Photogrammetry & Robotics Lab, Bonn

3D Coordinate Systems
(Bsc Geodesy & Geoinformation)

0. Introduction

Wolfgang Förstner

The slides have been created by Wolfgang Förstner.

Topics
- Spatial Motions and Similarities
- Representation and Estimation
- Uncertainty Analysis

Example
- Mobile Mapping System with Several Sensors
- Represent and Estimate
 - Mutual Relations of Sensors
 - Motions of Vehicles
- Describe Uncertainty of Relations

Applications (1/3)
- Surveying
 - Integration of measurements from different viewpoints
 - Evaluation
 - Observation
 - Observing

Applications (1/3)
- Surveying
 - Integration of measurements from different viewpoints
 - Evaluation of deformations
 - Observation from moving platforms
 - Observation of moving objects
Applications (1/3) → Mobile mapping

- Surveying
 - Integration of measurements
 - Evaluation of deformations
 - Observation from moving platform (Mobile mapping)
 - Observation of moving objects

Applications (1/3) → traffic monitoring

- Surveying
 - Integration of measurements
 - Evaluation of deformations
 - Observation from moving platforms
 - Observation of moving objects

https://www.youtube.com/watch?v=sswTalNzKlo

Applications (2/3)

- Photogrammetry/Computer Vision
 - Modelling systems of cameras or LiDAR
 - Object tracking from one of more cameras
 → Track human poses

- Theoretical Geodesy
 - Integration of measurements of satellites
 - sometimes only rotations
 - Coordinate transformations between ground and space borne sensors (e.g. GPS)

Applications (2/3)

- Photogrammetry/Computer Vision
 - Modelling systems of cameras or LiDAR
 - Object tracking from one of more cameras
 → Track human poses

- Theoretical Geodesy
 - Integration of measurements of satellites
 - sometimes only rotations
 - Coordinate transformations between ground and space borne sensors (→ Lunar Reconnaissance Orbiter)
Focus of lectures
- Rotations
- Motions
- Similarities

Generalizations to
 perspective mappings or
 mappings on the sphere
 → Specialized lectures
 (photogrammetry, satellite geodesy)

Questions to be answered
- How to represent spatial motions and similarities?
- How many parameters are necessary?
- How to concatenate motions and similarities?
- How to derive transformations from observations?
- How to handle outliers?
- How to represent uncertain motions?
- How to determine the uncertainty of motions?

Tool boxes to be used
- **Projective geometry:**
 easy and compact representation of
 concatenation and inversion
- **Probability theory and statistics:**
 easy and compact representation of uncertainty
- **Calculus:**
 easy propagation of uncertainty and
 estimating parameters of nonlinear relations

Timing Estimate for this Course
- 3 ECTS points = 90 h workload
- Lectures = 15 h (1 h per week, 15 weeks) on an average
- Exercises = 45 h (3 h per week, 15 weeks)
- Exam preparation = 30 h
Exercises

- Mandatory homework assignments
- Nominal 45 points per exercise
 1 point per minute, if perfectly prepared
- Requirement: 50% of points
- 2 written examinations: Midterm and Endterm
- Time for exercise: 1 week (see deadlines)
- Time for evaluation: 1 week
- Interactive discussion

Table of contents and references

- The numbers appearing in the slides refer to the German lectures. The letter "V" in the following table of contents refers to "Vorlesungen" not to videos.
- The slides for each video and the complete set of slides contain the references for all videos
- A large part of the videos cover material from the book Förstner/Wrobel (2016). The relevant pages are given in the slides for each video

Next lecture

1. Motions and Similarities in the Plane

Table of contents/Inhalt

The numbers appearing in the slides refer to the German lectures. The letter "V" in the following table of contents refers to "Vorlesungen" not to videos.

1 Einführung V1 1-3
2 Einführung: Bewegungen und Koordinatentransformationen in der Ebene V1 2-5
 2.1 Elementare Transformationen in der Ebene V1 2-5
 2.2 Homogene Koordinaten von Punkten in 2D und ihre Transformationen V1 2-6
 2.2.1 Homogene Koordinaten V1 2-7
 2.2.2 Elementare Transformation mit homogenen Koordinaten V1 2-8
 2.3 Inversion V1 2-9
 2.4 Verkettung V1 2-9
 2.5 Transformationgruppen V1 2-12
 2.6 Mitgeführte Koordinatensysteme und Koordinatentransformationen V2 2-13
References of video series