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Photogrammetry & Robotics Lab

3D Coordinate Systems
(Bsc Geodesy & Geoinformation) 

2. Passive Transformations and Local Systems

Wolfgang Förstner

The slides have been created by Wolfgang Förstner. 
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Overview

 Group properties of transformations
 Active and passive transformations 
 Original/global and local systems

For this video see Förstner/Wrobel (2016), p. 261-266, 284-285
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2.5 Transformation Groups
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2.5 Transformation groups

Transformations are continuous groups
(                                        , …)

 Group structure
Properties remain after inversion and concatenation

 Differentiation w.r.t parameters
 allows uncertainty propagation
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Transformation groups (1/7)

A group is a set     with an operation

Here: 
 Elements          are transformations (matrices)
 Operation    is concatenation (multiplication)
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Groups (2/7)

Properties 
1. Closed 

if                 then
2. Associative

3. Unit element    (here: unit matrix)   

4. For each     exists inverse element  
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Groups (3/7)

Here: non-abelian groups 
(Norwegian mathematician Niels Henrik Abel, 1802-1829) 

=       non-commutative groups
Classical groups
 General linear group of regular          matrices

 Affine general linear group (also         )  
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Groups (4/7)

 Group of orthogonal transformations in 2D
= rotations including mirroring

 Special group of orthogonal transformations in 2D
= rotations without mirroring

 Translations     and dilations 
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Groups (5/7): in homogeneous coordinates

 Group           motions      in the 2D plane

 Group     of similarities
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Groups (6/7)

Geometric affine transformations

 Affine (            ) in non-homogeneous coordinates

 Linear (          ) in homogeneous coordinates 
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Perspective transformations

Geometric transformation hierarchy

Groups (7/7)
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2.6 Passive transformations
and local coordinate systems
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 Active: coordinate system            is fixed 
point/object     moves to

 Passive: point/object is fixed 
coordinate system               moves to                 

Active and passive transformations
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Active

Passive

Example: Translation
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Active and passive transformations

If active transformation is

then passive transformation with same parameters is

with the inverse transformation matrix

Remark: here dilations/scalings are included
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Representation in original and local frame

Representation of transformation may relate to

 Original coordinate system

 Last/local/carried with coordinate system
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Ex.: active translation then rotation

1. translation:               , 2. rotation:  

reference: original system    reference: local system    
18

1. translation:               , 2. rotation:  

reference: original system    reference: local system    

Ex.: passive translation then rotation
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 Active and passive transformations
 Reference of transformation to 

original and local/carried with system
 4 cases A, B, C, and D (proofs below)

Concatenation of transformations
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A: active transformation, original system
 multiplication with matrices from the left

B: active transformation, local/carried with system
 multiplication with matrices from the right

Rules
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C: passive transformation, original system
 multiplication with inverses from the right

D: passive transformation, local/carried with system
 multiplication with inverses from the left

 Proofs

Rules
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A: active transformations, original system

(see above)
1. transformation

2. transformation

combined
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B: active transformations, local system

1. Transformation
2. Transformation

a) Inverse 1. transformation
b) Second transformation
c) First transformation
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B: active transformations, local system

1. Transformation

2. Transformation in three steps
a) Inverse first transformation  origin
b) Second transformation
c) First transformation

combined
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Passive transformations

Inverse transformation matrices
C: passive transformation in original system
Inverse of case A:

D: passive transformation in local system
Inverse of case B: 
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Summary of rules

A: multiply with matrices from the left
B: multiply with matrices from the right
C: multiply with inverses from the right
D: multiply with inverses from the left
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Comments

 Transformations build continuous groups
 We need to distinguish
 Active and passive transformations
 Motions incl. dilations
 Coordinate transformations

 Representations in the original and the local system

 Default: active transformations
 Concatenation rules
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Notation for transformations (1/4)

Problem: given
Is       a passive or an inverse active transformation?

Conventions
 Coordinates of points are vectors     or  
 Name of point is attached as lower right index
 Name of coordinate system is upper left index
 Transformations have indices, such that
matrix and point have same upper and lower index
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Notation for transformations (2/4)

e.g. coordinates of point     in world system

 space for hats and underlining 
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Notation for transformations (2/4)

Active transformation (in non-named system) 

Inverse active transformation
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Notation for transformations (3/4)

 Passive transformation of point 

 Inverse passive transformation

32

Notation for transformations (4/4)

Relation between active and passive transformations
(enforcing the same indices, names of frames)

Generally

Matrix of motion from j to i =
matrix of coordinate transformation from i to j
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Example: Car moving and observing

Car : at (4,1) looking in y-direction
Pole: at (1,5)
Q    : in which direction is the pole seen from the car?
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Car     , viewing direction x-axis 
Active motion:

translation by (4,1), 
rotation by +90o in local system

described in local system: multiplication from right

Example: Car moving and observing
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Example: Car moving and observing

Pole coordinates in car frame 
Coordinate frame 

passive transformation of pole

Direction = (0.6,0.4) = 36.9o (to the left) 
36

Next lecture

3. Rotations -
Overview, Rotation Matrices, Euler Angles
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