

Exercise: Transformations, Quaternions and Homogeneous Representation (Fall 2021)

Meeting for questions: 01.09.2021 or 25.10.2021 (via zoom)

Early deadline: 01.10.2021 (via email: federico.magistri@uni-bonn.de)

Regular deadline: 15.11.2021 (via e-campus)

A Translation and Rotation

- 1. **2** Consider a point p with coordinates $p = [-0.8, 1.3, -0.5]^T$, provide the coordinates of the transformed points p', p'', p''', p'''' after applying the following transformation:
 - (a) translation \mathcal{T}_t with translation vector $\boldsymbol{t} = [1, 0, -1]^T$
 - (b) rotation $\mathcal{R}_{y}(\phi)$ with $\phi = 30$
 - (c) rotation $\mathcal{R}_z(\phi_1)$ followed by $\mathcal{R}_x(\phi_2)$ with $\phi_1 = -60$ and $\phi_2 = 45$
 - (d) translation \mathcal{T}_t as in (a) followed by a rotation $\mathcal{R}_y(\phi)$ as in (b)
- 2. 2 Convert the following rotation

$$\mathcal{R} = \begin{bmatrix} 0 & -1 & 0\\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

using the following representation:

- (a) Euler-Angles with the first rotation around the x-axis, second around y and third around z
- (b) Axis-Angle in the minimal form
- 3. **6** Check if the following matrices are true rotation matrices

$$\mathcal{M}_1 = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{4} & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{4} & \frac{3}{4} & \frac{1}{2} \end{bmatrix} \qquad \mathcal{M}_2 = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{1}{2}\\ \frac{\sqrt{2}}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \qquad \mathcal{M}_3 = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{4} & \frac{1}{2}\\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{4}\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

B Quaternions

- 4. **5** Given the quaternions $\mathbf{q}_1 = [0, 1, 2, 1]^T$ and $\mathbf{q}_2 = [3, 1, 2, 2]^T$
 - (a) compute the quaternion resulting by the sum of \mathbf{q}_1 and \mathbf{q}_2
 - (b) compute the inverse of \mathbf{q}_2
 - (c) compute \mathbf{q}_1 times the inverse of \mathbf{q}_2
- 5. **5** Given a rotation $\mathcal{R}_x(\phi)$ with $\phi = 70$ in euclidean form
 - (a) compute the quaternion \mathbf{q}_1 that represent such rotation
 - (b) given a point χ with euclidean coordinates $\boldsymbol{x} = [-2, 1, -1]^T$, apply the rotation \mathbf{q}_1 to the point χ in quaternion form
 - (c) apply to point χ the transformation resulting from \mathbf{q}_1 followed by $\mathbf{q}_2 = [-1, 2, 0, 1]^T$

C Homogeneous Representation

6. 5 Given the points x_1 and x_2 with their Euclidean coordinates

$$x_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ (1)

and the line \boldsymbol{l}_0

$$l_0: y = 6 - x. \tag{2}$$

Determine both, the homogeneous and Euclidean representation

- (a) of the line l_1 passing the points x_1 and x_2
- (b) of x_3 , the intersection point of the line l_0 and l_1
- (c) determine if χ_4 with coordinates $\boldsymbol{x}_4 = [1, -5]^T$ lies on l_1
- 7. **5** Given a point χ with coordinates $\boldsymbol{x} = [1, -1, 2]^T$, compute and apply the following transformations in homogeneous representation:
 - (a) translation \mathcal{T}_t with translation vector $\boldsymbol{t} = [-1, 1, 2]^T$
 - (b) rotation $\mathcal{R}_x(\phi)$ with $\phi = 30$
 - (c) the rigid body transformation resulting from (a) and (b)
 - (d) the transformation given by \mathcal{H}_2 followed \mathcal{H}_1 with:

$$\mathcal{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -1 \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathcal{H}_2 = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$