| > 0 then R is a proper rotation matrix otherwise it contains a mirroring

38

Rotation from > 3 pairs

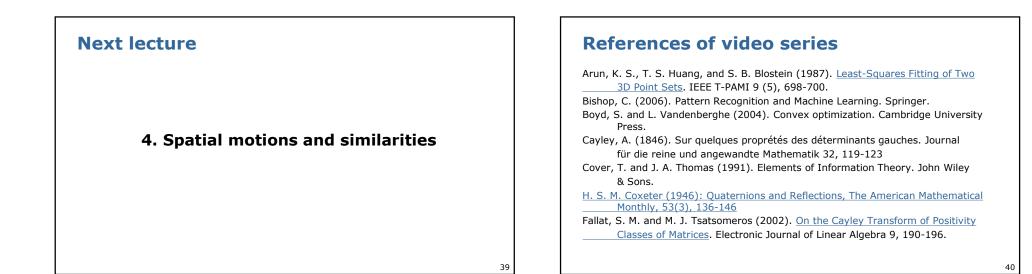
See the example: Cayley representation in last lecture

Faster algorithm in context of motion estimation

Rotations in 3D

Summary

- Multiple representations → choose an adequate one
- Uncertainty representation = CovM of 3 parameters
- Estimation of rotation matrix from pairs of directions



Fischler, M. A. and R. C. Bolles (1981). Random Sample Consensus: A Paradigm for	Mikhail, E. M.
Model Fitting with Applications to Image Analysis and Automated Cartography.	Press
Communications of the ACM 24 (6), 381-395.	Mikhail, E. M.
Förstner, W. and B. P. Wrobel (2016). Photogrammetric Computer Vision Statistics,	Photog
Geometry, Orientation and Reconstruction. Springer.	Palais, B. and
Horn, B. K. B. (1987). Closed-form Solution of Absolute Orientation Using Unit	J. fixed
Quaternions. Optical Soc. of America.	Raguram, R.,
Howell, T. D. and JC. Lafon (1975). The Complexity of the Quaternion Product.	A Univ
Technical Report TR75-245, Cornell University.	Patter
Kanatani, K. (1990). Group Theoretical Methods in Image Understanding. New York:	Rao, R. C. (19
Springer.	Rodriguez, O.
Koch, KR. (1999). Parameter Estimation and Hypothesis Testing in Linear Models	systèn
(2nd ed.). Springer.	mathé
Li, S. Z. (2000). Markov random field modeling in computer vision. Springer.	Sansò, F. (19
McGlone, C. J., E. M. Mikhail, and J. S. Bethel (2004). Manual of Photogrammetry	29 (6)
(5th ed.). Maryland, USA: American Society of Photogrammetry and Remote	Vaseghi, S. V
Sensing.	Weber, M. (20
	41

I. and F. Ackermann (1976). Observations and Least Squares. University of America 1., J. S. Bethel, and J. C. McGlone (2001). Introduction to Modern ogrammetry. Wiley. d R. Palais (2007). Euler's fixed point theorem: The axis of a rotation. ed point theory appl. 2, 215-220. ., O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm (2013). USAC: iversal Framework for Random Sample Consensus. IEEE Transactions on ern Analysis and Machine Intelligence 35 (8), 2022-2038. 1973). Linear Statistical Inference and Its Applications. New York: Wiley. 0. (1840). Des lois géometriques qui regissent les deplacements d'un eme solide independament des causes qui peuvent les produire. Journal de nématiques pures et appliquées 1 (5), 380440. 1973). An Exact Solution of the Roto-Translation Problem. Photogrammetria 6), 203-206. V. (2000). Advanced Digital Signal Processing and Noise Reduction. Wiley. 2003). Rotation between two vectors. Personal communication, Bonn. 42