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“Whatever it takes to finish things, finish.

You will learn more from a glorious failure

than you ever will from something you never finished.”
Neil Gaiman

“Unlike the novel, a short story may be, for all purposes, essential.”
Jorge Luis Borges

Preamble

This is a collection of notes I wrote for preparing lectures, for publications or for com-
municating with collegues on interesting topics. They partially go back more than two
decades. May be it is useful to make them public, though the relevance of each individual
note, of cource, has to be evaluated by the reader.

The notes are of different nature: some are just proofs of lemmata, some are collections
of ideas on a certain topic as a basis for a discussion, some are basis for supplements of
publications, some address problems I encountered and are of more conceptual nature,
finally, some notes are used for lectures.

I left the texts more or less as I wrote them, translated them if the original was written
in German. However, in order to comply with some standards in machine learning, I ho-
mogeneized the notation following some statistical conventions: observations are denoted
with y, unknown parameters with 8. I also augmented each note with a preface containing
a short summary and indicating the main motivation for including it in this collection.

Some of the notes refer to code, mostly written in MATLAB, which I also make pub-
lic. Some also contain animations for illustrating and exploring the subject. They are
written with the software Cinderella. They are part of a collection of about 20 Cinderella
animations, which may be useful for lecturing.

I did not recheck all derivations, i.e., it is up to the reader to check the details, especially
in notes, which mainly have been meant to explore an idea.

Part I collects lecture notes. The technical notes in the next parts are sorted according
to the following topics I was interested in the last decades

IT Statistics and Estimation Theory

IIT Estimation and Uncertainty of Geometric Entities
IV Image Analysis

V Geometry

VI Bundle Adjustment and Surface Reconstruction
VII Miscellaneous

I did not include an index, since it appears easier to use the searching capablities of
todays electronic readers.

Some notes are still under construction and will be updated when reaching the next
level of maturity. The same holds for supporting software and the accompagnying Cin-
derella animations.

One may download the html-files of the Cinderella animations and use them locally, if

you copy the Javascript-file KetCindyPlugin.jar into the same directory.
I hope the reader finds this collection interesting.

Wolfgang Forstner, Bonn
July 3, 2024


https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/index.html
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Part 1

Lecturenotes



1 Information Theory

These lecture notes on Information Theory cover basic concepts of self-information and
entropy for characterizing the coding of probabilistic models and measures for comparing
theoretical or empirical densities, both for discrete and continuous random variables. We
address the principle of maximum entropy for choosing densities under uncertainty and
relate the task of model selection to robust estimation.

1.1 Preface . . . . . . . . e e e e e 7
1.2 Introduction . . . . . . . . . . . . e e e 7
1.3 Information, Entropy and Probability . . ... ... .. ... ... ..... 9

1.3.1 Information . . . . . . . . . . ... ... 9

1.3.2 Entropy . . . . . . . e e e 11
1.4 Kullback-Leibler Divergence . . . . . . . . . .. ... ... L. 12
1.5 Differential Information . . . . . . ... . ... ... .. .. . .. . 14
1.6 Principle of Maximum Entropy . . . . . . ... ... ... ... ... .. 16
1.7 Connection to Model Selection and Robust Estimation . . . . . .. ... .. 17
1.8 EXErcises . . . . . . . o i e e e e e e e e e e e e 19

1.1 Preface

Information theory was the starting point for my lectures on pattern recognition. Together
with Konrad Schindler, we augmented the notes for a book section. The motivation for
writing such a text goes back to the PhD of George Vosselman Vosselman (1992), who
intensively used information theory for matching relational structures and used the self-
information as measure for the quality of correspondences, an idea later used by Kolbe
(2000) identifying stochastical models of buildings with the ability to code them. Also
the early work by Georgeff and Wallace (1984) was stimulating to find a relation of model
selection via description length to robust estimation.

1.2 Introduction

The theory of coding and information is closely related to probability theory. Often the
specification of a probability that an event occurs can be replaced by the specification of
the gain in information when being told an event. For the purposes of this book it regularly
is an alternative tool to express and manipulate the uncertainty of observations, models
and predictions. We assume a basic understanding of probability theory!, as introduced
in textbooks like Papoulis (1991); Bishop (2006) or in Forstner and Wrobel (2016, Chap.
2), which gives a compact summary of the most important results and the corresponding
notation. A good textbook on information theory is Cover and Thomas (1991).

IDiscrete probability distribution; random variables; continuous probability densities; cumulative den-
sities; conditional, joint and marginal distributions; Bayes’ rule; expectation, variance and covariance;
moments of a distribution; functions of random variables.



An introductory example

To motivate the use of information theory, we start with an example. Imagine that a
number of points have been detected in an image, e.g., small bits of forest floor visible
between the tree crowns (see Fig. 1.1); and that our task is to determine whether they
form a straight line, e.g., a road traversing the forest or they are just random. We must
take a decision under uncertainty: the points will not lie exactly on the centreline of the
putative road, and some points might be outliers on small clearings or the like. Also, we
may not know the width of the putative road.

Is it more likely that most points form a road and the rest are outliers (model A), that
a few points form a road with small residuals and there are more outliers (model B), that
there is no road and some points are roughly collinear by chance (model C), or even that
the points only roughly describe a straight line and we have only 6 outliers (model D)?

To guide our choice, we rely on a fundamental assumption of data interpretation (and
science in general), namely that simpler models are a priori more likely?. As we will see
in the following chapter, one way to formalize the prior probability of a model, in our
case a straight line with a given standard deviation, is through its information-theoretic
coding length: if the fitting residuals are small, then transmitting the parameters of the
line, the nominal positions of the points on the line and the residuals is more efficient than
transmitting the point coordinates.

Figure 1.1: Model selection under uncertainty: the same set of points can be explained by
three different models. Left: Some points lie on a board road. Middle: Some (other) points
lie on a narrow road. Right: Some points are random. Information theory provides tools to
compare the three solutions. Later, Tab. 1.1 we will see that the best model appears to be
model B, assuming the points lie in a range of R = 256, and standard deviations o4 = 5.8
and op = 1.6

As illustrated by the example, the formal theory of information originates from the
need to analyse the transmission of messages over (noisy) channels. A message is coded,
sent through the channel, and must be decoded by the receiver. More messages can be
sent if a good coding scheme is selected, which on average leads to shorter messages.
Since the content of individual messages is not known, we need to know the expected
coding length® which depends on the statistical structure of the transmitted signals. *
Most obviously, only what is uncertain must be transmitted, facts already known to the
receiver carry no information: in our example, we need not include in the message the
y-coordinate of a point, which is assumed to be on a line, since it can be computed from
the line parameters and its z-coordinate. More generally, the concepts of information and
probability are closely related: improbable outcomes carry more information — informally,

2 Actually, scientists - and also most humans - tend to choose simple models. Since the true model
underlying reality is not known, the choice of a model is free, so models can be chosen just to serve a
purpose, defined by the user of a model. Therefore, simpler models usually appear, i.e., are chosen more
likely. This discussion needs to appear in the introduction to the book.

3Not the ‘channel capacity’

4This was first established in the ground-breaking work of C. E. Shannon (1949).



we can think of information as a measure of surprise.

1.3 Information, Entropy and Probability

The information I(A) of message A should measure how much knowledge is added by
receiving A. It should thus have the following properties:

1. It should never be negative,
I(A) >0 (1.1)

2. It should be 0 if and only if its argument has no uncertainty,
I(A)=0 < PA)=1 (1.2)

3. For two independent messages A and B with P(A4, B) = P(A)P(B), the total infor-
mation should be the sum of their individual information values.

P(A,B) = P(AP(B) — I(A, B) = I(A) +1(B) (1.3)

To fulfil these conditions, the information of A must be proportional to the negative
logarithm of its probability. Logarithms with different base differ by a constant factor,
i.e., the base defines the unit of information. We will use base 2, corresponding to a unit
of 1 bit. Another common choice is the natural logarithm with base e, the units of which
are sometimes called nats.

1.3.1 Information

We have the following definition of the information of a message, which can be generalized
to messages given under a known condition and to the mutual information of two messages.

Definition 1.3.1: Information. The information I(A) of a specific message A which
has probability P(A) =P(A = A) is

I(A) = —1bP(4) > 0. (1.4)

The information is non-negative. We also call it "self-information” in order to distinguish
it from its expected value, the entropy, see below Sect. 1.3.2. o

Similar to probabilities P(A) = P(A = A) also the information of a message A = A
depends on the context, say C. So, we always could write P(A = A | C) instead of
P(A = A), and now, I(A = A | C) instead I(A = A). We omit writing the context as a
condition, and assume it is clear when specifying probabilities or information.

Observe, we distinguish between the random variable A which describes the possible
outcomes of an experiment and a sample or realization A from this random variable, or
outcome from this experiment. The sample, i.e., the specific outcome, A as such is not
uncertain, just the possible outcomes of the experiment?.

Example 1.3.1: Information of one grey value. If we assume that all intensities
of a grey level image are equally likely, and lie in the range [0, ...,255] then a randomly chosen
pixel in such an 8-bit image has intensity g = 77 with probability ﬁ. The observation A =
{Grey value at pixel @ is 77} has I(A) = —Ib 51, = 8 bits of information.

The example immediately shows the relation between information and coding length, discussed
below: to store or transmit the intensity of the pixel, we need 8 bits. Without further information
about the likelihood of different intensity patterns, it takes 8 bit per pixel to encode a gray-value
image. <&

Definition 1.3.2: Conditional Information. For two messages A and B, the
conditional information of A, given that we have already know, i.e., decoded B, is

5see Savage (1972): "Nonetheless, definitive observations do not play an important part in statistical
theory, precisely because statistics is mainly concerned with uncertainty, and there is no uncertainty once
an observation definitive for the context at hand has been made.”.

self-information

conditional
self-information



I(A|B) = —1b P(A|B) > 0, (1.5)

again measured in [bit]. It is a measure of the degree of surprise to hear A when B is
already known. o

We obviously have

P(A, B)
I(A|B) = —-1b P(B) I(A,B) - 1(B), (1.6)
Hence, the surprise I(A|B) when receiving message A when B is known, is smaller by 1(B)
compared to the surprise about the combined message 1(A, B).

Example 1.3.2: Information of a grey value in an image with weak contrast. Sup-
pose we already know that an image has weak contrast thus message B = Grey value at x is in
Then the conditional information of the message A = {Grey value at pixel x is 77} given B
is I(A|B) = —1b P(A|B) = —Ib 55 = 5 bit. Message A now carries less information, because B
has already ruled out most of the possible grey values. <o

When making predictions from observed data, we are often interested in the informa-
tion that one statement A holds about another statement B: if the observations have a
certain value z, what knowledge does that give us about the unknowns of interest y?

Definition 1.3.3: Mutual Self-Information. The mutual self-information I(A; B)
of two messages is

I(A; B) = I(A) + I(B) — I(A, B) € (—o00, +00). (1.7)

It is symmetric w.r.t. the two messages and may be positive or negative. o

Remark: Observe, the prevalent terminology is inconsistent: as we will see below, the term
mutual information is widely used for another quantity, which should in fact be called mutual

entropy. To avoid confusion, we will always refer to 1(A; B) as mutual self-information. o
The definition immediately leads to the relation
I(A; B) = I(4) - I(4|B) = [(B) — 1(B|A), (1.8)
and thus
I(A|B) =1(A) —I(4;B) and I(B|A)=1(B)—-1(A;B). (1.9)

Hence, if the mutual self-information is positive, then receiving message B reduces the
initial surprise about message A. Otherwise, namely if A and B contradict to some
extent, the mutual self-information is negative, and the receiving message B increases the
surprise about message A.

Example 1.3.3: Mutual self-information of neighbouring pirels. An image spans the
whole 8-bit range of gray-values, such that again the message A = {g(4,j) = 77} has I(A) = 8 [bit].
However, the values vary smoothly, e.g., due to out-of-focus blur, such that neighbouring pixels
differ by at most [—4... 4 3] grey values. We now observe B = {g(i,j + 1) = 79}. This
measurement contains quite a lot of information also about A, because of the blur: g¢(i,j) must
be between 75 and 82, hence P(A|B) = . Accordingly, I(A; B) = I(A) —I(A|B) = 8 —3 = 5 [bit].
<

Example 1.3.4: Negative mutual self-information. Let us have two messages:
A = It is raining and B = I have opened my umbrella. Then the two messages A and
—B =1 have not open my umbrella have negative mutual-self-information, since after knowing
A the surprise when receiving the message —B is larger than when receiving the message B. ¢

Note the close connection to Bayes’ law: our prior belief P(B) is updated by the
observed evidence A via

P(A|B)

P(B|A) = WP(B) =

P(A, B)

s’ (1.10)

Analogously to the mutual information, we name the (inverse) update factor

P(A)P(B)

P(A4;B) := PA. D)

>0 and I(4;B)=-1bP(4;B) (1.11)
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Taking negative logarithms, this is equivalent to 1.7 and directly leads to 1.9. Observe,
the factor P(A|B)/P(A) = 1/P(A; B) can be smaller or larger than 1, indicating that the
observation A may cause the posterior probability P(B|A) to be smaller or larger than
the prior probability P(B).

If there is no correlation between an observation and the quantity of interest, the
mutual information vanishes,

P(A,B)=P(A)P(B) & I(A;B)=0. (1.12)

Visually, one can imagine the mutual information as the “degree of overlap” between two
messages.

1.3.2 Entropy

So far, we have discussed the ”self-information” of a single, specific message. More often,
we are interested in the expected information, or in other words the mean information
content of messages, when only their probability distribution is known.

Definition 1.3.4: Entropy. Let A be a (discrete) random variable, which can take
on values (A, ..., Ap, ..., Ax). Then its entropy, H(A), is the expected information ©

H(A) =E Z P(A,) b P(A,) >0. (1.13)

<

According to Hjalmars (1977) the letter H for the entropy is likely to result from the
Greek letter 1, whose capital form is not distinguishable from the Latin letter H.

Furthermore, the argument of the entropy is a random variable, as for the expectation
for a random variable. We will make this explicit within this introductory section, but
simplify notation later, by omitting the underline for the random variable.

Example 1.3.5: Entropy of binary image. The pixel values of a binary image are
distributed according to P(A = 0) = p, respectively P(A = 1) = 1 — p. Then the entropy of the
image is meant to be the expected value of the information, we obtain, when being told the value
of one of its grey values:

H(p) :=H(A) =plbp+(1—-p)Ib(1—-p). (1.14)

The entropy depends on the likelihood that a pixel is O or 1, as shown in Figure 1.2. It peaks
at p = 1/2, where it becomes 1: the uncertainty about the image reaches its maximum when
black and white pixels are equally likely. In that case, 1 bit/pixel is needed to encode the image,
whereas the uncertainty about each individual pixel is lower if, statistically, a large majority is
white (or black). In the extreme cases p = 0 or p = 1 we know that the entire image is white
(respectively, black), hence the entropy is H(A) = 0. o

Theorem 1.3.1: Entropy as Minimal Coding Length. A code for a sequence
(Aq, ..., A,) of independent samples of the random variable A cannot have less than H(A)
bits per sample, see (Shannon and Weaver, 1949)

The entropy thus is a lower bound for the (average, non-integer) number of bits needed
to transmit each realisation of a random variable. As we will see, this central finding of
coding theory is also useful to select and compare suitable data representations, via the
analogy from Sect. 1.2.

Example 1.3.6: Binary noise image. A binary noise image therefore cannot be coded
with less than 1 [bit/pixel]. o

The definitions of conditional and mutual information can be carried over to entropy.

Definition 1.3.5: Conditional Entropy. The conditional entropy H(A|B) is the
expectation of the conditional information I(A|B) = I(A|B):

H(A|B) = E(I(A|B)) i (An|B) IbP(A,|B) > (1.15)

6Note, formally the definition implies that the information I(A) = I(A) now is a function of the random
variable A, such that the input to the expectation is a random variable.

11
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Figure 1.2: Entropy of a binary variable A as a function of the probability p = P(A)
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Figure 1.3: Visual illustration of entropy. Left: the gray area depicts the expected informa-
tion H(A) obtaining from a sample A of A — larger area means greater expected information
(surprise about a specific outcome). Center: the expected additional information of of A
after knowing the outcome B for B, i.e., A\ B is H(A|B). Right: the mutual information
H(A; B) = H(A) — H(A|B) measures how much the answer to B on an average influences,
i.e., diminuishes H(A) and vice versa

Note that, like the conditional probability, it is not symmetric, H(A|B)+ H(B|A). o

Definition 1.3.6: Mutual Entropy (Mutual Information). The mutual entropy
H(A; B) is the expectation of the mutual self-information,

H(A; B) = E(I(A; B)) = Y| Y. P(A, B)I(A; B) = — > > 'P(A, B)log P(4; B) > 0.
A B A B

(1.16)
It is symmetric w.r.t. the two variables and positive. o

Remark: Once again, we point out that the prevalent terminology is inconsistent: H(A; B)
is commonly referred to as mutual information. We will follow this convention to be consistent
with other literature, and call I(A4; B) mutual self-information throughout this book. S

Typically, the mutual information is computed via one of the following expressions

H(A; B) = H(A) — H(A|B) = H(B) — H(B|A) = H(A) + H(B) — H(A,B).  (1.17)

Fig. 1.3 shows the relation between the entropy, the conditional entropy and the
mutual entropy. Observe, the overlap between the areas for A and B is non-negative,
indicating the expected mutual information H(A; B) is not negative. This is in contrast
to the mutual self-information I(A4; B) of two samples A and B, which may be positive,
i.e., in case they support each other, or negative, i.e., in case they contradict each other.

1.4 Kullback-Leibler Divergence

In some cases it is useful to quantify “how different” two probability distributions P(A4) and
P(B) are. The interpretation of entropy as minimal coding length suggests the following
procedure: encode samples from P(A) with the optimal code for P(B), and measure how
much additional coding length is required, compared to the optimal code for P(A). This

12



leads to two important concepts, the cross-entropy and the divergence of two probabilities,
proposed by Kullback and Leibler (1951).

Definition 1.4.7: Cross-Entropy. The cross-entropy is defined as the expected
coding length needed to encode a message A, following P(A), but using the optimal code
for P(B),

N
Ha(B) = Ea(l(B)) = — ) P(4,) bP(B,). (1.18)

<

The cross entropy specializes to the entropy Ha(A) = H(A) if P(A) = P(B). What
is most essential: due to the coding theorem on p. 11 the cross entropy is always larger
than the entropy: Ha(B) > H(A). This is the motivation for the following concept, the
Kullback-Leibler divergence. KL-divergence
Definition 1.4.8: Kullback-Leibler Divergence. The KL-divergence is the ex-
pected increase in coding length that one incurs by encoding a message A with the code
optimised for P(B),

P(4,)

Dy (P(A)|[P(B)) = Ha(B) — Ha(A) = > P(4,) Ib BB

n=1

>0 (1.19)

The KL-divergence is 0 if P(A) and P(B) are the same, and positive otherwise. It
is not a metric, since it is not symmetric and the triangle inequality is not fulfilled. If Exercise 1.3
needed, a symmetric, non-negative measure can be obtained via

D™ = Dir (P(A)[[P(B)) + Dicr. (P(B)[|P(4)) - (1.20)

Note that the mutual information can be interpreted as the KL-divergence between
the messages’ joint probability P(A, B) and the product of the marginals,

H(A; B) = E(a,p) I(A) +1(B) — (4, B)) = D (P(A, B)[P(A)P(B)) > 0.  (1.21)

Intuitively, this makes sense: if the two variables are independent, P(A, B) = P(A|B)P(B) =
P(A)P(B), the messages do not get longer if we use the product of the marginals P(A)
and P(B) instead of the joint distribution for encoding. But, as can be seen from 1.17: if
the mutual information grows, the conditional entropy H(A|B) shrinks accordingly, and
encoding with P(A), which requires H(A) bits becomes increasingly wasteful.

Example 1.4.7: Coding an Unfair Dice. = We compare the outcomes of throwing a
fair (A) and an unfair dice (B). A fair dice yields the numbers one to six with equal probability
P(A) = 1/6. The message, that the result of a throw is A = 6 has —lb1/6 = 2.585 bit; this at
the same time is the minimum average coding length H(A) for the outcome of a throw.

Let us now assume we code a sequence of independent throws differently, namely by coding
sixtupels of outcomes (1, ..., x¢) by determining the number t = Z?:l 2671 < 46656 < 2'° and
representing the outcome of this triple with an 16-bit number in {0, 65536}, and we need 16/6 =
2.667 bits, which is slightly worse than the optimum H4(A) = 2.585.

If the dice is not fair, we need to expect that on an average the coding length is shorter. For ex-
ample, if the probabilities for throwing the number one to six are [1/10,1/10,1/10,1/10,1/10,1/2],
we have H(B) = 2.161. Hence the increase in expected coding length when coding the unfair
dice, assuming it is fair is

D (P(B)||P(A)) = Hg(A) — Hp(B) = 2.5850 — 2.1561 = 0.4240 [bits], (1.22)

while when coding the fair dice using the optimal code for the unfair dice the increase in expected
coding length is

Diw(P(A)||P(B)) = Ha(B) — Ha(A) = 2.9349 — 2.5850 = 0.3500 [bits] . (1.23)

<
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1.5 Differential Information

We will now generalise the concepts of information and entropy to continuous random vari-
ables, say x. To do so, we face the difficulty that, for any single outcome, the probability
is p(x;) = 0 and, accordingly, the information is I(x;) = oo.

If we discretize the random variable with step length Az, then in a first-order approx-

imation we have
P(z € [z, + Az]) = p(x)Az (1.24)

Taking the (negative) logarithm, in order to obtain the information, we formally get
I(z € [z,2 4+ Az]) = —=1bp(z) — b Ax (1.25)

The first term formally is the same as for the discrete case. The second term goes to
infinity as Az — 0, but does not depend on p(z).

Remark: We need to be aware, that generally, if the random variable, which is assumed to be
unitless, is taken as the real number of a measurement without its unit, say [m], then — without
mentioning — the density p(z) depends on that unit. E.g. if a length is measured in [m] its density
might be a Gaussian p(z) = g(z;1,0.01%), saying the mean length is 1 [m] and the standard
deviation 0.01 [m], while if the same length is measured in [cm| we obtain p(z) = g(x; 100, 1?)
with the mean length 100 [cm] and the standard deviation 1 [cm], for the user the same meaning,
but with different probabilistic description. The definition of the self-information of a continuous
variable, thus, needs to handle both properties: (1) the possible dependency of p(x) on the unit
of the underlying measurements and (2) the dependency of the free interval Az. o

The conventional definition of differential self-information just takes the logarithmic
term, (1) not making the possible units of the underlying measurements explicit, and (2)
neglecting the second term with Ax:

Definition 1.5.9: Differential Self-Information. The differential self-information
of a continuous random variable z with probability density p(z) is

I(z) = —lbp(x) (1.26)

<

When comparing the information of continuous features of measurements having a
unit, we need to fix the discretization, thus work with discrete variables.

Therefore, the differential self-information is not invariant to scaling. Hence, changing
the unit of the variable = changes the differential information. It changes according to

I(az) =I(z) +1ba (1.27)
For vector-valued random variables, the relation reads
I(Az) =1(x) + b | A (1.28)

Example 1.5.8: Information of Uniform Distribution. A uniformly distributed
random variable z ~ U(a, b) has probability p(z) = 1/(b— a) everywhere in [a, b], and differential
self-information

Ty (z]a, b) = —Ib ﬁ —1b(b—a) (1.29)

A larger interval [a, b] requires longer codes. The code length increases by 1 bit every time the
interval is doubled. <o
Example 1.5.9: Information of Gaussian Distribution. A Gaussian random variable

2 ~ N (i, o) has probability density p(z) = g(z; p, 02) = ﬁ exp (f% (1_“)2), and differential

o

self-information h 2 1
_lbejz—p 1 -

In(aln,0) = =° ( -~ ) +3b2mo”  [bit] (1.30)

using the relation 1b (z) = In(z)/ In(2). o

Further quantities are defined in a similar manner:
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Definition 1.5.10: Differential Entropy. The differential entropy of a continuous
random variable z with density p(z) is

h(z) = B(1() = - | T p@bp) (1.31)

o
Example The entropies for the above examples are
hy(zla,b) = 1b(b—a) [bit] (1.32)
1
hy(zlp, o) = 31 2mec?  [bit] (1.33)

Definition 1.5.11: Differential Conditional Self-Information. The differential
conditional self-information of a continuous random variable z with density p(z|y) is

I(z|y) = —lbp(zly) . (1.34)
&

Definition 1.5.12: Differential Conditional Entropy. The differential condi-
tional entropy of a continuous random variable z with density p(z|y) is

oo

h(zly) = E((zly)) = — f p(ly)b p(zly) (1.35)

o

Definition 1.5.13: Differential Mutual Self-information. The differential mu-

tual self-information of two continuous random variables z and y with joint density p(z,y)
is

l(z;y) = lx) —I(zly) = 1(y) — I(y|z) (1.36)

o

Definition 1.5.14: Differential Mutual Entropy (Differential Mutual Infor-
mation). The differential mutual entropy of two continuous random variables z and y
with joint density p(z,y) is

h(z;y) = h(z) — h(z|y) = h(y) — h(ylz) = E((z,y)) (1.37)

<

Again, the term mutual information is prevalent in the literature, being used for dis-
crete and continuous random variables.

Example: Two Gaussian random variables, which are correlated with correlation coef-
ficient p,, have mutual differential information

1 1
h(z;y) = =Ib ——— [bit 1.38
(@) =5l bil (139)
Their mutual differential information depends only on the correlation coefficient p,,. The
mutual information only is zero if the two variables are uncorrelated, in which case - due
to their normality - they also are independent.
In the case that one of the variables is vector-valued, say y, one must use the total

correlation
Pxy =

po (1.39)
Mutual differential self-information has been used by Vosselman (1992) for structural
matching in order to overcome the scale problems encountered by Boyer and Kak (1988)
who used conditional differential self-information.
Fig. 1.4 provides an intuitive example, where the mutual information is large (in
subfigures 2,4 and 5), caused by functional relationships, but the correlation coefficient
cannot, capture this relation, since it only reflects the degree of linear dependency.
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X
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Figure 1.4: Correlation coefficient p,, and mutual entropy H,, for different 2D distribu-
tions p(z,y). Distributions 1 to 4 have (practically) zero correlation coefficient. Only the
Gaussian and the nearly uniform distribution have mutual entropy close to zero, whereas
the other blurry line-distributions reveal large mutual entropy

1.6 Principle of Maximum Entropy

In various situations we would like to know the distribution of a random variable, but
only have partial knowledge, e.g., the range in which the random variable exists or some
moments, e.g., the mean or the variance. Then it appears plausible to choose a distribution
which fulfils these constraints, but does not add any information, i.e., we search for that
distribution which, apart from the given constraints, maximizes the surprize. This leads
to the concept of maximum entropy distributions. We show the derivation for an example
and provide two important cases. Further cases are to be found in the exercises.

Example 1.6.10: Mazimum entropy distribution in an interval. Assume the distri-
bution p(z)of a random variable is restricted to the [a,b]. Thus we have the condition

b
g(p,x) = f, p(z)dz—1=0. (1.40)

To find the distribution p(z) we maximize its entropy

b
H(z;p) =— f p(z)logp(x)dx. (1.41)
under this constraint. For finding the maximum entropy distribution p(z), with the Lagrangian
multiplier A\, we need to find the maximum of

D(p(z),\) = — Jb p(z)logp(z)dz + A (Jb p(z)dz — 1) (1.42)

T=a r=a

b 1

—o 5=z dz this function can be written as a function of p
r=a a

w.r.t. to p(z). Using 1 = §

b
Llp] := f: F(xz,p)dz with F(z,p) = —p(x)logp(x)+ A (p ~3 i a) . (1.43)

Using the results of calculus of variations (Weisstein, E. W., 2022) one can show that the function
p = p(x) that minimizes L[p] needs to satisfy dF¥'/dp = 0. Using 9(ylogy)/dy = —logy — 1 we
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a=2, b=6, u=3.37: A=2 a=2, b=6, p=3.37: A=2
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Figure 1.5: Maximum entropy distributions for given interval [a,b] and mean u. Observe
the signs of the parameters. The parameter A is determined numerically

explicitly obtain a constraint for p, namely

F
i—p:—logp(m)—l—i—/\zo, (1.44)
which results in

p(z) =e ', (1.45)

which is a constant. Thus we have, due to (1.40)

1

— 1.46
p(r) = 7 (1.46)
o

Hence, we have the following theorem:

Theorem 1.6.2: Maxzimum entropy distribution in a finite interval. If the
random variable z ~ p(x) is positive only in the interval [a, b] then the maximum entropy
distribution is a uniform distribution z ~ U(a, b).

In a similar manner we find the following theorems, see the exercises.

Theorem 1.6.3: Maximum entropy distribution for positive values with
given mean. If the random variable z ~ p(z) is positive only in the interval [0cc) and
has mean E(z) = p, then the maximum entropy distribution is an exponential distribution
z ~ Exp(p) =e /" /p, x> 0.

Theorem 1.6.4: Maxzimum entropy distribution given mean and variance.
If the random vector  ~ p(x) has mean E(x) = p, and covariance matrix D(z) = ¥,
then the maximum entropy distribution is a Gaussian distribution & ~ N (t,, X0).

The constraints can be combined, e.g., we also have the following result:

Theorem 1.6.5: Maximum entropy distribution with given range and given
mean. If the random variable z ~ p(z) is non-negative only in the interval [a,b] € IR
and has mean E(z) = p € (a,b), then the maximum entropy distribution is an truncated
exponential distribution

@D
N

with = € [a,b] and prexp(z) =0else  (1.47)

ptexp(x;a7b7 p) = 7 . N
A (e‘X — e_i)

with A = A(u). The given parameters (a, b, 1) need not be positive.

Examples are given in the following figure. Given the parameters (a,b, 1) densities
appear plausible.

1.7 Connection to Model Selection and Robust Estima-
tion

An important application of information theory is model selection. We have seen that
interpreting images (and data in general) amounts to fitting models to noisy data. In that
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context, a natural question is what is a good model to represent a certain data set, or at
least whether a specific model is a suitable representation. This question includes robust
estimation, if one sees a robust estimator as one that fits a model consisting of two parts,
one for the inliers and one for the outliers.

Information theory is a powerful tool to address these questions. Here, we chose to
illustrate the principle with the simple example shown in Fig. 1.1. In an image of size
R x R = 256 x 256 pixels, the coordinates of n = 18 points have been measured and
provided with a resolution of ¢ = % pixel. The question to be answered is: Are the points
randomly distributed in the square or are some of them lying on a straight line. The four

models shall be compared:

e models {4, B, D}: a straight line with parameters (a,b) that covers n; € {8,12,6}
inliers with a standard deviation of o € {5.8,1.6,8.7} pixels, plus n; = n — nop
outliers uniformly distributed in the image

e model C: no line, only n = np = 18 random points uniformly distributed in the
image

To code a uniformly distributed value in the interval R to a precision of ¢, one requires
Ib (R/e) bits. We thus get the following code lengths: for model C, we must code the two
coordinates of all n image points, leading to a code length of

R
e =2n-1b = =2n(Ib R —lbe) = 36~ (84 3) = 306 [bits]. (1.48)

Observe, we obviously used (1.25) for the uniform distribution z ~ U(0, R) with p,(z) =
1/R in the form
I(z € [x,x+¢]) = —lbp(z) —lbe (1.49)

here with —lbp(z) = Ib R. For the other three models A, B, and D, we can assume an
optimal code, which requires H(ny/n) [bits] per point to distinguish inliers from outliers,
see (1.14). Only the latter must be coded with their two coordinates as in (1.48), whereas
for inliers we can instead code the line parameters (a,b), a single coordinate, say in -
direction, and the residual, say in y-direction. The parameters need only be coded with
respect to their standard deviation o, = o/+/n, not necessarily to e.

cI)A = q)par+(bidz+q)0+q)l
R nr R Ibe Vi 2 1 o\ 2 R
= o=+ nH (M) 120l PN 4 Tpor (2) 4 D
2 nn () smon Do (3 {Be(2) 4 juan(2) o0 2})
R nr R Ibe 1 o\ 2 R
- 21bap+nH(N)+2nolb€+<2(n1—2)+n1 <21b27r(6) +lbg>)
= 139+ 17.84 176+ (5.77+ 10~ (3.9 + 8 + 6)) ~ 392 [bits] (1.50)

using the relation E(Y; |v,]?/0?) = ny — 2 with the residuals v; := v;(a, b) depending on
the line parameters (a,b). The assumed resolution € thus has no influence on the decision,
since the resolution affects all coordinates, independent on whether the points are in- or
outliers.

Model A has a shorter code and should be preferred. However, model D has the
shortest description length. As the four main contribution (the bits for the outliers, the
x-coordinates of the inliers, the model definition and the resulting y-coordinates), shown
in Fig. 1.6 demonstrate, the B needs to many bits for the 12 outliers which cannot be
compensated by the much less bits for the y-coordinates of the only 6 inliers.

The example demonstrates the usefulness of comparing models based on the coding
length. The difference in bits directly can be interpreted as ratio of probabilities, that the
different models and their realisations occur: E.g. configuration is 239673902 ~ 56 times
more likely than the random configuration C.
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Figure 1.6: Contribution of outliers, inliers and model description on total description
length. The differences of the total description lengths relatively small,

model | n n; no| o | D D— D

A 18 10 8| 58| 392.18 -3.82

B 18 6 12|16 | 396.18 0.18

C 18 0 18| 0.0 | 396.00 0.00

D 18 12 6 | 8.7 | 390.21 -5.78
Table 1.1: Modelselection, see Fig. 1.1: While assuming just 18 random points (case C)
leads to a description length of 396 [bits|, the model D is suggested as the optimal model,
having a wide band with o = 8.7, with a description length of appr. 383 [bits]. Models A
and B assumes 10 and 6 inliers, respectively, lying on partly much narrower bands (with
o = 5.8 and o = 1.6), thus with 8 and 12 outliers, respectively. Only model A and D have
a shorter description length than assuming random points, see Fig. 1.6. The description
length of model B is only slightly larger, than when assuming randomly distributed points

Generally, instead of specifying probabilities for the possible outcomes of an experi-
ment, we therefore also could use a coding scheme for generating each possible outcome,
and use this as surrogate for a probabilistic model. This especially is useful for discrete
and nested models, see (Kolbe, 2000).

An alternative interpretation of the model selection according to (1.50) leads to a robust
estimator of the line parameters

n
~

(a,b) = argmin,, , Z p(v;i(a, b)) (1.51)

i=1
since one can show, that ® 4 can be written as

Da(a,b) = A1+ A2 Z p(vi(a,b)) with p(v;) = min(vi(a,b)/o?, k?) (1.52)

=1

and a suitable choice of the three parameters \;,i = 1,2 and k. Hence, minimising the
code length over all possible lines az 4+ by = 1 with uncertainty o is equivalent to fitting
the line parameters with the truncated least squares estimator.

1.8 Exercises

1. Assume two binary variables A and B have the joint probabilities P(A, B) given in
the following table:

(a) Determine the mutual self-information I(A = 1, B = 0) of the two messages
A =1 and B = 0. Explain the result.

(b) Determine the mutual entropy/mutual information H(A; B). Explain, why
H(A; B) can be positive in spite of I(A = 1, B = 0) being negative.
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P(AB) ||A=0]A=1
B=0 | 050 [ 0.05
B=1 | 015 | 030

2. Take the file MIT.png, convert the image into a gray-level image, store this image
and use its histogram. Determine the expected number N of bits you need to code
the image. Compare it to the length of the image file. Is the size of the stored image
smaller than N? Why? Discuss.

Remark: The entropy is H = 5.1351, the number of bits required for coding is N = 256°H =
336533. The file has a size of 37.6 Kb, thus requires approximately 11% of the number N
of bits. The reason is, that the mutual dependencies of the grey-values are not taken into
account. o

3. Refer to the definition (1.19) of the the Kullback-Leibler divergence, and show that
it does not fulfil the triangle inequality. As an example, take three binary random
variables with P(z = 1) = 0.1, Q(z = 1) = 0.7, and R(z = 1) = 0.8. Why is a single
example sufficient for the proof?

4. Prove (1.52) under the assumption that all parameters, except the residuals v; are
given. Give explicit expressions for A;, Ay and k.

5. Show that the exponential distribution Exp(u) is the minimum entropy distribution
for a non-negative random variable with mean p. Hint: Bring the optimization
function ®, corresponding to (1.42), into the form L[p] = szo F(z,p)d.

6. Prove Theorem 1.6 in the following steps.

(a) Show that the Gaussian distribution N (1, 0?) is the minimum entropy distribu-
tion for a random variable with mean p and variance o2. Hint: Bring the opti-
mization function ®, corresponding to (1.42), into the form L(p] = { F(z, p)da.

(b) Rotate the coordinate system, such that the n-vector y = Rz has a diagonal
covariance matrix ¥, and use the result of item 6a. Derive the differential
entropy H(y). Express it as a function of the variances azi,i =1,..,n.

(c) Use the result of 6b to prove that the entropy of x is
1 n
H(z) = 5 log Yool + 5(1 + log(27)) . (1.53)

Use this result to prove Theorem 1.6.
7. Refer to Theorem 1.6 and show that

e for given interval [a,b],b > a and mean p the maximum entropy distribution is
a truncated exponential.

e Show, that it can be written in the form of Eq. (1.47).

e Show that the mean of this truncated distribution is

(1.54)

rexp (@, b, ) = A+
e

Observe, that solving (1.54) cannot (easily) be solved for A algebraically.
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2 Signal Theory

Signal Theory is the essential tool for understanding linear filters of one- or multi-dimensional
signals. These lecture notes use the relation of cyclical matrices and their eigenvalue de-
composition as basis for explaining the Fourier transformation. The lectures cover correla-
tion and convolution, the Fourier transformation for discrete and continuous, and cyclical
and infinite one- and multi-dimensional signals, the sampling theorem and other image
transforms.

2.1 Preface . . . . . . e e 21
2.2 Introduction . . . . . . . . . . . 22
2.3 Convolution and Correlation . . . . . . . . . . . . ... ... ... . ..... 26
2.3.1 Definition of Convolution . . . .. ... ... . ... ......... 27
2.3.2 Properties of Convolution . . . .. ... ... ... ... ....... 29
2.4 Linear Systems Theory of Discrete Signals . . . . . . . ... ... ... ... 30
2.4.1 Convolution, Correlation, and Circulant Matrices . . . . . . . .. .. 31
2.4.2 Spectral Decomposition of Circulant Matrices . . . . . . . . ... .. 33
2.4.3 The Discrete Fourier Transformation . . . . . . .. ... .. ... .. 35
2.4.4 The Power spectrum . . . . . . . . ... ... L 36
2.4.5 The Fast Fourier Transformation . . . . ... . ... ... ...... 39
2.4.6 The Two-dimensional Discrete Fourier Transform . . . . . . . . . .. 40
2.5 Generalizations . . . . . . . . .. 41
2.5.1 The 1D Fourier Transformation . . . . . . . . . .. ... ... .... 41
2.5.2 The 2D Fourier Transformation . . . . . . .. ... .. ... ..... 44
2.6 Sampling and Interpolation . . . . . ... ... ... .. L L. 44
2.6.1 Dirac’s Delta Function and the Shah Function .. ... .. ... .. 45
2.6.2 Sampling Theorem and Nyquist Frequency . . .. ... .. ... .. 47
2.7 Other Image Transforms . . . . . . . ... ... ... L L. 50
2.7.1 Wavelets . . . . . . . . o 50
2.7.2 Haar Wavelets . . . . . . . . . . . ... e 52
2.7.3 Gabor Wavelets . . . . . . . . . . . . . e 56
2.8 Exercises . . . . . . ... 59

2.1 Preface

Lectures on Signal theory provided a basis for understanding linear filters applied to time
series and digital images. Together with Konrad Schindler, we augmented the lecture
notes for a book section. The motivation for using signal theory goes back to my work
on variance component estimation for observed autoregressive processes Forstner (1985),
which exploits the relation of cyclical matrices and their eigenvalue decomposition, essen-
tially being the discrete Fourier transform of periodic signals. This appeared to be a good
starting point for a lecture on Signal Theory.

Since signals often are non-periodic and finite, we need to specify the basic opera-
tions convopution and correlation more in detail, see Sect.92 in the note on convolutional
networks.
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2.2 Introduction

Images can be interpreted as one or more dimensional signals in two or more dimensions. signal
Examples are black-and-white or depth images, colour images, multispectral images, to-
mographic images, or colour video sequences, see Fig. 2.1. The table gives examples for

Figure 2.1: Digital images. From left to right: Black and white image g(z,%) : R* = R,
color image g(x,y) : R* — R*, some images from a video sequence g(z,vy,t) : R* — R?

multi-dimensional signals y(x), we might encounter. This representation enforces a cer-
tain (freely chosen) view onto the signal, since the same data, e.g., a grey value video,
may be represented as a scalar depending on space and time, g(x,t) or as a matrix G(t)
changing over time. Mathematically, we could write g(x,t) as g(x)(t) or as g(t)(x) and
group the arguments as needed, e.g., as a spatially varying time-vector, namely g(x),
where the vector g(xg) represents the time signal {g(¢)}(xo) at position z¢. In all cases
the data can be represented as higher dimensional matrices, i.e., generally tensors, being
scalars y(x1,...,2p) as a function of several variables, with the classical special cases vec-
tors D = 1 and matrices D = 2. The dimension D also is called the "rank” of the tensor
T.! Specifically digital images can be seen as discrete two dimensional signals which are

’ D H example ‘

1 || change of temperature over time T'(¢), a line in a grey value image ¢(7)
2 || a digital elevation model H(X,Y), a grey value image ¢(i, j)
change of data-vector over time d(t), a line in a color image g(i, )
3 || a color image g(i,j), a multi spectral image,
a magnet resonance image (MRI) R(i,7,k), a grey value video ¢(i, j,t) = G(t)
4 || a color video g(i, j,t), MRI image sequence
5 || arectangular set gy, (4, j) of color images
Table 2.1: Image and image sequences as D-dimensional signals

derived from an underlying continuous image by discretization, see Fig. 2.1.

Many useful operations on signals are linear, such as contrast enhancement or noise
suppression. Linear signal theory allows to analyse and interpret such operations.

The relevance of linear systems theory is, that optical systems can be modelled as
linear shift-invariant systems, see Fig. 2.3.

The blurred image ¢ in Fig. 2.3 can be interpreted as being a transformed version of
the ideal image a. If the image plane is shifted w.r.t. to the optics both functions, b and
¢, are shifted by the same amount. Moreover, of the image ¢ will have double the values
if the values of b are doubled.

Formally, linear shift-invariant operators L, are characterized in the following manner:
let the system, which generates c(x,y) from b(x,y) be the operator £,, hence

C(.’t, y) = La(b(m, y)) . (21)
Then L, is linear and shift-invariant, if

La(Oélbl + a2b2) = 1C1 + Qg (22)

IWe do not distinguish tensors of rank > 2 in the notation. We do treat complex numbers as scalars.
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Figure 2.2: Image as signal. Upper left: Original grey level image. Upper right: Blow
up of subsection. Lower left: Grey values of subsection. Lower right: Grey values as
digital surface model

and
Lo(blx —u,y —v)) =c(z —u,y —v) (2.3)

holds.

Signals in signal theory are scalar or complex functions of one or several variables.
Systems for operating on signals are graphically represented as in Fig. 2.4. Signal theory
has evolved for analysing of time signals z(t), especially electrical and acoustical signals,
clearly documented in (Shannon and Weaver, 1949), (?), and triggered by the development
of television was generalized to two dimensional spatial signals g(z,y). Specific conditions,
which needed to be fulfilled for time signals, e.g., causality, i.e., that a reaction cannot
start before its cause, are not relevant for two-dimensional signals. A special group of
operation on signals are linear shift-invariant operators often simply called filters. This
results from the fact that linear shift-invariant operators filter certain parts of the signal
while letting other pass. Such filters can be analysed completely and elegantly using linear
systems theory.

An essential tool is their spectral analysis: for time signals this results in an additive
decomposition in cos- and sin-waves with different frequencies, see Fig. 2.5.> Hence, we
have the representation, e.g., for b(¢)

b(t) = i B, sin(2rnt+ ¢,) (2.4)

n=0

Often a representation with complex numbers is of advantage:

b(t) = i B el2mnt (2.5)

n=—oo

2For spatial signals the spatial frequencies are multidimensional.
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Figure 2.3: Optical realization of a linear shift-invariant system: Given the image function
b, then shifting the image plane parallel or perpendicular to the optical axes leads to an
image function ¢, which linearly depends on the function b. The effect of the imaging system
is the same at all points of the image, specifically at the two positions x and y

Y

Y

b(t) filter L4 c(t)

Figure 2.4: Block diagram for a filter. The name or the type of the filter operation is
shown in the box.

where, in order to obtain real valued signals, the coefficients need to be complex numbers,
thus, contain amplitude and phase.

The essential property of linear filters is: Linear filters only change amplitudes and
phases. This allows to easily interpret their effect, if we analyse the signals and the filters
in their frequency domain. For example: Smoothing a signal only reduces the amplitudes
of the waves, and leaves the phases unchanged.

We distinguish four types of signals: signals may be continuous or discrete, and they
may have an infinite or finite domain. Since the boundaries of a signal with finite domain
cannot be handled in a conceptually clear way,” we assume the signal to be periodic,
i.e., given signal, e.g., f(x),x € [0,a] is one period of an infinite periodic signal, e.g.,
f(z) = f(r+na),n=0,£1,£2,....

Hence we have the following four types of signals, making them explicit for one and
two arguments.

1. Infinite continuous one or multi-dimensional functions or images
f(z) with z€lR or f(z,y)=f(x), with xeIR? (2.6)

with indices from the end of the alphabet, which can be generalized to « € RP. ¢4

3We will discuss several ways how to handle the boundary of signals with finite domain in Sect. XXX.
4The dimension of the entity is to be taken from the context. We reserve capital letters, e.g., the
function G in times font for the Fourier transform of the signals, e.g., of g.

. Original s approximated with u=1 waves s approximated with u=2 waves
6 6 6
2 2 2
0 0 0

0 5 10 15 0 5 10 15 0 5 10 15
. approximated with u=4 waves o approximated with u=6 waves o approximated with u=8 waves
8 6 6
4 4 4
2 2 2
0 0 0

0 5 10 15 0 5 10 15 0 5 10 15

Figure 2.5: Approximation of a signal by periodic functions. Upper left: Original signal.
Following sub images: approximation with U = 1,2,4,6,8 waves
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2. Periodic continuous functions or images
flz) = f(r+u) with x€][0,u], (2.7)
or in two dimensions
f(®) = f(x+u) with «€0,u1] x [0, us]. (2.8)
3. Infinite discrete one or two-dimensional functions or images
f(i) with i€Z or f(i,5) = f(k), with k=1[i,j]" €Z? (2.9)

with indices from the middle of the alphabet. Collecting the discrete entries in
vectors or matrices results in representations f = [f;] = [f(¢)] or, in two dimensions,
f=1fi;1=1f3,J)]. Again, generalization to higher dimensions can be achieved by
kcZ'

4. Periodic discrete functions or images
f@)=f(i+n) with ¢€[0,n—1], (2.10)
or in two dimensions
f(k)=f(k4+m) with ke {0,m —1} x[{0,ma—1}. (2.11)

The notation is chosen such that continuous and discrete signals can be distinguished from
their argument, e.g., = or i, whereas no notational distinction is made between periodic
and nonperiodic signals.

This chapter discusses important aspects of linear systems theory. We will start with
discrete periodic one-dimensional signals. Linear operators then are discrete cyclical con-
volutions which easily can be represented as multiplications with cyclical matrices. Since
the eigenvectors of cyclical matrices are periodic functions with different spatial frequen-
cies, we obtain a decomposition of the signal as a weighted sum of periodic basis functions.
This leads to what is called the discrete Fourier transformation (DFT). Applying the anal-
ysis to stochastic signals gives us insight into the correlation structure of such signals.

We then generalize the signal analysis for periodic discrete signals to the other types of
signals (continuous, non-periodic), finally leading to the Fourier transformation® of infinite
non-periodic continuous signals. We use it for the analysis of the properties of basic filters,
of the sampling process, and for the derivation of the sampling theorem.

The basis functions of the Fourier transformation are non-zero over the complete do-
main, except for a countable set of points. Hence, each value of the Fourier transform
depends on all values of the signal. This does not allow us to analyse the spectral prop-
erties of the signal locally. Therefore, we finally discuss signal representations with basis
function with finite support, what are called wavelets. They have the advantage of char-
acterizing the spectral properties of the signal locally, at the same time can be determined
as efficient as the Fourier transformation.

Remark: For complex numbers z = = + iy with i = v/—1 we have: real part R(z + iy) = =,
imaginary part S(x +iy) = y, product (a+1b)(c+id) = (ac — bd) +i(bc + ad), conjugate complex
number z* = (z + iy)* = = — iy, absolute value |z| = |z + iy| = A/22 + y2 = V/z 2%, exponential
function e’” = cos¢ + isin¢$ and hence the relation between Cartesian and polar coordinates
|z| = z +iy = |z]e'® = |z|(cos  + isin ¢) with r = /22 + y2 and ¢ = atan2 (z,y). If we have
a matrix A = [a;;] with complex entries the matrix A* = [a};] is the transpose matrix with
conjugate complex elements. Often we use cos(a + 8) = cos acos 8 — sin asin 3. o

5The notion Fourier transformation in mathematics is used in a more general sense, namely when
representing a function as a sum of orthogonal basis functions, not necessarily periodic ones, as e.g., using
orthogonal polynomials.
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2.3 Convolution and Correlation

2.3.1 Definition of Convolution . . . . .. ... ... ... ... ...... 27
2.3.2 Properties of Convolution . . . . . ... ... ... .......... 29

One of the basic tasks in signal processing is template matching, namely to locate the
position of a specific signal, called the template, say a(z), in a longer signal, say b(z). Let
us for simplicity assume, the domain of a(z) is limited to a small range [—1, +1] around 0,
i.e., we assume do not know the values of a(x) outside this interval, see Fig. 2.6. Then it

ax) a(y)
-1 +1 +1
b(x) b(x+y), x= 2
O N U
+1 %=3.2 2 -1 +1

Figure 2.6: Principle of template matching: Left: Given the template a(z), assuming no
information about the values outside the interval [—1, +1] and the signal b(z). Right: Find-
ing the best location of the template in b(z) can be achieved by determining the maximum
inner product of the template a(y), now assuming it to have value 0 outside the interval
[—1,+1] with a shifted version of b(z + y), the variable change used to express the inner
product.

is intuitive to define a similarity measure ¢(z) between the template a and all subsections
[x—1,2+1] of length 2 of the signal b and take the optimum of the this similarity measure
c(x) as most likely position.

Here, we adopt the inner product of two vectors a and b, which measures the similarity
of the two vectors and is (a,b) = a'b = Y}, a;b; = |a| |b] cos(a,b) which is large, in case
the two vectors differ slightly, since then the angle between the vectors is small. This
inner product can be generalized to functions a(z) and b(z), by replacing the sum by the
integral of the products. Hence, formally we need to determine

x+1
() = {a(y), bz + ) = f a(y)b(z + y)dy (2.12)

y=z—1

This can be written as an infinite integral if we assume a(x) = 0 outside the interval
[-1,1]. The result is the “correlation” of the template a(x) with the signal b(x),

oo}

c(z) = alz) ®b(x) := f a(y)b(z + y)dy . (2.13)

y=—00

Though this correlation operation is linear and shift invariant, is has the disadvantage,
that it is not commutative. As we will see in the next section, this disadvantage easily
can be eliminated, by first mirroring the template and then applying correlation, thus
determining S;’;foo a(—y)b(z + y)dy or by defining an operation, called “convolution”.
Remark: The notion "correlation” in signal theory means the inner product of two mutually
shifted signals, and is not to be confused with the normalized correlation coefficient used in
statistics, though both concepts are closely related: the estimated correlation coefficient of two
vectors a and b is p(a,b) = (a,b) /(|a| |b|), where the @ contains the elements of a reduced by
the mean of the values a;. o
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2.3.1 Definition of Convolution

A fundamental theorem of linear systems theory is the following, expressed for infinite
continuous signals. It allows to characterize all linear shift invariant operators, especially
filters we regularly apply for manipulating images.

Theorem 2.3.6: Linearity and shift-invariance operators. If an operator L,
operating on b(z), leading to c¢(x) = L,(b(x)) is linear and shift-invariant it can be repre-
sented as a convolution

o0

co(x) = La(b(x)) = az) * b(z) = J a(y)b(x — y)dy (2.14)

Yy=—00
with some adequate function b(z). Sometimes we refer to the first function, here a(x), as
the convolution kernel.

As an example, taking the moving average

+w/2 00

bode= [ rabe-pdy (219)

y=—00

dmz%ww=lj

w r=—w/2

It can be written as the convolution of the rectangle function r,,(x) with b(z). It a linear
filter, since the integration is a linear and shift-invariant operator.

Remark: The notion convolution is derived from the Latin word “convolvere”, which means
to roll together” and describes the fact that one of the two functions, here b(x), is mirrored, i.e.,
it is used as b(z — y) with y the integration variable, see Fig. 2.7. In two dimensions we need

b(x) b(x-y)

TN

X

Figure 2.7: For convolution we mirror b(z) at a specific z, to obtain b(z — y) as a function
of y, and take the inner product of the convolution kernel a(y) and the mirrored function
b(z —y)

to mirror at the origin b(x — y). If the convolution kernel is symmetric, hence a(z) = a(—=x),

the effect is not visible, since then a(z) * b(z) = Sy a(—y)b(z +y)dy = Sy a(y)b(y + x)dy, and the

result c(x) is the scalar product of the function b(y) shifted by = to the left with the convolution

kernel a(y). o
We have the following definitions of convolution for the other types of signals:

c(z) =alz) xb(z) = Ja_o a(y)b(mod(z — y,u)) dy (2.16)
c(i) =a(i) xb(i) =}, a()b(i-j) (2.17)
c(i) = a(i) xb(i) = Z_: a(7)b(mod(i — j,n)). (2.18)

i=0

We use the operator x for indicating a convolution, overloading it for all types of signals.
Often, we do not make the arguments explicit and simply write

c=axb. (2.19)

The modulo-function, namely mod (z,y) = = — |y||z/|y|] € [0,y], used in (2.16) and
(2.18) enforce the argument of b(-) to lie in the intervals [0, u) and [0,n — 1], respectively.
These are the ranges of the function b(-); for periodic functions we have, e.g., mod(z +
ku,u) = z for some x € [0, u).
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Original Running mean Left difference
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2nd difference Weighted running mean Right difference
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Figure 2.8: Linear filters. Upper left: Original z. Upper mid: running mean R3 * x.
Lower mid: weighted running mean B3 * x. — Compare the slight but significant difference
at ¢ = 14. Upper right: Left difference d_ * x. Lower right: Right difference dy * x.
— Observe the mutual shift. Lower left: 2nd difference ¢ * z. Observe zeros and local
(absolute) maximum at ¢ = 14

Example 2.3.11: Linear filters used in image processing. We give a few examples for
linear filters used in image processing. We show the results on a finite discrete signal, for which
we assume the values outside the given range are unknown.

e Moving average:
1
y(z) = (1‘1;1 —+x; + CL‘Z‘+1)/3 or y=Raxx with R3 = g [1 1 1] . (2.20)

Observe the mean of the three neighbouring values at ¢ = 14: It is counter intuitive, that
the mean at ¢ = 13 is smaller than the mean at ¢ = 15. Therefore, we have a look at a
weighted moving average:

e Weighted moving average. here we weight the central value higher than the two neigh-
bours:

The chosen weighting as a positive effect: The weighted mean at ¢ = 13 is larger than the
weighted mean at ¢ = 15, which appears plausible.
Remark: We will identify the reason for this behaviour of the two filters, when analysing

their response to different wave lengths. o
e Left and right difference: Exercise 2.2
y(i) =z(i) —x(i—1) or y=d_xz with d_=[1-1]. (2.22)
and
y@)==z(i+1)—x(i) or y=dy*x with dy =[1-=1]. (2.23)
Both operations yield the gradient of a linear function, e.g., for (i) = a + bi we obtain
y(i) = b.

e Second difference, which yields the second derivative for a quadratic function, which is
an approximation for the curvature

z())=x(t—1)—22(i)+=z(i+1) or z=cxx with c=[1-21]. (2.24)

E.g. for the quadratic function z(i) = a + bi + ci? we obtain z(3) = 2c.

e Convolving two kernels may be useful. E.g. if we convolve d_ with dy we obtain

ci)= Y, d-(j)di(i—j) or c=d_xdy. (2.25)

j=—1

This strongly motivates the analysis of filters w.r.t. their generating components, here the
intuitive definition of the second differences as a convolution of two first differences.
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2.3.2 Properties of Convolution

Before analysing and applying convolutions, we want to collect the essential properties
of this operator. We show the properties here for infinite discrete signals with vectors
a = [a(i)] and b = [b(7)]

1. Commutativity: the convolution is commutative:
axb=bxa. (2.26)

This can be seen by replacing variables in (2.17), namely j < (i — j) in b(¢ — j),
thus (—j) < (j —4) and therefore (i — j) < j in a(j). This yields b(i) * a(i), when
following the definition in (2.17).

Similarly, we can show the following:

2. Associativity
axbxc=(axb)xc=ax(bxc). (2.27)

3. Distributivity
(a+b)xc=axc+bxc. (2.28)

4. Multiplication with a scalar
Ma xb) = (Aa) xb = a * (\b) (2.29)

5. Zero-index: Infinite discrete signals have index in the range (—oo,...,0, ..., +00).
If not clear from the context we indicate the index 0 by underlining:

a =|[.., a2, a_1, ay, a1, az, ...] (2.30)

If not stated otherwise, elements which are not given are assumed to be zero. As an
example, take the one- and two-dimensional signals

1 1 1 1 2 1
w' =-0..01210..]=-[121] or w=-— |2 4 2 (2.31)
4 4 161, 5
6. The one-element is the unit impulse
6=[...00100...] or 6= 1 (2.32)

7. The translation of a function f(i) by I or of a two dimensional function f(i,j) by
(I,m) can use the convolution with the unit impulse

fe=0)=f@@)*«6(—1) or fa=0Uj—m)=f(i,5)*6(i — 1,5 —m) (2.33)

8. The inversion of convolution with a is possible if >, a(i)# 0 and certain additional
constraints are fulfilled. The inverse element a~1(i) of a(i) then can be used to
solve ¢(i) = a(i) * b(i) for b(i) by deconvolution

b(i) = a1 (i) * c(i) = c(i) a1 (4). (2.34)

6The Fourier spectrum then must be non-zero everywhere.
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9. The correlation, as introduced in the motivation, differs from convolution by the
sign of the first function. Hence, we have

o0

c(z) = a(z) ®b(x) = a(—x) xb(zx) = J a(y)b(xz + y)dy . (2.35)

y=—00

Since correlation is the basic tool for solving the template matching problem, convo-
lution can be interpreted as correlation with the mirrored template, i.e., the mirrored
first function:

c(z) = a(z) *b(z) = a(—x) ® b(x) . (2.36)

It can easily be shown, that correlation is not commutative, but the other properties
of convolution are still valid, such as associativity and distributivity.

If the first function a(z) is symmetric, correlation and convolution are identical.
Convolution appears in many other contexts:

e The density function p. of the sum z = x +y of two random variables z and y is the
convolution of the two density functions p, and py:

z=z+y & Pz = Do * Dy - (2.37)

This holds for continuous and discrete random variables.

e The multiplication of two polynomials p(z) = 3 a;z" and ¢(z) = Y_ ba?, is the

polynomial r(z) = p(x)q(z) = f:é c;xt with the coefficients
[907 T Ck—i—l] = [Q07 T ak] * [bOv veey bl] . (238)

e The product of two decimal numbers axar_i...ay and bja;_1...by is the number
ccj—1...¢y following from (2.38), except for the carrying. For example, we have
11x 11 = 121 and [1 1] = [1 1] = [1 2 1]. This is the reason why, under certain
conditions, the deconvolution of discrete signals can use division of numbers. For
instance, we have 1331/11 = 121 since [1 1]7! % [1 33 1] = [1 2 1]. Since convolution
also allows for negative numbers, this relation to multiplication is very practical; we
easily can prove [1 —1]*[-11]=[1 —21].

2.4 Linear Systems Theory of Discrete Signals

2.4.1 Convolution, Correlation, and Circulant Matrices . . . . . . ... .. 31
2.4.2  Spectral Decomposition of Circulant Matrices . . . . .. .. ... .. 33
2.4.3 The Discrete Fourier Transformation . . . . . . .. ... .. ... .. 35
2.44 The Power spectrum . . . . . . . . ... ... 36
2.4.5 The Fast Fourier Transformation . . . . . ... .. ... ... .... 39
2.4.6 The Two-dimensional Discrete Fourier Transform . . . . .. ... .. 40

Linear systems theory collects all properties, relations and operations for linear shift
invariant signals. Convolution, as the basic operator on signals, is extended by a spectral
decomposition, what is called the Fourier transformation, which allows to more deeply
analyse the effect of linear filters but also the numerically efficient realization of convo-
lution. We discuss the main results for discrete finite one-dimensional signals and then
extend the results for the other types of signals and to two and more dimensions.
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2.4.1 Convolution, Correlation, and Circulant Matrices

We start with the discrete convolution of finite vectors of length n. We assume the signal
is periodic with period n, hence the indices are taken modulo n. Following (2.10), the
indices run from 0, ..., n— 1, which simplifies expressions”. Convolution can be represented
as a matrix-vector product by uniquely mapping each vector to a circulant matrix. This
allows us to exploit results from linear algebra, especially the properties of eigenvalues and
eigenvectors of a matrix.

2.4.1.1 Convolution and Correlation

We first want to represent convolution as a matrix-vector product.
The convolution of two n-vectors is defined as

n—1
9(i) = w(i) * F(i) = . wli — k)F(0) (2.39)
k=0
With the vectors
g0 Wo
g1 w1
g=lg] = , w = [w;] = (2.40)
9n—2 Wn—2
In—1 Wnp—1

and the circulant matrix

fO fnfl fn72 fl
hi foo fam1 oo S2
Zy=Z(f)=|f fr  fo . J3 (2.41)
fact s Fass o fo
of the vector f = [f;] we can write (2.39) as
g=wxf=2,f=Z;w. (2.42)

Similarly, the correlation of two n-vectors, which is defined as

g@=w@®ﬂﬂ=m%wﬂﬂ=2uﬁ)z+k=i K (243
k=1 k=1

again, assuming all indices to be cyclical modulo n, also can be written with vectors and
circulant matrices as
we f=2,f, (2.44)

since inversion of the indices leads to a transposed circulant matrix
Z([w(=0)]) = Z"([w(®)])- (2.45)

2.4.1.2 Correlation Function of Stochastic Signals

We often have to handle signals f = (/f;) which are assumed to be samples of a random
process f = ( fz) where the random variables f which need not be mutually independent.
The sequence (f;) also is called a stochastic process As an example, we may interpret the
grey values f of an image line as a sample of a stochastical signal; then we can characterize
the complete vector by its joint high-dimensional probability density function py(f). If

It is the reason why in the language C, developed by researchers working in signal theory, indices of
vectors and matrices start with 0, not as in MATLAB, where the the first element in a vector has index 1
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the statistical properties of f are shift invariant, then — as we will see — their covariance
matrix also is shift invariant. Its density may be represented by the mean IE( f) = ny
and the covariance Cov( £ i]) of two values, which only depend on the difference j — i
of the two indices. If only these two moments of the distribution are given, following the
principle of maximum entropy, see Sect. 1.6, p. 16, the most likely distribution of the
signal is a Gaussian. For a detailed discussion of stochastic processes see (Papoulis, 1991),
a short introduction is given in Forstner and Wrobel (2016, Sect. 