Motivation

Previous lectures proved form of rotation matrix
- Axis angle representation
- Quaternion representation

Here: We construct both
- Using geometric insight
- Using basic rules of quaternions

Rotation as two reflections

A rotation can be represented by two reflections

Graphics using Cinderella
Rotation as two reflections

... in 2D
- Rotation angle $\alpha = 2\alpha$, angle between lines
- Angle between lines may be restricted to $[-90^\circ, +90^\circ]$
- Jointly rotating the lines \rightarrow fixed rotation

... in 3D
- Rotation angle $\alpha = 2\alpha$, angle between planes
- Angle between lines may be restricted to $[-90^\circ, +90^\circ]$
- Rotation axis = intersection line of planes
- Jointly rotating planes around axis \rightarrow fixed rotation

Quaternions

Here, quaternions are pairs with scalar and vector $\mathbf{q} = (q, \mathbf{q})$

Addition and multiplication (not commutative)
\[r + p = (r + p, r + p) \quad \text{and} \quad rp = (rp - r \cdot p, rp + pr + r \times p) \]

Conjugation and norm
\[\mathbf{q} \bar{\mathbf{q}} = q^2 + \mathbf{q} \cdot \mathbf{q} \]

Inverse
\[q^{-1} = \frac{\bar{q}}{|q|^2} \]

Special quaternions

- One $1 = (1, 0) = 1$
- Unit quaternion \mathbf{q} with $|\mathbf{q}| = 1$
- Pure quaternion (used regularly in the following) $\mathbf{q} = (0, \mathbf{q})$

Rotation as two reflections

Quaternions to represent reflections and rotations
1. Reflection of $p(0, p)$ at plane with normal $\mathbf{n} = (0, \mathbf{n})$
\[p \mapsto p' : \quad p' = n \cdot p \]

2. Concatenation of reflections $\{n, m\}$ \rightarrow yields rotation
\[p \mapsto p'' : \quad p'' = q \cdot p \cdot \mathbf{q} \quad \text{with} \quad q = -m \cdot n \]
Some rules for pure quaternions

Product of quaternions \(x y = (-x \cdot y, x \times y) \)
Square \(x^2 = xx \) of quaternion \(x^2 = -|x|^2 \)
Cube of quaternion \(x^3 = -|x|^2 x \)
Product of conjugates \(\overline{xy} = xy \)
Reverse product \(yx = \overline{xy} \)
Product of orthogonal quaternions \(0 = xz + zx \)
Square, cube of unit quaternion \(x^2 = -1 \quad x^3 = -x \)
Product of two unit quaternions with angle \(\alpha \)
\(xy = (-\cos \alpha, \sin \alpha N(x \times y)) \) with \(|xy| = 1 \)

Reflection at a plane

Given:
1. Point \(p(p) \) with pure quaternion \(p = (0, p) \) with \(p = [x, y, z]^T \)
2. Plane through origin with normalized normal \(n \)
 pure unit quaternion \(n = (0, n) \) with \(n\overline{n} = 1 \)

Task: Determine reflected point \(p'(p') \)

Point \(f \) in a plane

Constraint for \(f = (0, f) \)
\(fn + nf = 0 \)
Constraint for unit quaternion \(n^2 = -1 \)
Multiplication with \(n \rightarrow \) constraint \(f = nf n \)

Interpret constraint as mapping \(f \mapsto nf n \)
All points \(f \) on plane are fixed points of this mapping

Point \(g \) on line of normal

Point \(g = (0, g) = \mu n \) maps to opposite point \(g \mapsto -g \)
Since \(\mu n \leftrightarrow n \mu n n = \mu n^3 = -\mu n \)
Reflection in a plane

Reflection

\[p \mapsto p' : \quad p' = n p n \]

since **general point** \(p = f + g \) maps to

\[p = f + g \mapsto f - g \]

reflected point

Rotation as two reflections

Two reflections at planes with normals \(n \) and \(m \)

1. Reflection

\[p' = n p n \]

2. Reflection

\[p'' = m p' m = m n p n m \]

= Rotation (by geometric insight, see demo)

Rotation with unit quaternion

General rotation \(p \mapsto p' \)

\[R(q) : \quad p' = q p \tilde{q} \quad \text{with} \quad |q| = 1 \]

Pure quaternions \(p = (0, p) \) and \(p' = (0, p') \)

Rotation angle \(\theta = 2\alpha \) and direction of axis

\[\cos \frac{\theta}{2} = q \quad \text{and} \quad r = N(q) \]

Rotation with unit quaternion

\[q = \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} r \right) \]
Rotation with quaternions

Rotation with **unit quaternion**
\[p' = q p q^{-1} \text{ with } |q| = 1 \]

Rotation with **general quaternion** (not length 1)
\[\mathcal{R}(q) : p' = q p q^{-1} \]

since
\[q^{-1} = \frac{q}{|q|^2} \]

Arbitrary scaling of quaternion (homogeneous wrt \(\mathcal{R} \))
\[\mathcal{R}(q) = \mathcal{R}(\lambda q) \text{ especially } \mathcal{R}(q) = \mathcal{R}(-q) \]

Rotation matrix from quaternions

We rearrange and use* \[\mathbf{x} \mathbf{x}^T = S_x^2 + |\mathbf{x}|^2 \mathbf{l}_3, \ |\mathbf{q}| = 1 \]

\[q p q^{-1} = (q, q) (0, p) (q, -q) \]

\[= (q, q) (p \cdot q, q p - p \times q) \]

\[= (q \cdot p - q \cdot (q p - p \times q), \]

\[q(p - q) + p \cdot q q + q \times (q p - p \times q)) \]

\[= (0, (q^2 \mathbf{l}_3 + 2q \mathbf{S}_q + qq^T + q \mathbf{S}_q^2) \mathbf{p}) \]

\[= (0, (q^2 \mathbf{l}_3 + 2q \mathbf{S}_q + qq^T + q \mathbf{S}_q^2) \mathbf{p}) \]

\[* \]

Rotation matrix from quaternions

Rotation matrix, assuming general quaternion
\[R_Q(q) = \frac{1}{|q|^2} (I_3 + 2q \mathbf{S}_q + 2q^2) \]

or
\[R_Q(q) = \frac{1}{|q|^2} \left((q^2 - q^T q) I_3 + 2 q q^T + 2 q \mathbf{S}_q \right) \]

Explicitly, using \(q_0 = q, \mathbf{q} = [q_1, q_2, q_3]^T \)

\[R_Q = \frac{1}{|q|^2} \left[\begin{array}{ccc}
q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1 q_2 - q_0 q_3) & 2(q_1 q_3 + q_0 q_2) \\
2(q_2 q_1 + q_0 q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2 q_3 - q_0 q_1) \\
2(q_0 q_1 - q_2 q_3) & 2(q_3 q_2 + q_0 q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2
\end{array} \right] \]
Rotation matrix from quaternions

Rotation matrix, assuming unit quaternion

\[R_Q(q) = I_3 + 2qS_q + 2S_q^2 \quad \text{with} \quad |q| = 1 \]

With

\[q = \cos \frac{\theta}{2}, \quad q = \sin \frac{\theta}{2} r \]

and

\[2 \cos \frac{\theta}{2} \sin \frac{\theta}{2} = \sin \theta, \quad 1 - 2 \sin^2 \frac{\theta}{2} = \cos \theta \]

we obtain **axis angle form of rotation matrix**

\[R_{r,\theta}(r, \theta) = I_3 + \sin \theta \ S_r + (1 - \cos \theta) \ S_r^2 \]

Conclusions

- Rotation as two reflections
- Reflection with pure quaternions \(p' = npn \)
- Rotation with unit quaternions \(p' = qpq \)
- Rotation with mirroring \(p' = -qpq \)
- Unit quaternion: axis \(r \), angle \(\theta \)
- \(\rightarrow \) axis-angle representation for rotation by construction