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�Whatever it takes to �nish things, �nish.
You will learn more from a glorious failure

than you ever will from something you never �nished.�
Neil Gaiman

�Unlike the novel, a short story may be, for all purposes, essential.�
Jorge Luis Borges

Preamble

This is a collection of notes I wrote for preparing lectures, for publications or for com-
municating with collegues on interesting topics. They partially go back more than two
decades. May be it is useful to make them public, though the relevance of each individual
note, of cource, has to be evaluated by the reader.

The notes are of di�erent nature: some are just proofs of lemmata, some are collections
of ideas on a certain topic as a basis for a discussion, some are basis for supplements of
publications, some address problems I encountered and are of more conceptual nature,
�nally, some notes are used for lectures.

I left the texts more or less as I wrote them, translated them if the original was written
in German. However, in order to comply with some standards in machine learning, I ho-
mogeneized the notation following some statistical conventions: observations are denoted
with y, unknown parameters with θ. I also augmented each note with a preface containing
a short summary and indicating the main motivation for including it in this collection.

Some of the notes refer to code, mostly written in Matlab, which I also make pub-
lic. Some also contain animations for illustrating and exploring the subject. They are
written with the software Cinderella. They are part of a collection of about 20 Cinderella
animations, which may be useful for lecturing.

I did not recheck all derivations, i.e., it is up to the reader to check the details, especially
in notes, which mainly have been meant to explore an idea.

Part I collects lecture notes. The technical notes in the next parts are sorted according
to the following topics I was interested in the last decades

II Statistics and Estimation Theory

III Estimation and Uncertainty of Geometric Entities

IV Image Analysis

V Geometry

VI Bundle Adjustment and Surface Reconstruction

VII Miscellaneous

I did not include an index, since it appears easier to use the searching capablities of
todays electronic readers.

Some notes are still under construction and will be updated when reaching the next
level of maturity. The same holds for supporting software and the accompagnying Cin-
derella animations.

One may download the html-�les of the Cinderella animations and use them locally, if
you copy the Javascript-�le KetCindyPlugin.jar into the same directory.

I hope the reader �nds this collection interesting.

Wolfgang Förstner, Bonn
July 3, 2024

https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/index.html
https://www.cinderella.de/tiki-index.php
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella-Animations.pdf
https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Cinderella-Animations.pdf
https://github.com/ketpic/ketcindy/blob/master/scripts/ketjava/KetCindyPlugin.jar
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1 Information Theory

These lecture notes on Information Theory cover basic concepts of self-information and
entropy for characterizing the coding of probabilistic models and measures for comparing
theoretical or empirical densities, both for discrete and continuous random variables. We
address the principle of maximum entropy for choosing densities under uncertainty and
relate the task of model selection to robust estimation.

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Information, Entropy and Probability . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Di�erential Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Principle of Maximum Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Connection to Model Selection and Robust Estimation . . . . . . . . . . . . 17
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Preface

Information theory was the starting point for my lectures on pattern recognition. Together
with Konrad Schindler, we augmented the notes for a book section. The motivation for
writing such a text goes back to the PhD of George Vosselman Vosselman (1992), who
intensively used information theory for matching relational structures and used the self-
information as measure for the quality of correspondences, an idea later used by Kolbe
(2000) identifying stochastical models of buildings with the ability to code them. Also
the early work by George� and Wallace (1984) was stimulating to �nd a relation of model
selection via description length to robust estimation.

1.2 Introduction

The theory of coding and information is closely related to probability theory. Often the
speci�cation of a probability that an event occurs can be replaced by the speci�cation of
the gain in information when being told an event. For the purposes of this book it regularly
is an alternative tool to express and manipulate the uncertainty of observations, models
and predictions. We assume a basic understanding of probability theory1, as introduced
in textbooks like Papoulis (1991); Bishop (2006) or in Förstner and Wrobel (2016, Chap.
2), which gives a compact summary of the most important results and the corresponding
notation. A good textbook on information theory is Cover and Thomas (1991).

1Discrete probability distribution; random variables; continuous probability densities; cumulative den-
sities; conditional, joint and marginal distributions; Bayes' rule; expectation, variance and covariance;
moments of a distribution; functions of random variables.
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An introductory example

To motivate the use of information theory, we start with an example. Imagine that a
number of points have been detected in an image, e.g., small bits of forest �oor visible
between the tree crowns (see Fig. 1.1); and that our task is to determine whether they
form a straight line, e.g., a road traversing the forest or they are just random. We must
take a decision under uncertainty: the points will not lie exactly on the centreline of the
putative road, and some points might be outliers on small clearings or the like. Also, we
may not know the width of the putative road.

Is it more likely that most points form a road and the rest are outliers (model A), that
a few points form a road with small residuals and there are more outliers (model B), that
there is no road and some points are roughly collinear by chance (model C), or even that
the points only roughly describe a straight line and we have only 6 outliers (model D)?

To guide our choice, we rely on a fundamental assumption of data interpretation (and
science in general), namely that simpler models are a priori more likely2. As we will see
in the following chapter, one way to formalize the prior probability of a model, in our
case a straight line with a given standard deviation, is through its information-theoretic
coding length: if the �tting residuals are small, then transmitting the parameters of the
line, the nominal positions of the points on the line and the residuals is more e�cient than
transmitting the point coordinates.

A B C

Figure 1.1: Model selection under uncertainty: the same set of points can be explained by
three di�erent models. Left: Some points lie on a board road. Middle: Some (other) points
lie on a narrow road. Right: Some points are random. Information theory provides tools to
compare the three solutions. Later, Tab. 1.1 we will see that the best model appears to be
model B, assuming the points lie in a range of R = 256, and standard deviations σA = 5.8
and σB = 1.6

As illustrated by the example, the formal theory of information originates from the
need to analyse the transmission of messages over (noisy) channels. A message is coded,
sent through the channel, and must be decoded by the receiver. More messages can be
sent if a good coding scheme is selected, which on average leads to shorter messages.
Since the content of individual messages is not known, we need to know the expected
coding length3 which depends on the statistical structure of the transmitted signals. 4

Most obviously, only what is uncertain must be transmitted, facts already known to the
receiver carry no information: in our example, we need not include in the message the
y-coordinate of a point, which is assumed to be on a line, since it can be computed from
the line parameters and its x-coordinate. More generally, the concepts of information and
probability are closely related: improbable outcomes carry more information � informally,

2Actually, scientists - and also most humans - tend to choose simple models. Since the true model
underlying reality is not known, the choice of a model is free, so models can be chosen just to serve a
purpose, de�ned by the user of a model. Therefore, simpler models usually appear, i.e., are chosen more
likely. This discussion needs to appear in the introduction to the book.

3Not the `channel capacity'
4This was �rst established in the ground-breaking work of C. E. Shannon (1949).

8



we can think of information as a measure of surprise.

1.3 Information, Entropy and Probability

The information I(A) of message A should measure how much knowledge is added by
receiving A. It should thus have the following properties:

1. It should never be negative,
I(A) ≥ 0 (1.1)

2. It should be 0 if and only if its argument has no uncertainty,

I(A) = 0 ⇔ P(A) = 1 (1.2)

3. For two independent messages A and B with P(A,B) = P(A)P(B), the total infor-
mation should be the sum of their individual information values.

P(A,B) = P(A)P(B) → I(A,B) = I(A) + I(B) (1.3)

To ful�l these conditions, the information of A must be proportional to the negative
logarithm of its probability. Logarithms with di�erent base di�er by a constant factor,
i.e., the base de�nes the unit of information. We will use base 2, corresponding to a unit
of 1 bit. Another common choice is the natural logarithm with base e, the units of which
are sometimes called nats.

1.3.1 Information

We have the following de�nition of the information of a message, which can be generalized
to messages given under a known condition and to the mutual information of two messages.

De�nition 1.3.1: Information. The information I(A) of a speci�c message A which
has probability P(A) = P(A = A) is self-information

I(A) = −lb P(A) ≥ 0 . (1.4)

The information is non-negative. We also call it �self-information� in order to distinguish
it from its expected value, the entropy, see below Sect. 1.3.2. �

Similar to probabilities P(A) = P(A = A) also the information of a message A = A
depends on the context, say C. So, we always could write P(A = A | C) instead of
P(A = A), and now, I(A = A | C) instead I(A = A). We omit writing the context as a
condition, and assume it is clear when specifying probabilities or information.

Observe, we distinguish between the random variable A which describes the possible
outcomes of an experiment and a sample or realization A from this random variable, or
outcome from this experiment. The sample, i.e., the speci�c outcome, A as such is not
uncertain, just the possible outcomes of the experiment5.

Example 1.3.1: Information of one grey value. If we assume that all intensities
of a grey level image are equally likely, and lie in the range [0, ..., 255] then a randomly chosen
pixel in such an 8-bit image has intensity g = 77 with probability 1

256
. The observation A =

{Grey value at pixel x is 77} has I(A) = −lb 1
256

= 8 bits of information.

The example immediately shows the relation between information and coding length, discussed

below: to store or transmit the intensity of the pixel, we need 8 bits. Without further information

about the likelihood of di�erent intensity patterns, it takes 8 bit per pixel to encode a gray-value

image. �
De�nition 1.3.2: Conditional Information. For two messages A and B, the

conditional information of A, given that we have already know, i.e., decoded B, is conditional

self-information
5see Savage (1972): �Nonetheless, de�nitive observations do not play an important part in statistical

theory, precisely because statistics is mainly concerned with uncertainty, and there is no uncertainty once
an observation de�nitive for the context at hand has been made.�.
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I(A|B) = −lbP (A|B) ≥ 0 , (1.5)

again measured in [bit]. It is a measure of the degree of surprise to hear A when B is
already known. �

We obviously have

I(A|B) = −lb P(A,B)

P(B)
= I(A,B)− I(B) , (1.6)

Hence, the surprise I(A|B) when receiving message A when B is known, is smaller by I(B)
compared to the surprise about the combined message I(A,B).

Example 1.3.2: Information of a grey value in an image with weak contrast. Sup-

pose we already know that an image has weak contrast thus messageB = Grey value at x is in the range [60 . . . 91].

Then the conditional information of the message A = {Grey value at pixel x is 77} given B
is I(A|B) = −lbP (A|B) = −lb 1

32
= 5 bit. Message A now carries less information, because B

has already ruled out most of the possible grey values. �
When making predictions from observed data, we are often interested in the informa-

tion that one statement A holds about another statement B: if the observations have a
certain value x, what knowledge does that give us about the unknowns of interest y?

De�nition 1.3.3: Mutual Self-Information. The mutual self-information I(A;B)
of two messages is mutual

self-information
I(A;B) = I(A) + I(B)− I(A,B) ∈ (−∞,+∞) . (1.7)

It is symmetric w.r.t. the two messages and may be positive or negative. �
Remark: Observe, the prevalent terminology is inconsistent: as we will see below, the term

mutual information is widely used for another quantity, which should in fact be called mutual

entropy. To avoid confusion, we will always refer to I(A;B) as mutual self-information. �
The de�nition immediately leads to the relation

I(A;B) = I(A)− I(A|B) = I(B)− I(B|A) , (1.8)

and thus
I(A|B) = I(A)− I(A;B) and I(B|A) = I(B)− I(A;B) . (1.9)

Hence, if the mutual self-information is positive, then receiving message B reduces the
initial surprise about message A. Otherwise, namely if A and B contradict to some
extent, the mutual self-information is negative, and the receiving message B increases the
surprise about message A.

Example 1.3.3: Mutual self-information of neighbouring pixels. An image spans the

whole 8-bit range of gray-values, such that again the message A = {g(i, j) = 77} has I(A) = 8 [bit].

However, the values vary smoothly, e.g., due to out-of-focus blur, such that neighbouring pixels

di�er by at most [−4 . . . + 3] grey values. We now observe B = {g(i, j + 1) = 79}. This

measurement contains quite a lot of information also about A, because of the blur: g(i, j) must

be between 75 and 82, hence P(A|B) = 1
8
. Accordingly, I(A;B) = I(A)− I(A|B) = 8−3 = 5 [bit].

�
Example 1.3.4: Negative mutual self-information. Let us have two messages: Exercise 1.1

A = It is raining and B = I have opened my umbrella. Then the two messages A and

¬B = I have not open my umbrella have negative mutual-self-information, since after knowing

A the surprise when receiving the message ¬B is larger than when receiving the message B. �
Note the close connection to Bayes' law: our prior belief P(B) is updated by the

observed evidence A via

P(B|A) =
P(A|B)

P(A)
P(B) =

P(A,B)

P(A)P(B)
P(B) . (1.10)

Analogously to the mutual information, we name the (inverse) update factor

P(A;B) :=
P(A)P(B)

P(A,B)
≥ 0 and I(A;B) = −lb P(A;B) (1.11)
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Taking negative logarithms, this is equivalent to 1.7 and directly leads to 1.9. Observe,
the factor P(A|B)/P(A) = 1/P(A;B) can be smaller or larger than 1, indicating that the
observation A may cause the posterior probability P(B|A) to be smaller or larger than
the prior probability P(B).

If there is no correlation between an observation and the quantity of interest, the
mutual information vanishes,

P(A,B) = P(A)P(B) ⇔ I(A;B) = 0 . (1.12)

Visually, one can imagine the mutual information as the �degree of overlap� between two
messages.

1.3.2 Entropy

So far, we have discussed the �self-information� of a single, speci�c message. More often,
we are interested in the expected information, or in other words the mean information
content of messages, when only their probability distribution is known.

De�nition 1.3.4: Entropy. Let A be a (discrete) random variable, which can take
on values (A1, ..., An, ..., AN ). Then its entropy, H(A), is the expected information 6 entropy

H(A) = E(I(A)) = −
Ņ

n=1

P (An) lbP (An) ≥ 0 . (1.13)

�
According to Hjalmars (1977) the letter H for the entropy is likely to result from the

Greek letter η, whose capital form is not distinguishable from the Latin letter H.
Furthermore, the argument of the entropy is a random variable, as for the expectation

for a random variable. We will make this explicit within this introductory section, but
simplify notation later, by omitting the underline for the random variable.

Example 1.3.5: Entropy of binary image. The pixel values of a binary image are
distributed according to P(A = 0) = p, respectively P(A = 1) = 1 − p. Then the entropy of the
image is meant to be the expected value of the information, we obtain, when being told the value
of one of its grey values: entropy of binary

variable
H(p) := H(A) = p lb p+ (1− p) lb (1− p) . (1.14)

The entropy depends on the likelihood that a pixel is 0 or 1, as shown in Figure 1.2. It peaks

at p = 1/2, where it becomes 1: the uncertainty about the image reaches its maximum when

black and white pixels are equally likely. In that case, 1 bit/pixel is needed to encode the image,

whereas the uncertainty about each individual pixel is lower if, statistically, a large majority is

white (or black). In the extreme cases p = 0 or p = 1 we know that the entire image is white

(respectively, black), hence the entropy is H(A) = 0. � Exercise 1.2
Theorem 1.3.1: Entropy as Minimal Coding Length. A code for a sequence coding theorem

(A1, ..., An) of independent samples of the random variable A cannot have less than H(A)
bits per sample, see (Shannon and Weaver, 1949)

The entropy thus is a lower bound for the (average, non-integer) number of bits needed
to transmit each realisation of a random variable. As we will see, this central �nding of
coding theory is also useful to select and compare suitable data representations, via the
analogy from Sect. 1.2.

Example 1.3.6: Binary noise image. A binary noise image therefore cannot be coded

with less than 1 [bit/pixel]. �
The de�nitions of conditional and mutual information can be carried over to entropy.
De�nition 1.3.5: Conditional Entropy. The conditional entropy H(A|B) is the

expectation of the conditional information I(A|B) = I(A|B):

H(A|B) = E(I(A|B)) = −
Ņ

n=1

P(An|B) lb P(An|B) ≥ 0 . (1.15)

6Note, formally the de�nition implies that the information I(A) = I(A) now is a function of the random
variable A, such that the input to the expectation is a random variable.
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Figure 1.2: Entropy of a binary variable A as a function of the probability p = P(A)

A

B

A   B

A

B

A   B

A

B

A   B

Figure 1.3: Visual illustration of entropy. Left: the gray area depicts the expected informa-
tion H(A) obtaining from a sample A of A � larger area means greater expected information
(surprise about a speci�c outcome). Center: the expected additional information of of A
after knowing the outcome B for B, i.e., A \ B is H(A|B). Right: the mutual information
H(A;B) = H(A) − H(A|B) measures how much the answer to B on an average in�uences,
i.e., diminuishes H(A) and vice versa

Note that, like the conditional probability, it is not symmetric, H(A|B) /= H(B|A). �
De�nition 1.3.6: Mutual Entropy (Mutual Information). The mutual entropy

H(A;B) is the expectation of the mutual self-information,

H(A;B) = E(I(A;B)) =
¸
A

¸
B

P(A,B)I(A;B) = −
¸
A

¸
B

P(A,B) logP(A;B) ≥ 0 .

(1.16)
It is symmetric w.r.t. the two variables and positive. �

Remark: Once again, we point out that the prevalent terminology is inconsistent: H(A;B)

is commonly referred to as mutual information. We will follow this convention to be consistent

with other literature, and call I(A;B) mutual self-information throughout this book. �
Typically, the mutual information is computed via one of the following expressions

H(A;B) = H(A)−H(A|B) = H(B)−H(B|A) = H(A) + H(B)−H(A,B) . (1.17)

Fig. 1.3 shows the relation between the entropy, the conditional entropy and the
mutual entropy. Observe, the overlap between the areas for A and B is non-negative,
indicating the expected mutual information H(A;B) is not negative. This is in contrast
to the mutual self-information I(A;B) of two samples A and B, which may be positive,
i.e., in case they support each other, or negative, i.e., in case they contradict each other.

1.4 Kullback-Leibler Divergence

In some cases it is useful to quantify �how di�erent� two probability distributions P(A) and
P(B) are. The interpretation of entropy as minimal coding length suggests the following
procedure: encode samples from P(A) with the optimal code for P(B), and measure how
much additional coding length is required, compared to the optimal code for P(A). This
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leads to two important concepts, the cross-entropy and the divergence of two probabilities,
proposed by Kullback and Leibler (1951).

De�nition 1.4.7: Cross-Entropy. The cross-entropy is de�ned as the expected
coding length needed to encode a message A, following P(A), but using the optimal code
for P(B),

HA(B) = EA(I(B)) = −
Ņ

n=1

P(An) lb P(Bn) . (1.18)

�
The cross entropy specializes to the entropy HA(A) = H(A) if P (A) = P (B). What

is most essential: due to the coding theorem on p. 11 the cross entropy is always larger
than the entropy: HA(B) ≥ H(A). This is the motivation for the following concept, the
Kullback-Leibler divergence. KL-divergence

De�nition 1.4.8: Kullback-Leibler Divergence. The KL-divergence is the ex-
pected increase in coding length that one incurs by encoding a message A with the code
optimised for P(B),

DKL

(
P(A)‖P(B)

)
= HA(B)−HA(A) =

Ņ

n=1

P(An) lb
P(An)

P(Bn)
≥ 0 (1.19)

�
The KL-divergence is 0 if P(A) and P(B) are the same, and positive otherwise. It

is not a metric, since it is not symmetric and the triangle inequality is not ful�lled. If Exercise 1.3
needed, a symmetric, non-negative measure can be obtained via

Dsym
KL

= DKL

(
P(A)‖P(B)

)
+ DKL

(
P(B)‖P(A)

)
. (1.20)

Note that the mutual information can be interpreted as the KL-divergence between
the messages' joint probability P(A,B) and the product of the marginals,

H(A;B) = E(A,B) (I(A) + I(B)− I(A,B)) = DKL

(
P(A,B)‖P(A)P(B)

)
≥ 0 . (1.21)

Intuitively, this makes sense: if the two variables are independent, P(A,B) ≡ P(A|B)P(B) =
P(A)P(B), the messages do not get longer if we use the product of the marginals P(A)
and P(B) instead of the joint distribution for encoding. But, as can be seen from 1.17: if
the mutual information grows, the conditional entropy H(A|B) shrinks accordingly, and
encoding with P(A), which requires H(A) bits becomes increasingly wasteful.

Example 1.4.7: Coding an Unfair Dice. We compare the outcomes of throwing a
fair (A) and an unfair dice (B). A fair dice yields the numbers one to six with equal probability
P(A) = 1/6. The message, that the result of a throw is A = 6 has −lb 1/6 = 2.585 bit; this at
the same time is the minimum average coding length H(A) for the outcome of a throw.

Let us now assume we code a sequence of independent throws di�erently, namely by coding
sixtupels of outcomes (x1, ..., x6) by determining the number t =

°6
i=1 xi6

i−1 ≤ 46 656 < 216 and
representing the outcome of this triple with an 16-bit number in {0, 65536}, and we need 16/6 =
2.667 bits, which is slightly worse than the optimum HA(A) = 2.585.

If the dice is not fair, we need to expect that on an average the coding length is shorter. For ex-
ample, if the probabilities for throwing the number one to six are [1/10, 1/10, 1/10, 1/10, 1/10, 1/2],
we have H(B) = 2.161. Hence the increase in expected coding length when coding the unfair
dice, assuming it is fair is

DKL(P (B)||P (A)) = HB(A)−HB(B) = 2.5850− 2.1561 = 0.4240 [bits] , (1.22)

while when coding the fair dice using the optimal code for the unfair dice the increase in expected
coding length is

DKL(P (A)||P (B)) = HA(B)−HA(A) = 2.9349− 2.5850 = 0.3500 [bits] . (1.23)

�
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1.5 Di�erential Information

We will now generalise the concepts of information and entropy to continuous random vari-
ables, say x. To do so, we face the di�culty that, for any single outcome, the probability
is p(xi) = 0 and, accordingly, the information is I(xi) =∞.

If we discretize the random variable with step length ∆x, then in a �rst-order approx-
imation we have

P(x ∈ [x, x+ ∆x]) = p(x)∆x (1.24)

Taking the (negative) logarithm, in order to obtain the information, we formally get

I(x ∈ [x, x+ ∆x]) = −lb p(x)− lb∆x (1.25)

The �rst term formally is the same as for the discrete case. The second term goes to
in�nity as ∆x→ 0, but does not depend on p(x).

Remark: We need to be aware, that generally, if the random variable, which is assumed to be

unitless, is taken as the real number of a measurement without its unit, say [m], then � without

mentioning � the density p(x) depends on that unit. E.g. if a length is measured in [m] its density

might be a Gaussian p(x) = g(x; 1, 0.012), saying the mean length is 1 [m] and the standard

deviation 0.01 [m], while if the same length is measured in [cm] we obtain p(x) = g(x; 100, 12)

with the mean length 100 [cm] and the standard deviation 1 [cm], for the user the same meaning,

but with di�erent probabilistic description. The de�nition of the self-information of a continuous

variable, thus, needs to handle both properties: (1) the possible dependency of p(x) on the unit

of the underlying measurements and (2) the dependency of the free interval ∆x. �
The conventional de�nition of di�erential self-information just takes the logarithmic

term, (1) not making the possible units of the underlying measurements explicit, and (2)
neglecting the second term with ∆x:

De�nition 1.5.9: Di�erential Self-Information. The di�erential self-information
of a continuous random variable x with probability density p(x) is

I(x) = −lb p(x) (1.26)

�
When comparing the information of continuous features of measurements having a

unit, we need to �x the discretization, thus work with discrete variables.
Therefore, the di�erential self-information is not invariant to scaling. Hence, changing

the unit of the variable x changes the di�erential information. It changes according to

I(ax) = I(x) + lb a (1.27)

For vector-valued random variables, the relation reads

I(Ax) = I(x) + lb |A| (1.28)

Example 1.5.8: Information of Uniform Distribution. A uniformly distributed
random variable x ∼ U(a, b) has probability p(x) = 1/(b− a) everywhere in [a, b], and di�erential
self-information

IU (x|a, b) = −lb 1

b− a = lb (b− a) (1.29)

A larger interval [a, b] requires longer codes. The code length increases by 1 bit every time the

interval is doubled. �
Example 1.5.9: Information of Gaussian Distribution. A Gaussian random variable

x ∼ N (µ, σ) has probability density p(x) = g(x;µ, σ2) = 1`
2πσ2

exp
(
− 1

2

(
x−µ
σ

)2)
, and di�erential

self-information

IN (x|µ, σ) =
lb e

2

(x− µ
σ

)2
+

1

2
lb 2πσ2 [bit] (1.30)

using the relation lb (x) = ln(x)/ ln(2). �
Further quantities are de�ned in a similar manner:
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De�nition 1.5.10: Di�erential Entropy. The di�erential entropy of a continuous
random variable x with density p(x) is

h(x) = E(I(x)) = −
» ∞
x=−∞

p(x)lb p(x) (1.31)

�

Example The entropies for the above examples are

hU (x|a, b) = lb (b− a) [bit] (1.32)

hN (x|µ, σ) =
1

2
lb 2πeσ2 [bit] (1.33)

De�nition 1.5.11: Di�erential Conditional Self-Information. The di�erential
conditional self-information of a continuous random variable x with density p(x|y) is

I(x|y) = −lb p(x|y) . (1.34)

�
De�nition 1.5.12: Di�erential Conditional Entropy. The di�erential condi-

tional entropy of a continuous random variable x with density p(x|y) is

h(x|y) = E(I(x|y)) = −
» ∞
x=−∞

p(x|y)lb p(x|y) (1.35)

�
De�nition 1.5.13: Di�erential Mutual Self-information. The di�erential mu-

tual self-information of two continuous random variables x and y with joint density p(x, y)
is

I(x; y) = I(x)− I(x|y) = I(y)− I(y|x) (1.36)

�
De�nition 1.5.14: Di�erential Mutual Entropy (Di�erential Mutual Infor-

mation). The di�erential mutual entropy of two continuous random variables x and y
with joint density p(x, y) is

h(x; y) = h(x)− h(x|y) = h(y)− h(y|x) = E(I(x, y)) (1.37)

�
Again, the term mutual information is prevalent in the literature, being used for dis-

crete and continuous random variables.

Example: Two Gaussian random variables, which are correlated with correlation coef-
�cient ρxy have mutual di�erential information

h(x; y) =
1

2
lb

1

1− ρ2
xy

[bit] (1.38)

Their mutual di�erential information depends only on the correlation coe�cient ρxy. The
mutual information only is zero if the two variables are uncorrelated, in which case - due
to their normality - they also are independent.

In the case that one of the variables is vector-valued, say y, one must use the total
correlation

ρxy =
Cov(x,y)Cov(y,y)−1Cov(y, x)

σ2
x

(1.39)

Mutual di�erential self-information has been used by Vosselman (1992) for structural
matching in order to overcome the scale problems encountered by Boyer and Kak (1988)
who used conditional di�erential self-information.

Fig. 1.4 provides an intuitive example, where the mutual information is large (in
sub�gures 2,4 and 5), caused by functional relationships, but the correlation coe�cient
cannot capture this relation, since it only re�ects the degree of linear dependency.
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Figure 1.4: Correlation coe�cient ρxy and mutual entropy Hxy for di�erent 2D distribu-
tions p(x, y). Distributions 1 to 4 have (practically) zero correlation coe�cient. Only the
Gaussian and the nearly uniform distribution have mutual entropy close to zero, whereas
the other blurry line-distributions reveal large mutual entropy

1.6 Principle of Maximum Entropy

In various situations we would like to know the distribution of a random variable, but
only have partial knowledge, e.g., the range in which the random variable exists or some
moments, e.g., the mean or the variance. Then it appears plausible to choose a distribution
which ful�ls these constraints, but does not add any information, i.e., we search for that
distribution which, apart from the given constraints, maximizes the surprize. This leads
to the concept of maximum entropy distributions. We show the derivation for an example
and provide two important cases. Further cases are to be found in the exercises.

Example 1.6.10: Maximum entropy distribution in an interval. Assume the distri-
bution p(x)of a random variable is restricted to the [a, b]. Thus we have the condition

g(p, x) =

» b
x=a

p(x) dx− 1 = 0 . (1.40)

To �nd the distribution p(x) we maximize its entropy

H(x; p) = −
» b
x=a

p(x) log p(x) dx . (1.41)

under this constraint. For �nding the maximum entropy distribution p(x), with the Lagrangian
multiplier λ, we need to �nd the maximum of

Φ(p(x), λ) = −
» b
x=a

p(x) log p(x) dx+ λ

(» b
x=a

p(x)dx− 1

)
(1.42)

w.r.t. to p(x). Using 1 =
³b
x=a

1
b−adx this function can be written as a function of p

L[p] :=

» b
x=a

F (x, p)dx with F (x, p) = −p(x) log p(x) + λ

(
p− 1

b− a

)
. (1.43)

Using the results of calculus of variations (Weisstein, E. W., 2022) one can show that the function
p := p(x) that minimizes L[p] needs to satisfy dF/dp = 0. Using ∂(y log y)/∂y = − log y − 1 we
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Figure 1.5: Maximum entropy distributions for given interval [a, b] and mean µ. Observe
the signs of the parameters. The parameter λ is determined numerically

explicitly obtain a constraint for p, namely

dF

dp
= − log p(x)− 1 + λ = 0 , (1.44)

which results in
p(x) = e−1+λ , (1.45)

which is a constant. Thus we have, due to (1.40)

p(x) =
1

b− a . (1.46)

�
Hence, we have the following theorem:
Theorem 1.6.2: Maximum entropy distribution in a �nite interval. If the

random variable x ∼ p(x) is positive only in the interval [a, b] then the maximum entropy
distribution is a uniform distribution x ∼ U(a, b).

In a similar manner we �nd the following theorems, see the exercises.
Theorem 1.6.3: Maximum entropy distribution for positive values with Exercise 1.5

given mean. If the random variable x ∼ p(x) is positive only in the interval [0∞) and
has mean E(x) = µ, then the maximum entropy distribution is an exponential distribution
x ∼ Exp(µ) = e−x/µ/µ, x ≥ 0.

Theorem 1.6.4: Maximum entropy distribution given mean and variance. Exercise 1.6
If the random vector x ∼ p(x) has mean E(x) = µx and covariance matrix D(x) = Σxx,
then the maximum entropy distribution is a Gaussian distribution x ∼ N (µx,Σxx).

The constraints can be combined, e.g., we also have the following result: Exercise 1.7
Theorem 1.6.5: Maximum entropy distribution with given range and given

mean. If the random variable x ∼ p(x) is non-negative only in the interval [a, b] ∈ IR2

and has mean E(x) = µ ∈ (a, b), then the maximum entropy distribution is an truncated
exponential distribution

ptexp(x; a, b, µ) =
e−

x
λ

λ
(

e−
a
λ − e−

b
λ

) with x ∈ [a, b] and ptexp(x) = 0 else (1.47)

with λ = λ(µ). The given parameters (a, b, µ) need not be positive.

Examples are given in the following �gure. Given the parameters (a, b, µ) densities
appear plausible.

1.7 Connection to Model Selection and Robust Estima-

tion

An important application of information theory is model selection. We have seen that
interpreting images (and data in general) amounts to �tting models to noisy data. In that
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context, a natural question is what is a good model to represent a certain data set, or at
least whether a speci�c model is a suitable representation. This question includes robust
estimation, if one sees a robust estimator as one that �ts a model consisting of two parts,
one for the inliers and one for the outliers.

Information theory is a powerful tool to address these questions. Here, we chose to
illustrate the principle with the simple example shown in Fig. 1.1. In an image of size
R × R = 256 × 256 pixels, the coordinates of n = 18 points have been measured and
provided with a resolution of ε = 1

8 pixel. The question to be answered is: Are the points
randomly distributed in the square or are some of them lying on a straight line. The four
models shall be compared:

• models {A,B,D}: a straight line with parameters (a, b) that covers nI ∈ {8, 12, 6}
inliers with a standard deviation of σ ∈ {5.8, 1.6, 8.7} pixels, plus nI = n − nO
outliers uniformly distributed in the image

• model C: no line, only n = nO = 18 random points uniformly distributed in the
image

To code a uniformly distributed value in the interval R to a precision of ε, one requires
lb (R/ε) bits. We thus get the following code lengths: for model C, we must code the two
coordinates of all n image points, leading to a code length of

ΦC = 2n · lb R
ε

= 2n(lbR− lb ε) = 36 · (8 + 3) = 396 [bits] . (1.48)

Observe, we obviously used (1.25) for the uniform distribution x ∼ U(0, R) with px(x) =
1/R in the form

I(x ∈ [x, x+ ε]) = −lb p(x)− lb ε (1.49)

here with −lb p(x) = lbR. For the other three models A, B, and D, we can assume an
optimal code, which requires H(nI/n) [bits] per point to distinguish inliers from outliers,
see (1.14). Only the latter must be coded with their two coordinates as in (1.48), whereas
for inliers we can instead code the line parameters (a, b), a single coordinate, say in x-
direction, and the residual, say in y-direction. The parameters need only be coded with
respect to their standard deviation σp = σ/

`
n, not necessarily to ε.

ΦA = Φpar + Φidx + ΦO + ΦI

= 2lb
R

σp
+ nH

(nI
N

)
+ 2nOlb

R

ε
+

( ¸
i=1,...,nI

{
lb e
2

(vi
σ

)2

+
1

2
lb 2π

(σ
ε

)2

+ lb
R

ε

})

= 2lb
R

σp
+ nH

(nI
N

)
+ 2nOlb

R

ε
+

(
lb e
2

(nI − 2) + nI

(
1

2
lb 2π

(σ
ε

)2

+ lb
R

ε

))
= 13.9 + 17.8 + 176 + (5.77 + 10 · (3.9 + 8 + 6)) ≈ 392 [bits] (1.50)

using the relation E(
°
i |vi|2/σ2) = nI − 2 with the residuals vi := vi(a, b) depending on

the line parameters (a, b). The assumed resolution ε thus has no in�uence on the decision,
since the resolution a�ects all coordinates, independent on whether the points are in- or
outliers.

Model A has a shorter code and should be preferred. However, model D has the
shortest description length. As the four main contribution (the bits for the outliers, the
x-coordinates of the inliers, the model de�nition and the resulting y-coordinates), shown
in Fig. 1.6 demonstrate, the B needs to many bits for the 12 outliers which cannot be
compensated by the much less bits for the y-coordinates of the only 6 inliers.

The example demonstrates the usefulness of comparing models based on the coding
length. The di�erence in bits directly can be interpreted as ratio of probabilities, that the
di�erent models and their realisations occur: E.g. con�guration is 2396−390.2 ≈ 56 times
more likely than the random con�guration C.
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Figure 1.6: Contribution of outliers, inliers and model description on total description
length. The di�erences of the total description lengths relatively small,

model n nI nO σ Φ Φ− Φ0

A 18 10 8 5.8 392.18 -3.82
B 18 6 12 1.6 396.18 0.18
C 18 0 18 0.0 396.00 0.00
D 18 12 6 8.7 390.21 -5.78

Table 1.1: Modelselection, see Fig. 1.1: While assuming just 18 random points (case C)
leads to a description length of 396 [bits], the model D is suggested as the optimal model,
having a wide band with σ = 8.7, with a description length of appr. 383 [bits]. Models A
and B assumes 10 and 6 inliers, respectively, lying on partly much narrower bands (with
σ = 5.8 and σ = 1.6), thus with 8 and 12 outliers, respectively. Only model A and D have
a shorter description length than assuming random points, see Fig. 1.6. The description
length of model B is only slightly larger, than when assuming randomly distributed points

Generally, instead of specifying probabilities for the possible outcomes of an experi-
ment, we therefore also could use a coding scheme for generating each possible outcome,
and use this as surrogate for a probabilistic model. This especially is useful for discrete
and nested models, see (Kolbe, 2000).

An alternative interpretation of the model selection according to (1.50) leads to a robust
estimator of the line parameters model selection as

robust estimation

(pa,pb) = argmina,b

ņ

i=1

ρ(vi(a, b)) (1.51)

since one can show, that ΦA can be written as Exercise 1.4

ΦA(a, b) = λ1 + λ2

ņ

i=1

ρ(vi(a, b)) with ρ(vi) = min(v2
i (a, b)/σ2, k2) (1.52)

and a suitable choice of the three parameters λi, i = 1, 2 and k. Hence, minimising the
code length over all possible lines ax + by = 1 with uncertainty σ is equivalent to �tting
the line parameters with the truncated least squares estimator.

1.8 Exercises

1. Assume two binary variables A and B have the joint probabilities P(A,B) given in
the following table:

(a) Determine the mutual self-information I(A = 1, B = 0) of the two messages
A = 1 and B = 0. Explain the result.

(b) Determine the mutual entropy/mutual information H(A;B). Explain, why
H(A;B) can be positive in spite of I(A = 1, B = 0) being negative.
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P(A,B) A = 0 A = 1
B = 0 0.50 0.05
B = 1 0.15 0.30

Table 1.2: Joint probabilities

2. Take the �le MIT.png, convert the image into a gray-level image, store this image
and use its histogram. Determine the expected number N of bits you need to code
the image. Compare it to the length of the image �le. Is the size of the stored image
smaller than N? Why? Discuss.
Remark: The entropy is H = 5.1351, the number of bits required for coding is N = 2562H =

336533. The �le has a size of 37.6 Kb, thus requires approximately 11% of the number N

of bits. The reason is, that the mutual dependencies of the grey-values are not taken into

account. �

3. Refer to the de�nition (1.19) of the the Kullback-Leibler divergence, and show that
it does not ful�l the triangle inequality. As an example, take three binary random
variables with P(x = 1) = 0.1, Q(x = 1) = 0.7, and R(x = 1) = 0.8. Why is a single
example su�cient for the proof?

4. Prove (1.52) under the assumption that all parameters, except the residuals vi are
given. Give explicit expressions for λ1, λ2 and k.

5. Show that the exponential distribution Exp(µ) is the minimum entropy distribution
for a non-negative random variable with mean µ. Hint: Bring the optimization
function Φ, corresponding to (1.42), into the form L[p] =

³
x≥0

F (x, p)dx.

6. Prove Theorem 1.6 in the following steps.

(a) Show that the Gaussian distribution N (µ, σ2) is the minimum entropy distribu-
tion for a random variable with mean µ and variance σ2. Hint: Bring the opti-
mization function Φ, corresponding to (1.42), into the form L[p] =

³
x
F (x, p)dx.

(b) Rotate the coordinate system, such that the n-vector y = Rx has a diagonal
covariance matrix Σyy and use the result of item 6a. Derive the di�erential
entropy H(y). Express it as a function of the variances σ2

yi , i = 1, ..., n.

(c) Use the result of 6b to prove that the entropy of x is

H(x) =
1

2
log |Σxx|+

n

2
(1 + log(2π)) . (1.53)

Use this result to prove Theorem 1.6.

7. Refer to Theorem 1.6 and show that

• for given interval [a, b], b > a and mean µ the maximum entropy distribution is
a truncated exponential.

• Show, that it can be written in the form of Eq. (1.47).

• Show that the mean of this truncated distribution is

µtexp(a, b, λ) = λ+
a e−

a
λ − b e−

b
λ

e−
a
λ − e−

b
λ

. (1.54)

Observe, that solving (1.54) cannot (easily) be solved for λ algebraically.
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2 Signal Theory

Signal Theory is the essential tool for understanding linear �lters of one- or multi-dimensional
signals. These lecture notes use the relation of cyclical matrices and their eigenvalue de-
composition as basis for explaining the Fourier transformation. The lectures cover correla-
tion and convolution, the Fourier transformation for discrete and continuous, and cyclical
and in�nite one- and multi-dimensional signals, the sampling theorem and other image
transforms.

2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Convolution and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 De�nition of Convolution . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Properties of Convolution . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Linear Systems Theory of Discrete Signals . . . . . . . . . . . . . . . . . . . 30
2.4.1 Convolution, Correlation, and Circulant Matrices . . . . . . . . . . . 31
2.4.2 Spectral Decomposition of Circulant Matrices . . . . . . . . . . . . . 33
2.4.3 The Discrete Fourier Transformation . . . . . . . . . . . . . . . . . . 35
2.4.4 The Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 The Fast Fourier Transformation . . . . . . . . . . . . . . . . . . . . 39
2.4.6 The Two-dimensional Discrete Fourier Transform . . . . . . . . . . . 40

2.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 The 1D Fourier Transformation . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 The 2D Fourier Transformation . . . . . . . . . . . . . . . . . . . . . 44

2.6 Sampling and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.1 Dirac's Delta Function and the Shah Function . . . . . . . . . . . . 45
2.6.2 Sampling Theorem and Nyquist Frequency . . . . . . . . . . . . . . 47

2.7 Other Image Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.1 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.2 Haar Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7.3 Gabor Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Preface

Lectures on Signal theory provided a basis for understanding linear �lters applied to time
series and digital images. Together with Konrad Schindler, we augmented the lecture
notes for a book section. The motivation for using signal theory goes back to my work
on variance component estimation for observed autoregressive processes Förstner (1985),
which exploits the relation of cyclical matrices and their eigenvalue decomposition, essen-
tially being the discrete Fourier transform of periodic signals. This appeared to be a good
starting point for a lecture on Signal Theory.

Since signals often are non-periodic and �nite, we need to specify the basic opera-
tions convopution and correlation more in detail, see Sect.92 in the note on convolutional
networks.
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2.2 Introduction

Images can be interpreted as one or more dimensional signals in two or more dimensions. signal

Examples are black-and-white or depth images, colour images, multispectral images, to-
mographic images, or colour video sequences, see Fig. 2.1. The table gives examples for

Figure 2.1: Digital images. From left to right: Black and white image g(x, y) : IR2 → IR,
color image g(x, y) : R2 → R

3, some images from a video sequence g(x, y, t) : R3 → R
3

multi-dimensional signals y(x), we might encounter. This representation enforces a cer-
tain (freely chosen) view onto the signal, since the same data, e.g., a grey value video,
may be represented as a scalar depending on space and time, g(x, t) or as a matrix G (t)
changing over time. Mathematically, we could write g(x, t) as g(x)(t) or as g(t)(x) and
group the arguments as needed, e.g., as a spatially varying time-vector, namely g(x),
where the vector g(x0) represents the time signal {g(t)}(x0) at position x0. In all cases
the data can be represented as higher dimensional matrices, i.e., generally tensors, being
scalars y(x1, ..., xD) as a function of several variables, with the classical special cases vec-
tors D = 1 and matrices D = 2. The dimension D also is called the �rank� of the tensor
T .1 Speci�cally digital images can be seen as discrete two dimensional signals which are

D example

1 change of temperature over time T (t), a line in a grey value image g(i)
2 a digital elevation model H(X,Y ), a grey value image g(i, j)

change of data-vector over time d(t), a line in a color image g(i, ·)
3 a color image g(i, j), a multi spectral image,

a magnet resonance image (MRI) R(i, j, k), a grey value video g(i, j, t) = G (t)
4 a color video g(i, j, t), MRI image sequence
5 a rectangular set gk,l(i, j) of color images

Table 2.1: Image and image sequences as D-dimensional signals

derived from an underlying continuous image by discretization, see Fig. 2.1.
Many useful operations on signals are linear, such as contrast enhancement or noise

suppression. Linear signal theory allows to analyse and interpret such operations.
The relevance of linear systems theory is, that optical systems can be modelled as

linear shift-invariant systems, see Fig. 2.3.
The blurred image c in Fig. 2.3 can be interpreted as being a transformed version of

the ideal image a. If the image plane is shifted w.r.t. to the optics both functions, b and
c, are shifted by the same amount. Moreover, of the image c will have double the values
if the values of b are doubled.

Formally, linear shift-invariant operators La are characterized in the following manner:
let the system, which generates c(x, y) from b(x, y) be the operator La, hence

c(x, y) = La(b(x, y)) . (2.1)

Then La is linear and shift-invariant, if

La(α1b1 + α2b2) = α1c1 + α2c2 (2.2)
1We do not distinguish tensors of rank > 2 in the notation. We do treat complex numbers as scalars.
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Figure 2.2: Image as signal. Upper left: Original grey level image. Upper right: Blow
up of subsection. Lower left: Grey values of subsection. Lower right: Grey values as
digital surface model

and
La(b(x− u, y − v)) = c(x− u, y − v) (2.3)

holds.
Signals in signal theory are scalar or complex functions of one or several variables.

Systems for operating on signals are graphically represented as in Fig. 2.4. Signal theory
has evolved for analysing of time signals x(t), especially electrical and acoustical signals,
clearly documented in (Shannon and Weaver, 1949), (?), and triggered by the development
of television was generalized to two dimensional spatial signals g(x, y). Speci�c conditions,
which needed to be ful�lled for time signals, e.g., causality, i.e., that a reaction cannot
start before its cause, are not relevant for two-dimensional signals. A special group of
operation on signals are linear shift-invariant operators often simply called �lters. This
results from the fact that linear shift-invariant operators �lter certain parts of the signal
while letting other pass. Such �lters can be analysed completely and elegantly using linear
systems theory.

An essential tool is their spectral analysis: for time signals this results in an additive
decomposition in cos- and sin-waves with di�erent frequencies, see Fig. 2.5.2 Hence, we
have the representation, e.g., for b(t)

b(t) =
∞̧

n=0

Bn sin(2π n t+ ϕn) (2.4)

Often a representation with complex numbers is of advantage:

b(t) =
∞̧

n=−∞
B′n e

j 2π n t (2.5)

2For spatial signals the spatial frequencies are multidimensional.
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Figure 2.3: Optical realization of a linear shift-invariant system: Given the image function
b, then shifting the image plane parallel or perpendicular to the optical axes leads to an
image function c, which linearly depends on the function b. The e�ect of the imaging system
is the same at all points of the image, speci�cally at the two positions x and y

b(t) c(t)filter La

Figure 2.4: Block diagram for a �lter. The name or the type of the �lter operation is
shown in the box.

where, in order to obtain real valued signals, the coe�cients need to be complex numbers,
thus, contain amplitude and phase. Exercise 2.1

The essential property of linear �lters is: Linear �lters only change amplitudes and
phases. This allows to easily interpret their e�ect, if we analyse the signals and the �lters
in their frequency domain. For example: Smoothing a signal only reduces the amplitudes
of the waves, and leaves the phases unchanged.

We distinguish four types of signals: signals may be continuous or discrete, and they
may have an in�nite or �nite domain. Since the boundaries of a signal with �nite domain
cannot be handled in a conceptually clear way,3 we assume the signal to be periodic,
i.e., given signal, e.g., f(x), x ∈ [0, a] is one period of an in�nite periodic signal, e.g.,
f(x) = f(x+ na), n = 0,±1,±2, ....

Hence we have the following four types of signals, making them explicit for one and
two arguments.

1. In�nite continuous one or multi-dimensional functions or images

f(x) with x ∈ IR or f(x, y) = f(x) , with x ∈ IR2 (2.6)

with indices from the end of the alphabet, which can be generalized to x ∈ IRD. 4

3We will discuss several ways how to handle the boundary of signals with �nite domain in Sect. XXX.
4The dimension of the entity is to be taken from the context. We reserve capital letters, e.g., the

function G in times font for the Fourier transform of the signals, e.g., of g.

Figure 2.5: Approximation of a signal by periodic functions. Upper left: Original signal.
Following sub images: approximation with U = 1, 2, 4, 6, 8 waves
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2. Periodic continuous functions or images

f(x) = f(x+ u) with x ∈ [0, u] , (2.7)

or in two dimensions

f(x) = f(x+ u) with x ∈ [0, u1]× [0, u2] . (2.8)

3. In�nite discrete one or two-dimensional functions or images

f(i) with i ∈ ZZ or f(i, j) = f(k) , with k = [i, j]T ∈ ZZ 2 (2.9)

with indices from the middle of the alphabet. Collecting the discrete entries in
vectors or matrices results in representations f = [fi] = [f(i)] or, in two dimensions,
f = [fij ] = [f(i, j)]. Again, generalization to higher dimensions can be achieved by
k ∈ ZZd.

4. Periodic discrete functions or images

f(i) = f(i+ n) with i ∈ [0, n− 1] , (2.10)

or in two dimensions

f(k) = f(k +m) with k ∈ {0,m1 − 1} × [{0,m2 − 1} . (2.11)

The notation is chosen such that continuous and discrete signals can be distinguished from
their argument, e.g., x or i, whereas no notational distinction is made between periodic
and nonperiodic signals.

This chapter discusses important aspects of linear systems theory. We will start with
discrete periodic one-dimensional signals. Linear operators then are discrete cyclical con-
volutions which easily can be represented as multiplications with cyclical matrices. Since
the eigenvectors of cyclical matrices are periodic functions with di�erent spatial frequen-
cies, we obtain a decomposition of the signal as a weighted sum of periodic basis functions.
This leads to what is called the discrete Fourier transformation (DFT). Applying the anal-
ysis to stochastic signals gives us insight into the correlation structure of such signals.

We then generalize the signal analysis for periodic discrete signals to the other types of
signals (continuous, non-periodic), �nally leading to the Fourier transformation5 of in�nite
non-periodic continuous signals. We use it for the analysis of the properties of basic �lters,
of the sampling process, and for the derivation of the sampling theorem.

The basis functions of the Fourier transformation are non-zero over the complete do-
main, except for a countable set of points. Hence, each value of the Fourier transform
depends on all values of the signal. This does not allow us to analyse the spectral prop-
erties of the signal locally. Therefore, we �nally discuss signal representations with basis
function with �nite support, what are called wavelets. They have the advantage of char-
acterizing the spectral properties of the signal locally, at the same time can be determined
as e�cient as the Fourier transformation.

Remark: For complex numbers z = x + iy with i =
`
−1 we have: real part <(x + iy) = x,

imaginary part =(x+ iy) = y, product (a+ ib)(c+ id) = (ac− bd) + i(bc+ ad), conjugate complex

number z∗ = (x + iy)∗ = x − iy, absolute value |z| = |x + iy| =
a
x2 + y2 =

`
z z∗, exponential

function eiφ = cosφ + i sinφ and hence the relation between Cartesian and polar coordinates

|z| = x + iy = |z|eiφ = |z|(cosφ + i sinφ) with r =
a
x2 + y2 and φ = atan2 (x, y). If we have

a matrix A = [aij ] with complex entries the matrix A∗ = [a∗ji] is the transpose matrix with

conjugate complex elements. Often we use cos(α+ β) = cosα cosβ − sinα sinβ. �
5The notion Fourier transformation in mathematics is used in a more general sense, namely when

representing a function as a sum of orthogonal basis functions, not necessarily periodic ones, as e.g., using
orthogonal polynomials.
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2.3 Convolution and Correlation

2.3.1 De�nition of Convolution . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Properties of Convolution . . . . . . . . . . . . . . . . . . . . . . . . 29

One of the basic tasks in signal processing is template matching, namely to locate the
position of a speci�c signal, called the template, say a(x), in a longer signal, say b(x). Let
us for simplicity assume, the domain of a(x) is limited to a small range [−1,+1] around 0,
i.e., we assume do not know the values of a(x) outside this interval, see Fig. 2.6. Then it

x

b(x)

x

a(x)

-1 +1

y

b(x+y), x=

y

a(y)

-1

+1

-2

2

+1x=3.2^+1

Figure 2.6: Principle of template matching: Left: Given the template a(x), assuming no
information about the values outside the interval [−1,+1] and the signal b(x). Right: Find-
ing the best location of the template in b(x) can be achieved by determining the maximum
inner product of the template a(y), now assuming it to have value 0 outside the interval
[−1,+1] with a shifted version of b(x + y), the variable change used to express the inner
product.

is intuitive to de�ne a similarity measure c(x) between the template a and all subsections
[x−1, x+1] of length 2 of the signal b and take the optimum of the this similarity measure
c(x) as most likely position.

Here, we adopt the inner product of two vectors a and b, which measures the similarity
of the two vectors and is 〈a, b〉 = aTb =

°
i aibi = |a| |b| cos(a, b) which is large, in case

the two vectors di�er slightly, since then the angle between the vectors is small. This
inner product can be generalized to functions a(x) and b(x), by replacing the sum by the
integral of the products. Hence, formally we need to determine

c(x) = 〈a(y), b(x+ y)〉 =

» x+1

y=x−1

a(y)b(x+ y)dy (2.12)

This can be written as an in�nite integral if we assume a(x) = 0 outside the interval
[−1, 1]. The result is the �correlation� of the template a(x) with the signal b(x),

c(x) = a(x) ~ b(x) :=

» ∞
y=−∞

a(y)b(x+ y)dy . (2.13)

Though this correlation operation is linear and shift invariant, is has the disadvantage,
that it is not commutative. As we will see in the next section, this disadvantage easily
can be eliminated, by �rst mirroring the template and then applying correlation, thus
determining

³∞
y=−∞ a(−y)b(x+ y)dy or by de�ning an operation, called �convolution�.

Remark: The notion �correlation� in signal theory means the inner product of two mutually

shifted signals, and is not to be confused with the normalized correlation coe�cient used in

statistics, though both concepts are closely related: the estimated correlation coe�cient of two

vectors a and b is ρ(ā, b̄) =
〈
ā, b̄

〉
/(|ā| |b̄|), where the ā contains the elements of a reduced by

the mean of the values ai. �
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2.3.1 De�nition of Convolution

A fundamental theorem of linear systems theory is the following, expressed for in�nite
continuous signals. It allows to characterize all linear shift invariant operators, especially
�lters we regularly apply for manipulating images.

Theorem 2.3.6: Linearity and shift-invariance operators. If an operator La
operating on b(x), leading to c(x) = La(b(x)) is linear and shift-invariant it can be repre-
sented as a convolution

c(x) = La(b(x)) = a(x) ∗ b(x) =

» ∞
y=−∞

a(y)b(x− y)dy (2.14)

with some adequate function b(z). Sometimes we refer to the �rst function, here a(x), as
the convolution kernel.

As an example, taking the moving average

c(x) = Lw(b(x)) =
1

w

» +w/2

x=−w/2
b(x)dx =

» ∞
y=−∞

rw(y)b(x− y)dy (2.15)

It can be written as the convolution of the rectangle function rw(x) with b(x). It a linear
�lter, since the integration is a linear and shift-invariant operator. Exercise 2.3

Remark: The notion convolution is derived from the Latin word �convolvere�, which means

�to roll together� and describes the fact that one of the two functions, here b(x), is mirrored, i.e.,

it is used as b(x − y) with y the integration variable, see Fig. 2.7. In two dimensions we need

b(x)

x

b(x-y)

y
x

Figure 2.7: For convolution we mirror b(x) at a speci�c x, to obtain b(x− y) as a function
of y, and take the inner product of the convolution kernel a(y) and the mirrored function
b(x− y)

to mirror at the origin b(x − y). If the convolution kernel is symmetric, hence a(x) = a(−x),

the e�ect is not visible, since then a(x) ∗ b(x) =
³
y
a(−y)b(x+ y)dy =

³
y
a(y)b(y + x)dy, and the

result c(x) is the scalar product of the function b(y) shifted by x to the left with the convolution

kernel a(y). �
We have the following de�nitions of convolution for the other types of signals:

c(x) = a(x) ∗ b(x) =

» a
y=0

a(y)b(mod(x− y, u)) dy (2.16)

c(i) = a(i) ∗ b(i) =
∞̧

i=−∞
a(j)b(i− j) (2.17)

c(i) = a(i) ∗ b(i) =
n−1̧

i=0

a(j)b(mod(i− j, n)) . (2.18)

We use the operator ∗ for indicating a convolution, overloading it for all types of signals.
Often, we do not make the arguments explicit and simply write

c = a ∗ b . (2.19)

The modulo-function, namely mod (x, y) = x − |y|bx/|y|c ∈ [0, y], used in (2.16) and
(2.18) enforce the argument of b(·) to lie in the intervals [0, u) and [0, n− 1], respectively.
These are the ranges of the function b(·); for periodic functions we have, e.g., mod(x +
ku, u) = x for some x ∈ [0, u).
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Figure 2.8: Linear �lters. Upper left: Original x. Upper mid: running mean R3 ∗ x.
Lower mid: weighted running mean B2 ∗ x. � Compare the slight but signi�cant di�erence
at i = 14. Upper right: Left di�erence d− ∗ x. Lower right: Right di�erence d+ ∗ x.
� Observe the mutual shift. Lower left: 2nd di�erence c ∗ x. Observe zeros and local
(absolute) maximum at i = 14

Example 2.3.11: Linear �lters used in image processing. We give a few examples for
linear �lters used in image processing. We show the results on a �nite discrete signal, for which
we assume the values outside the given range are unknown.

• Moving average:

y(i) = (xi−1 + xi + xi+1)/3 or y = R2 ∗ x with R3 =
1

3
[1 1 1] . (2.20)

Observe the mean of the three neighbouring values at i = 14: It is counter intuitive, that
the mean at i = 13 is smaller than the mean at i = 15. Therefore, we have a look at a
weighted moving average:

• Weighted moving average. here we weight the central value higher than the two neigh-
bours:

y(i) = (xi−1 + 2xi + xi+1)/4 or y = B2 ∗ x with B2 =
1

4
[1 2 1] . (2.21)

The chosen weighting as a positive e�ect: The weighted mean at i = 13 is larger than the
weighted mean at i = 15, which appears plausible.

Remark: We will identify the reason for this behaviour of the two �lters, when analysing
their response to di�erent wave lengths. �

• Left and right di�erence: Exercise 2.2

y(i) = x(i)− x(i− 1) or y = d− ∗ x with d− = [1 −1] . (2.22)

and
y(i) = x(i+ 1)− x(i) or y = d+ ∗ x with d+ = [1 −1] . (2.23)

Both operations yield the gradient of a linear function, e.g., for x(i) = a + bi we obtain
y(i) = b.

• Second di�erence, which yields the second derivative for a quadratic function, which is
an approximation for the curvature

z(i) = x(i− 1)− 2x(i) + x(i+ 1) or z = c ∗ x with c = [1 −2 1] . (2.24)

E.g. for the quadratic function x(i) = a+ bi+ ci2 we obtain z(i) = 2c.

• Convolving two kernels may be useful. E.g. if we convolve d− with d+ we obtain

c(i) =
0̧

j=−1

d−(j) d+(i− j) or c = d− ∗ d+ . (2.25)

This strongly motivates the analysis of �lters w.r.t. their generating components, here the
intuitive de�nition of the second di�erences as a convolution of two �rst di�erences.
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2.3.2 Properties of Convolution

Before analysing and applying convolutions, we want to collect the essential properties
of this operator. We show the properties here for in�nite discrete signals with vectors
a = [a(i)] and b = [b(i)]

1. Commutativity: the convolution is commutative:

a ∗ b = b ∗ a . (2.26)

This can be seen by replacing variables in (2.17), namely j ⇐ (i − j) in b(i − j),
thus (−j) ⇐ (j − i) and therefore (i − j) ⇐ j in a(j). This yields b(i) ∗ a(i), when
following the de�nition in (2.17).
Similarly, we can show the following:

2. Associativity
a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c) . (2.27)

3. Distributivity
(a+ b) ∗ c = a ∗ c+ b ∗ c . (2.28)

4. Multiplication with a scalar

λ(a ∗ b) = (λa) ∗ b = a ∗ (λb) (2.29)

5. Zero-index: In�nite discrete signals have index in the range (−∞, ..., 0, ...,+∞).
If not clear from the context we indicate the index 0 by underlining:

aT = [. . . , a−2, a−1, a0, a1, a2, . . . ] (2.30)

If not stated otherwise, elements which are not given are assumed to be zero. As an
example, take the one- and two-dimensional signals

wT =
1

4
[. . . 0 1 2 1 0 . . .] =

1

4
[1 2 1] or w =

1

16

 1 2 1
2 4 2
1 2 1

 (2.31)

6. The one-element is the unit impulse

δ = [. . . 0 0 1 0 0 . . . ] or δ =

 ::: : :::
... 1 ...
::: : :::

 . (2.32)

7. The translation of a function f(i) by l or of a two dimensional function f(i, j) by
(l,m) can use the convolution with the unit impulse

f(i− l) = f(i) ∗ δ(i− l) or f(i− l, j −m) = f(i, j) ∗ δ(i− l, j −m) (2.33)

8. The inversion of convolution with a is possible if
°
i a(i) /= 0 and certain additional

constraints are ful�lled.6 The inverse element a−1(i) of a(i) then can be used to
solve c(i) = a(i) ∗ b(i) for b(i) by deconvolution

b(i) = a−1(i) ∗ c(i) = c(i) ∗ a−1(i) . (2.34)
6The Fourier spectrum then must be non-zero everywhere.
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9. The correlation, as introduced in the motivation, di�ers from convolution by the
sign of the �rst function. Hence, we have

c(x) = a(x) ~ b(x) = a(−x) ∗ b(x) =

» ∞
y=−∞

a(y)b(x+ y)dy . (2.35)

Since correlation is the basic tool for solving the template matching problem, convo-
lution can be interpreted as correlation with the mirrored template, i.e., the mirrored
�rst function:

c(x) = a(x) ∗ b(x) = a(−x) ~ b(x) . (2.36)

It can easily be shown, that correlation is not commutative, but the other properties
of convolution are still valid, such as associativity and distributivity.

If the �rst function a(x) is symmetric, correlation and convolution are identical.

Convolution appears in many other contexts:

• The density function pz of the sum z = x+ y of two random variables x and y is the
convolution of the two density functions px and py:

z = x+ y ⇔ pz = px ∗ py . (2.37)

This holds for continuous and discrete random variables.

• The multiplication of two polynomials p(x) =
°k
i aix

i and q(x) =
°l
i=0 bix

i, is the
polynomial r(x) = p(x)q(x) =

°k+l
i=0 cix

i with the coe�cients

[c0, ..., ck+l] = [a0, ..., ak] ∗ [b0, ..., bl] . (2.38)

• The product of two decimal numbers akak−1...a0 and blal−1...b0 is the number
clcl−1...c0 following from (2.38), except for the carrying. For example, we have
11× 11 = 121 and [1 1] ∗ [1 1] = [1 2 1]. This is the reason why, under certain
conditions, the deconvolution of discrete signals can use division of numbers. For
instance, we have 1331/11 = 121 since [1 1]−1 ∗ [1 3 3 1] = [1 2 1]. Since convolution
also allows for negative numbers, this relation to multiplication is very practical; we
easily can prove [1 − 1] ∗ [−1 1] = [1 − 2 1].

2.4 Linear Systems Theory of Discrete Signals

2.4.1 Convolution, Correlation, and Circulant Matrices . . . . . . . . . . . 31
2.4.2 Spectral Decomposition of Circulant Matrices . . . . . . . . . . . . . 33
2.4.3 The Discrete Fourier Transformation . . . . . . . . . . . . . . . . . . 35
2.4.4 The Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.5 The Fast Fourier Transformation . . . . . . . . . . . . . . . . . . . . 39
2.4.6 The Two-dimensional Discrete Fourier Transform . . . . . . . . . . . 40

Linear systems theory collects all properties, relations and operations for linear shift
invariant signals. Convolution, as the basic operator on signals, is extended by a spectral
decomposition, what is called the Fourier transformation, which allows to more deeply
analyse the e�ect of linear �lters but also the numerically e�cient realization of convo-
lution. We discuss the main results for discrete �nite one-dimensional signals and then
extend the results for the other types of signals and to two and more dimensions.
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2.4.1 Convolution, Correlation, and Circulant Matrices

We start with the discrete convolution of �nite vectors of length n. We assume the signal
is periodic with period n, hence the indices are taken modulo n. Following (2.10), the
indices run from 0, ..., n−1, which simpli�es expressions7. Convolution can be represented
as a matrix-vector product by uniquely mapping each vector to a circulant matrix. This
allows us to exploit results from linear algebra, especially the properties of eigenvalues and
eigenvectors of a matrix.

2.4.1.1 Convolution and Correlation

We �rst want to represent convolution as a matrix-vector product.
The convolution of two n-vectors is de�ned as

g(i) = w(i) ∗ f(i) =
n−1̧

k=0

w(i− k)f(i) (2.39)

With the vectors

g = [gi] =


g0

g1

. . .
gn−2

gn−1

 , w = [wi] =


w0

w1

. . .
wn−2

wn−1

 (2.40)

and the circulant matrix

Z f = Z (f) =


f0 fn−1 fn−2 . . . f1

f1 f0 fn−1 . . . f2

f2 f1 f0 . . . f3

. . . . . . . . . . . . . . .
fn−1 fn−2 fn−3 . . . f0

 (2.41)

of the vector f = [fi] we can write (2.39) as

g = w ∗ f = Zw f = Z f w . (2.42)

Similarly, the correlation of two n-vectors, which is de�ned as

g(i) = w(i) ~ f(i) = w(−i) ∗ f(i) =
n−1̧

k=1

w(k)f(i+ k) =
n−1̧

k=1

w(−k)f(i− k) (2.43)

again, assuming all indices to be cyclical modulo n, also can be written with vectors and
circulant matrices as

w ~ f = ZT
wf , (2.44)

since inversion of the indices leads to a transposed circulant matrix

Z ([w(−i)]) = ZT([w(i)]) . (2.45)

2.4.1.2 Correlation Function of Stochastic Signals

We often have to handle signals f = (fi) which are assumed to be samples of a random
process f = (f

i
), where the random variables f

i
, which need not be mutually independent.

The sequence (fi) also is called a stochastic process. As an example, we may interpret the stochastic process

grey values f of an image line as a sample of a stochastical signal; then we can characterize
the complete vector by its joint high-dimensional probability density function pf (f). If

7It is the reason why in the language C, developed by researchers working in signal theory, indices of
vectors and matrices start with 0, not as in Matlab, where the the �rst element in a vector has index 1
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the statistical properties of f are shift invariant, then � as we will see � their covariance
matrix also is shift invariant. Its density may be represented by the mean E(f

i
) = µf

and the covariance Cov(f
i
, f
j
) of two values, which only depend on the di�erence j − i

of the two indices. If only these two moments of the distribution are given, following the
principle of maximum entropy, see Sect. 1.6, p. 16, the most likely distribution of the
signal is a Gaussian. For a detailed discussion of stochastic processes see (Papoulis, 1991),
a short introduction is given in Förstner and Wrobel (2016, Sect. 2.8).

In the following we discuss how to arrive at estimated covariance matrices for signals
with shift-invariant stochastical properties. These may be used to characterize stochastical
signals. We will exploit this type of characterization when analysing image processing
operations, especially noise suppression, and when describing the properties of textured
areas in digital images.

Let two stochastical signals f and g be given. We assume, their mean is

E(f) = E(g) = 0 . (2.46)

We now determine the empirical covariance matrix Cov(f , g). We obtain the (estimated)
covariance.

Cov(f(i), g(i))
(independent on i)

=
1

n

n−1̧

j=0

f(i+ j)g(i+ j)
i=0
=

1

n

n−1̧

j=0

f(j)g(j) , (2.47)

taking all arguments modulo n. Observe, since we assumed the stochastical properties
of the signal are shift invariant, the covariance of two values of f and g referring to the
same index i are identical. In the area of signal processing this value often is called the
correlation, also in case the mean values are not 0, hence, the correlation statistically is
the second non-central moment.

The (estimated) covariance c(i) after shifting g by what is called the lag τ then is lag τ

cfg(τ) := Cov(f(i), g(i+ τ))
(independent on i)

=
1

n

n−1̧

j=0

f(i+ j) g(i+ j + τ) (2.48)

i=0
=

1

n

n−1̧

j=0

f(j) g(j + τ) (2.49)

(2.43)
=

1

n
f(τ) ~ g(τ) . (2.50)

The function cfg(τ) is the empirical cross-covariance function, or short, cross-covariance
function of the signals f(i) and g(i). It only depends on the shift τ between the two signals.
Again, in the area of signal processing, this function cfg(τ) usually is called correlation
function and named Rfg.

If both signals are periodic, then we obtain the circulant (and symmetric) covariance
matrix, using the abbreviation c = cfg for brevity,

Cov(f , g) = Σfg = Z c =


c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 . . . c2
c2 c1 c0 . . . c3
. . . . . . . . . . . . . . .
cn−1 cn−2 cn−3 . . . c0



=
1

n


f0 f1 f2 . . . fn−1

fn−1 f0 f1 . . . fn−2

fn−2 fn−1 f0 . . . fn−3

. . . . . . . . . . . . . . .
f1 f2 f3 . . . f0



g0 gn−1 gn−2 . . . g1

g1 g0 gn−1 . . . g2

g2 g1 g0 . . . g3

. . . . . . . . . . . . . . .
gn−1 gn−2 gn−3 . . . g0


=

1

n
ZTf Z g , (2.51)
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again, with cyclical indices. Observe, since we assumed the mean of both signals to be
known to be 0, the denominator is n.

The autocorrelation8 function (ACF) of a cyclical signal f hence is

cff (τ) = Cov(f(i), f(i+ τ))
(independent on i)

=
1

n

n−1̧

t=0

f(t)f(t+ τ) =
1

n
f(τ)~f(τ) or cff =

1

n
ZT
ff

(2.52)
Interpreted statistically, this is the autocovariance function of f(i) if the mean value is
0. This at the same time is the vector containing the variance (as �rst element) and the
covariances to lag τ , i.e., the autocovariance function. It is also periodic, but in addition,
it is also symmetric, i.e., we have (for real-valued signals)

cff (τ) = cff (−τ) (2.53)

This easily can be proven using (2.51), via the general rule

g = Z gδ with δT = [1, 0, 0, . . . , 0] , (2.54)

extracting the vector of the circulant matrix, which is the �rst column with index 0.

The results found so far can be summarized as following:

1. The convolution of two signals can be represented as

a(i) = b(i) ∗ c(i) ⇔ a = Z bc = Z cb ⇔ Za = Z bZ c = Z cZ b (2.55)

with the circulant matrix Z b of the vector b. The convolution is commutative.

2. The correlation of two signals can be represented as

a(i) = b(i) ~ c(i) = b(−i) ∗ c(i) ⇔ a = ZT
b c ⇔ Za = ZT

b Z c (2.56)

The correlation is not commutative.

3. The unit matrix In corresponds to the unit vector δ. Hence n-vectors a with the
addition and the convolution operators form a commutative ring (a,+, ∗) with 0 and
δ as identity elements, respectively, thus addition and convolution of signals can be
used in the same way as addition and multiplication for real numbers x ∈ IR, which
also form a commutative ring (x,+, ·) with 0 and 1 as identity elements.

2.4.2 Spectral Decomposition of Circulant Matrices

The convolution in the form of the matrix-vector multiplication a = Z bc requires n2 scalar
multiplications and is ine�cient for large n, unless the vectors b and c are sparse.

The complexity of the convolution can be reduced to O(n log n) when using the eigen-
value decomposition of circulant matrices. We have the following theorem.

Theorem 2.4.7: Eigenvalue decomposition of circulant matrices. For a n-
vector x = [x0, x1, ..., xn−1] with its circulant matrix

Zx = [(Zx)ik] = [xi−k]

we have the eigen decomposition

Zx = F−1Diag(λ)F with λ = Fx . (2.57)

The columns f i of F , the eigenvectors, are invariant w.r.t. the vector x specifying the
cyclical matrix Zx. Using the n-th root of unity

w =
ǹ

1 = ei2π/n . (2.58)

8We use the term used in signal processing.
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the matrix of eigenvectors is the symmetric Fourier matrix

F = [fik] = [e−i2πik/n] = [w−ik], i =
`
−1 and i, k ∈ [0, 1, ..., n− 1] ,

containing the eigenvectors

f i = [1 , w−i , ..., w−(n−1)i]T . (2.59)

The vector of eigenvalues, simply given by λ = Fx, explicitly reads as

λi = fT
i x =

n−1̧

k=0

e−i2πik/nxk . (2.60)

Observe, the indices of vectors and matrices start with 0.
Example 2.4.12: Eigen decomposition of a circulant matrix. Let the 4-vector x and

the circulant matrix Zx, together with the 4× 4 Fourier matrix F be

x =


1
2
3
4

 , Zx =


1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

 , F =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (2.61)

The the diagonalization of Zx as in (2.64) yields

FZxF
−1 =

1

4


10 10 10 10

−2 + 2i 2 + 2i 2− 2i −2− 2i
−2 2 −2 2

−2− 2i 2− 2i 2 + 2i −2 + 2i




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =


10 0 0 0
0 −2 + 2i 0 0
0 0 −2 0
0 0 0 −2− 2i


The vector of the eigenvalues is

λ = Fx =


10

−2 + 2i
−2
−2− 2i

 . (2.62)

�
This decomposition has the following properties:

• The columns of F−1 are the eigenvectors of the eigenvalue decomposition. The
eigenvectors are independent of the vector x.

• The matrix F is called the Fourier matrix.

• The matrix
F =

1`
n
F (2.63)

is unitary, i.e., FF
∗

= F
∗
F = In.

• Therefore we have the orthogonality relation

F−1 =
1

n
F ∗ (2.64)

since FF ∗ = nIn

• The elements of the vector λ = Fx are the eigenvalues of Zx. If Zx is not symmetric,
they are complex numbers. Since the matrix F is orthonormal, it can be interpreted
as a rotation matrix.

Remark: There exist alternative de�nitions of the Fourier transformation which di�er by a
factor:

• Gonzales and Wintz (1977) de�ne the Fourier transformation as

X =
1

n
Fx , x = F

∗X (2.65)
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• Castleman (1996) de�nes it symmetrical

X = Fx , x = F
∗
X . (2.66)

When generalizing the Fourier transformation to continuous nonperiodic signals we will adopt

the symmetric de�nition. �

2.4.3 The Discrete Fourier Transformation

The transformation

X = Fx (2.67)

is called the discrete Fourier transformation. The DFT thus is the transformation of a
vector into the eigenvalues of the corresponding circulant matrix. Since with (2.63) it can
be written as

X =
`
n Fx . (2.68)

Hence, the Fourier transformation is a rotation except for a constant factor
`
n. Observe,

the original signal is written with small letters and will have indices i, its Fourier transform
is written with capital letters and will have indices k.9

We explicitly have

Xk =
n−1̧

i=0

xi e−i2πik/n =
n−1̧

i=0

xi (cos(2πik/n)− i sin(2πik/n)) (2.69)

and also

<(Xk) =
n−1̧

i=0

xi cos(2πik/n) =(Xk) = −
n−1̧

i=0

xi sin(2πik/n) , (2.70)

where the operators < and = extract the real and the imaginary part of a complex number,
respectively.

The DFT is invertible. The inverse discrete Fourier transformation (IDFT) is given by

x = F−1X =
1

n
F ∗X (2.71)

This can be written explicitly in various forms. Using Euler's relation eiα = cosα+ i sinα
we �rst have

xi =
1

n

n−1̧

k=0

Xk ei2πik/n (2.72)

=
1

n

n−1̧

k=0

Xk(cos(2πik/n) + i sin(2πik/n)) . (2.73)

Since the xi are reals, sin-terms in (2.73) need to vanish. Hence, we have Xk = X∗n−k, or
<(Xk) = <(Xn−k) and =(Xk) = −=(Xn−k). Therefore, only n real values are necessary
to represent the Fourier spectrum. Therefore, we obtain the following relation Exercise 2.4

xi =
2

n

n−1̧

k=0

<(Xk) cos(2πik/n)−=(Xk) sin(2πik/n) (2.74)

Finally we represent Xk in polar coordinates

Xk = |Xk| eiϕn = |Xk| (cosϕn + i sinϕn) . (2.75)

9The Fourier transform of x often is written as px, see Jähne et al. (1999). We do not follow this
convention, since we reserve the hat for estimates.
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With the trigonometric addition theorem, we �nally obtain

xi =
2

n

n−1̧

k=0

|Xk| cos(2πik/n+ ϕn) . (2.76)

an expression which makes the decomposition of the signal (xi) in periodic summands
with their amplitude |Xk and their phase ϕk explicit.

We have the following notions

• The sequence (Xk) is the Fourier spectrum of the sequence (xi) and

• the sequence (|Xk|) is the amplitude spectrum of (xi).

The DFT and its inverse, the IDFT

X = Fx x = F−1X =
1

n
F ∗X , (2.77)

often are denoted as

x�X , (2.78)

or more explicitly with the operator F

X = F (x) and x = F −1(X) , (2.79)

acting on the sequence, the function or the vector, depending on the representation. The
vectors x and X are called a Fourier pair.

The result of this section can be summarized as follows:

• The eigenvalue spectrum of a circulant matrix Zx with vector x = [xi] is identical
to the Fourier-Spectrum X = [Xk] of the periodic sequence (xi).

• The absolute values |Xk| of the eigenvalues of Zx are the amplitude spectrum of the
periodic sequence (xi).

Example 2.4.13: Amplitude Spectrum of discrete periodic signal. Figure 2.9 shows

the signal x(i) from Fig. 2.5 and approximations together with its amplitude spectra. Observe,

the elements of the Fourier spectrum have indices k ∈ [−8,+8] and the elements with high values

of |k| are set to zero in order to obtain the approximations. �

2.4.4 The Power spectrum

We can apply this type of spectral analysis to the autocorrelation function cx. As shown
in (2.52), the autocorrelation function of a signal x

cx(i) =
1

n

¸
i′

x(i′)x(i+ i′) (2.80)

contains the empirical covariances of the signal, assuming it has zero mean. It is symmetric,
see (2.53). The autocovariance function of a signal x sometimes is called Rx.

The corresponding de�nition of the autocovariance function using circulant matrices

1

n
ZTxZx = Z c , (2.81)

by multiplying from left and right with F and F−1, and augmenting by F−1F , can be
rewritten as

1

n
FZTx F

−1FZxF
−1 = FZ cF

−1 . (2.82)
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Figure 2.9: Signal x(i) from Fig. 2.5 and approximations with amplitude spectra |X(k)|
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This is a product of diagonal matrices having diagonal elements

X = Fx , X = Fx , and C = Fc (2.83)

where x = [x0, xn−1, ..., x1] is the reverse signal. Therefore we have the pointwise (Hadamard)
product

1

n
X ◦X = C , (2.84)

where X is the Fourier transform of x. Since X = X∗, for a single element we have Exercise 2.5
1
nX
∗
kXk = Ck or

Ck =
1

n
|Xk|2 . (2.85)

Hence, the Fourier spectrum C of the covariance function c is identical to the squared
of the amplitude spectrum |Xk| of the signal x, except for a factor 1/n. The function C
often is called the power spectrum of the signal x. Hence, we have

c� nC . (2.86)

In signal processing the power spectrum often is called P .
The Fourier spectrum C of the covariance function c is real valued and ≥ 0. Therefore,

we have, what is called the Wiener-Kinchin relation:

Ck =
1

n

¸
k

ci cos(2πik/n) (2.87)

ci =
¸
k

Ck cos(2πik/n) . (2.88)

It holds for any signal which is symmetric, i.e., if x(i) = x(−i). Then the (2.87) is also
called the cosine-transformation, and (2.88) the inverse cosine-transformation.

The variance is
σ2 =

1

n

¸
i

x2
i =

1

n
xTx (2.89)

and using the orthogonality relation (2.64), p. 34 directly leads to what is called the
Parseval identity

X∗X = nxTx (2.90)

or ¸
k

|Xk|2 = n
¸
i

x2
i . (2.91)

The estimated variance of a sample signal x, taken from x ∼M (0,D(x)) with D(x) = Z c
therefore is

xσ2 =
1

n

¸
i

x2
i =

1

n2

¸
k

|Xk|2 =
1

n

¸
k

pCk . (2.92)

If the signal (xi) is stochastic, the Fourier spectrum X = Fx is stochastic and contains
uncorrelated values. Their covariance matrix 10 is Exercise 2.6

D(X) = ΣXX = FD(x)F−1 = nDiag(Fc) = nDiag(Ck) . (2.93)

with the elements Ck of the power spectrum as variances. Therefore, due to (2.76) we
can interpret the power spectrum: it indicates how the variance of the signal is distributed
to the individual wavelengths k. Observe the di�erent representations for the covariance
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Figure 2.10: Relation between a signal f(i), its estimated autocorrelation function pcff (i) =

Rf (i), a �lter h(i) and the �ltered signal g(i) with their Fourier transforms F (k), pCff (k) =pPf (k), H(k) and G(k) The upper row describes the convolutions of f(i) with some �lter
h(i) (right) to obtain a �ltered signal g(i) and with f(−i) (left) to obtain the estimated
autocorrelation function pcff (i) = f(−i) ∗ f(i) = f(i)~ f(i). The second row describes the
corresponding Fourier transformations. They are one-to-one mappings of the functions used
in the �rst row. The Fourier transformation of the mirrored signal f(−i) is the conjugate
complex of F (k). Convolution in the Fourier domain is realized by pointwise multiplication.
The pointwise multiplication of the Fourier transformation F (k) with its conjugate complex
F ∗(k) yields the magnitude square |F (k)|2 of the elements, which is the estimated power

spectrum pCff of f (left)

matrix of the (estimated) power spectrum in (2.93). If the signal is deterministic, so also
its Fourier transform.

The relations derived so far, can be collected in the left box of the diagram in Fig.
2.10. They are valid for all generalizations of the Fourier transformation to continuous
and to non-periodic signals.

2.4.5 The Fast Fourier Transformation

The Fourier transformX = Fx of an n-vector x requires n2 multiplications. The structure
of the Fourier matrix can be exploited to speed up the computation. The computational
complexity of the Fourier transformation then is O(n log n). For n being a power of 2,
the idea, is to split the signal into the values with odd and even index, apply the Fourier
transformation to the halved sequence, and merge the result following Cooley and Tukey
(1965). For other non-primes such a splitting is also possible, see Winograd (1976). Rader
(1968) proposed a O(n log n)-algorithm for n being a prime. The corresponding algorithms
are called fast Fourier transformations (FFT), their inverses are denoted with IFFT.

Fast Fourier transformation plays a central role, since, as we saw, the convolution c of
two signals a and b can be realized as the point-wise multiplication of the corresponding
Fourier transforms. Since the Fourier transformation for large n is fast it may be useful
to proceed as follows:

A = FFT(a) , B = FFT(b) , C = A ◦B , c = IFFT(C) (2.94)

. The complexity of this realization of the convolution is O(n log n).

Example 2.4.14: Fourier transformation of a 2- and a 4-vector. The Fourier
transform of a 2-vector is

X0 = x0 + x1 (2.95)

X1 = x0 − x1 . (2.96)

The fast Fourier transformation recursively uses the following procedure: Assuming n is even,
the Fourier transform X of an n-vector can be derived from the Fourier transforms E and O of
the vectors [x0, x2, ...]

T and [x1, x3, ...], containing the values with even and odd indices, by

Xk = Ek +Oke
−2πik/n , k = 0, ..., n/2− 1 , (2.97)

Xk+n/2 = Ek −Oke−2πik/n , k = 0, ..., n/2− 1 . (2.98)

10The variance of a complex random variable z = x+iy is de�ned asD(z) = E(|z−E(z)|2) = D(x)+D(y).
The covariance of two complex variables z and w is de�ned as Cov(z, w) = E ((z − E(z))(w − E(w))∗).
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First we have (now for n = 4)

E =

[
x0 + x2
x0 − x2

]
and O =

[
x1 + x3
x1 − x3

]
(2.99)

With e−2πik/4 = −ik we obtain

X =


X0

X1

X2

X3

 =


(x0 + x2) + (x1 + x3)
(x0 + x2)− i(x1 + x3)
(x0 − x2) + (x1 − x3)
(x0 − x2)− i(x1 − x3)

 , (2.100)

see (2.61). �

2.4.6 The Two-dimensional Discrete Fourier Transform

The Fourier transform of a discrete two-dimensional function g(i, j) results from

G(k, l) =
¸
i

¸
j

g(i, j)e−i2π(ik+jl)

=
¸
i

(¸
j

g(i, j)e−i2πjl/n

)
ei2πik/n (2.101)

= F1(F2(g(i, j))) , (2.102)

the index of F indicating the number of the argument of the function g. It can be realised
in two steps

1. Fourier transformation of all columns of γ(i, l) := F2(g(i, j)) which leads to a two-
dimensional intermediate matrix γ = [γ(i, l)];

2. Fourier transformation of all rows of G(k, l) = F1(γ(i, l)).

If we use the Fourier matrix F for realizing the 1D Fourier transformation, we thus obtain
the 2D Fourier transformation of the matrix g

G = FgFT . (2.103)

Hence, the two-dimensional Fourier transformation has the same complexity as the one-
dimensional Fourier transformation. The same holds for the inverse Fourier transforma-
tion.

Example 2.4.15: JPEG Image Compression.
The transformations (2.87) and (2.88) represent the discrete cos-Transformation (DCT) of

the signal c(i) and its inverse(IDCT). It is used within JPEG compression.
Here, image blocks of size 8 × 8 are mirrored in x- and y-direction, and assumed that they

are continued periodically. This leads to the 16× 16 block

bc(i
′, j′) =

[
b(i, j) b(−i, j)
b(i,−j) b(−i,−j)

]
i, j ∈ [0, ..., 7], i′, j′ ∈ [0, ..., 15] (2.104)

Then the two-dimensional DCT is applied to bc(i
′, j′). From the real valued coe�cients only those

are stored which are larger that a threshold. Hence, all those frequencies are suppressed, whose
amplitude are below this threshold. It is presumed, that these do are essential for visual percep-
tion. Decoding is realized by applying an inverse discrete cosine-transformation to the compressed
signal, yielding smoothed versions of the original image blocks. Though the intensities within a
block are smoothed, the coding is done for each block independently: this leaves discontinuities
at the borders of the blocks, which can be perceived as the typical JPEG-compression artifacts.

�
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2.5 Generalizations

2.5.1 The 1D Fourier Transformation . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 The 2D Fourier Transformation . . . . . . . . . . . . . . . . . . . . . 44

The spectral analysis using the DFT referred to discrete periodic signals. It can be
generalized to non-periodic and continuous signals. We have the following transforma-
tions, referring to discrete and continuous function f(i) and f(x):

1. The �discrete Fourier transformation�, discussed so far, is the Fourier transform of
periodic discrete signals. Together with its inverse it is given by:

X(k) =
n−1̧

i=0

f(i)e−i2πik/n and f(i) =
1

n

n−1̧

k=0

F (k)e+i2πik/n , (2.105)

where all indices are to be taken modulo n. Here the Fourier transform is also
discrete and periodic.

2. �Fourier series� are the Fourier transform of periodic continuous signals. For signals
with period L we have the Fourier series and its inverse

F (k) =
1

L

» L
x=0

f(x)e−i2πkx/Ldt and f(x) =
∞̧

k=−∞
F (k)e+i2πkx/L (2.106)

Here the Fourier transform is discrete and non-periodic.

3. The �discrete time Fourier transform� is the Fourier transformation of non-periodic
discrete signals f(i∆x) and obtained from the Fourier transformation of continuous
periodic signals by exchanging the role of signal and transform. Together with its
inverse it is

F (u) =
∞̧

n=−∞
f(n∆x)e−i2πun∆x and f(i) = ∆x

» 1/∆x

u=0

F (u)e+i2πui∆xdu (2.107)

The Fourier transform is continuous and periodic, with period 1/∆x. We will use it
for analysing the properties of discrete �lters.

4. The �Fourier transform� of a nonperiodic continuous signals together with its inverse
is given by

F (u) =

» ∞
x=−∞

f(x)e−i2πuxdx and f(x) =

» ∞
u=−∞

F (u)e+i2πuxdu (2.108)

Observe, we used the symmetric de�nition, as in (Castleman, 1996). Since the
Fourier transformation and its inverse just di�er by the sign in the exponent, we
have the following duality relation:

f(x)� F (u) ↔ F (x)� f(−u) . (2.109)

This relation is of advantage to derive the Fourier transform of a function which has
the form of F (u), if f(x)� F (u) is known.

We will discuss the continuous Fourier transformation of special 1D and 2D functions.

2.5.1 The 1D Fourier Transformation

The Fourier transformation of non-periodic continuous functions contains the other cases
(discrete, or periodic functions) as special cases. The Fourier transformation F (u), as
de�ned in (2.108), p. 41, exists if (1) the function f(x) is an quadratically integrable
function, i.e., the integral

³∞
x=−∞ f2(x)dx <∞. The de�nition of a Fourier transformation

can be extended to functions, which are not quadratically integrable. All mentioned
transformations can be interpreted as eigenvalue decompositions. 11

11This is because the transformations can be embedded in the theory of Hilbert spaces.
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We need Fourier transforms of a number of basic functions. The Fourier transform of
a Gaussian function is a Gaussian function, see Fig. 2.11

1`
2πσ2

e−
1
2
x2

σ2 � e−2π2σ2u2

. (2.110)

Observe, a steeper Gaussian in the spatial domain leads to a broader Gaussian in the
spectral domain.
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Figure 2.11: Examples for Fourier pairs. From top to bottom: Gaussian/Gaussian, co-
sine/double delta, doubly exponential/Cauchy, rectangle/sinc, hat/sinc2. The delta function
δ(x− x0) is shown as peak at x0, see the de�nition in Sect. 2.6.1.1, p. 45

The delta function is de�ned as the limit of the Gaussian with σ →∞, see 2.6, p. 44.
Therefore, we have

δ(x)� 1 and 1� δ(u) . (2.111)

If we shift the delta function by x0 we obtain

δ(x− x0)� e−i2πx0u and ei2πu0x� δ(u− u0) . (2.112)

This relation can be used to derive the Fourier transform of a shifted function, since
f(x− x0) = f(x) ∗ δ(x− x0); hence

f(x− x0)� e−i2πx0uF (u) . (2.113)

Similarly, we can derive the Fourier transform of a scaled function

f(ax)�
1

|a|
F
(u
a

)
. (2.114)
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Thus, if |a| < 1 the function is wider, becomes �atter and smoother , and its Fourier
transform is more concentrated around 0. Using the right relation of (2.112) and cosx =
1
2 (eix + e−ix), we easily can derive

cos(2πu0x) �
1

2
[δ(u+ u0) + δ(u− u0)] , (2.115)

sin(2πu0x) �
i

2
[δ(u+ u0)− δ(u− u0)] . (2.116)

The Fourier transform of the n-th derivative f (n)(x) of a function f(x) yields

f (n)(x)� (i2πu)nF (u) . (2.117)

The Fourier transform of the doubly exponential function e−a|x| is proportional to the
density of the central Cauchy-distribution p(x; a) = a/(a2 + x2)/π. We have the Fourier
transform together with its dual

e−a|x|�
2a

a2 + 4π2u2
and

1

π

a

a2 + x2
� e−2πa|u| . (2.118)

The unit-rectangle function has the sinc-function as its Fourier transformation

r

(
x;−1

2
,

1

2

)
� sincu :=

sin πu

πu
. (2.119)

The hat-function Λ(x;−1, 1) = r
(
x;− 1

2 ,
1
2

)
∗ r
(
x;− 1

2 ,
1
2

)
is the convolution of the box-

function with itself. Hence its Fourier transform is the square of the sinc-function:

Λ

(
x;−1

2
,

1

2

)
� sinc2u =

sin2 πu

(πu)2
. (2.120)

Generally, we can describe the statistical properties of signals using their autocorrela-
tion function Rf (τ). This is relevant for characterizing the texture in an image or when
analysing the accuracy of image matching procedures. A prominent feature is the curva-
ture of the autocorrelation function R′′f (τ) for lag τ = 0, see p. 32. We have the following
result: The curvature of the autocorrelation function at lag τ = 0 is the negative variance curvature of

autocorrelation is

negative variance

of gradient

of the �rst derivative of the signal:

R′′f (0) = −σ2
fx . (2.121)

This can be used to characterize the autocorrelation function with one parameter. High
curvature corresponds to a rough signal, low curvature to a smooth signal. A generalization
of the variance σ2

fx
of the �rst derivative to two dimensions results in what is called the

structure tensor, which plays a signi�cant role in image matching and keypoint detection.

Proof: We need the autocorrelation function Rfx(τ) of the �rst derivative fx(x) = df(x)/dx
of a function f(x), see (Papoulis, 1965, p. 316 �.). Provided the process is smooth enough, such
that the derivatives exist and their mean is zero, we have due to the linearity of di�erentiation

E

(
df(x)

dx

df(y)

dy

)
=

d2E(f(x)f(y))

dxdy
. (2.122)

If the lag τ = y − x is constant, hence y = τ + x and x = y − τ we therefore obtain

Rfx(∆x) := E

(
df(y − τ)

dτ

df(x+ τ)

dτ

)
= −d

2E(f(x)f(y))

dτ2
= −∂

2Rf (τ)

dτ2
. (2.123)

Hence for lag τ = 0 we get (2.121). �
Visualizing the 1D Fourier transform, which in general is complex valued F (u) =

|F (u)|eiφ(u), is done in several ways:

• The separate Visualization of amplitude |F (u)|and phase φ(u), see Fig. 2.12, left;

• The visualization as a complex function [<(F (u)),=(F (u))] in one variable u in a
3D coordinate system, see Fig. 2.12, middle.

• The projection of this function into the complex plane, indicating points with distinct
u, see Fig. 2.12, right.
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Figure 2.12: Visualization of the Fourier transform

2.5.2 The 2D Fourier Transformation

The two-dimensional Fourier transformation is de�ned analogously, see (Castleman, 1996).
For simplifying notation, we use vector valued arguments, which partially allows us to
generalize to more than two dimensions. We have

F (u) = F (f(x)) : F (u) =

»
x
f(x)e−i2πuTxdx . (2.124)

The inverse Fourier transformation is

f(x) = F −1(F (u)) : f(x) =

»
u
F (u)ei2πxTudu , (2.125)

therefore

f(x)� F (u) (2.126)

If we linearly transform x by A we obtain for the Fourier transform of f(Ax)

f(Ax)�
1

detA
F ((AT )−1u) (2.127)

which specializes for diagonal D = Diag([d1, d2])

f(Dx)�
1

d1d2
F (D−1u) (2.128)

and for a rotation matrix R

f(Rx)� F (Ru) . (2.129)

Hence a widening of f(x) (|D| < 1) leads to a narrowing of the Fourier transform together
with an enlargement of its values. Hence, the rotation of an image just rotates its Fourier
transform. A shift of f(x) by a leads to

f(x+ a)� e−i2πuTaF (u) (2.130)

hence only changes the phase.
The visualization of the 2D Fourier transform usually is restricted to the absolute

value, i.e., the amplitude spectrum |F (u)|. Due to the quick drop-o� of |F (u)| often
log(1 + |F (u)|) is shown.

2.6 Sampling and Interpolation

2.6.1 Dirac's Delta Function and the Shah Function . . . . . . . . . . . . 45
2.6.2 Sampling Theorem and Nyquist Frequency . . . . . . . . . . . . . . 47

Usually we work with sampled functions. Thus, we take the image plane as a continuum
where, via sensor elements, the continuous image function is sampled, usually in a regular
grid. In this section we want to discuss the conditions under which the sample of a
continuous function allows to reconstruct the function from the sample. This leads to the
sampling theorem. We obviously need to formally describe the two subsequent processes,
the sampling and the interpolation. Both can be adequately described by convolutions,
thus exploit the material discussed so far.
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Figure 2.13: Examples for Fourier transforms of 2D images. The lower row shows the
Fourier transforms of the images in the upper row. The Fourier transforms are shown
as log(|1 + F (u)|), the origin shifted to the centre of the image. Left: The shingles are
nearly parallel from upper left to lower right. The wave front with the highest frequency is
orthogonal to this direction. Middle left: The facade shows two dominant directions, which
due to the perspective are not mutually orthogonal. The window cornices show edges in two
additional directions, which yields the Fourier spectrum with four major directions. Middle

right: The few stalks of the leaves cause a few only slighly pronounced high frequency
directions. Right: The smooth contours of the sculptures do not lead to any pronounced
high frequencies.

2.6.1 Dirac's Delta Function and the Shah Function

We need two basic functions. They are generalized functions since they are de�ned by
a limiting process. We can give their Fourier transform without using the theory of
generalized functions. One is the δ-function already mentioned before (see (2.111)), from
which we derive the sampling or Shah function III(x).

2.6.1.1 The δ-Function

Dirac's Delta function δ(x) is the continuous analogion to the unit impulse δ(i). We may
de�ne it by

δ(x) = lim
σ→0

1`
2πσ

e
−

1

2

(x
σ

)2

(2.131)

It has the following properties, which we regularly need:

1. The value of the function is 0 or ∞.

δ(x) =

{
∞ x = 0
0 x /= 0

(2.132)

The function aδ(x − x0) usually is visualized by an arrow at x0 of height a, as we
already did in Fig. (2.11), p. 42 for the Fourier transform of the cosine-function.

2. The area under the function δ(x) is 1.» +∞

−∞
δ(t)dt = 1 (2.133)
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Scaling of x by a ∈ IR reduces the area under the function, hence

δ(ax) =
1

|a|
δ(x) . (2.134)

3. In order to obtain the sampled function value f(x0) at x0 we need to convolve f(x)
with δ(x− x0)

f(x0) := fx0(x) = f(x) ∗ δ(x− x0) = f(x− x0) ∗ δ(x) (2.135)

This is the main motivation to use the δ function. If x0 is interpreted as a variable,
the function f(x0) has the value of f at x0 and is zero elsewhere. Observe, sampling
f(x) at x0 in this manner is a mathematically clear concept, however, cannot be
realized using any physical system, due to the limited resolution of a sensor.

4. The Fourier transform of δ(x) is 1

δ(x)� 1 , (2.136)

see (2.111), p. 42. Therefore, we also have an alternative de�nition of the δ-function

δ(x) =

» +∞

u=−∞
cos(2πux)du (2.137)

2.6.1.2 The Shah-Function

... ...
x

d

1
u

1/d

1 /d

Figure 2.14: The sampling or Shah-function and its Fourier transform. Left: The sampling
function III(x/d)/d for the sequence nd, n = ...,−1, 0,+1, ..., being a train of δ-functions
with height 1. Right: The Fourier transform of this sampling function again is a sampling
function, namely a train of δ-functions at n/d, n = ...,−1, 0,+1, ... and height 1/d

Die Shah-function is an in�nite sequence (sometimes called a train of) δ-functions:

III(x) =
+∞̧

n=−∞
δ(x− n) (2.138)

It is its own Fourier transform

III(x)� III(u) (2.139)

Scaling of x with 1/d and f with d in order to preserve the area under the δ-functions,
yields

+∞̧

n=−∞
δ(x− nd) =

1

d
III
(x
d

)
� III(du) =

1

d

+∞̧

n=−∞
δ
(
u− n

d

)
. (2.140)
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2.6.2 Sampling Theorem and Nyquist Frequency

The sampling theorem states under which condition we can perfectly reconstruct a function
from a sampled version of that function. Fig. 2.15 shows the essential steps which are
now discussed in more detail.
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d
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Figure 2.15: Sampling theorem. Left and right: function and its Fourier transform. 1.

row: Given signal f(x) and its Fourier transform F (u). It is assumed to be band limited,
i.e., it is zero outside the range u ∈ [−1/2d,+1/2d]. 2. row: Sampling function with
spacing d (here d < 1) and its Fourier transform, also being a sampling function. Observe,
we assume the sampling to cover the complete range x ∈ [−∞,+∞]. 3. row: Continuous
sampled function fs(x) which is zero for all x /= nd. Its Fourier transform is periodic. The
centre peak is proportional to F . 4. row: Kernel k(x) for recovering the original function
from fs(x). Here it is assumed to be a sinc-function, which has a scaled rectangle-function as
Fourier transform. This is used to cut out the central part of the Fourier spectrum of fs(x).

Last row: Reconstructed signal pf(x) with its Fourier transform pF (u). Here the original
function can be recovered without loss since the original function f(x) is band limited, the
density of the sampling is high enough, and the complete function [−∞,+∞] is sampled .
(adapted from www.cs.unm.edu/$\sim$williams/cs530/shannon2.ps)

2.6.2.1 Sampling

Sampling a continuous function with sampling distance d is the transition from the contin-
uous function f(x) to a sequence (f(id)) , i ∈ ZZ . Given the sequence (f(id)) no information
on values between integer multiples of d is available.
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For analysing the sampling process it is reasonable to de�ne a continuous sampling
function fs(x) which has values f(id) at the positions id and is 0 elsewhere. The generation
of the function fs(x) can be described as multiplication of the function with the Shah
function

fs(x) =
∞̧

n=−∞
f(x)δ(x− nd) =

∞̧

k=−∞
f(id)δ(x− nd) (2.141)

or

fs(x) = f(x).
1

d
III(

x

d
) . (2.142)

We also can interprete fs(x) as the Shah function modulated with the function f(x). The
function values f(id) are identical to the areas under fs(x) around id.

Due to the (dual of the) convolution theorem, the Fourier transform of fs is the con-
volution of the Fourier transforms of f(x) and III(x/d):

Fs(u) = F (u) ∗ III(ud) (2.143)

hence

Fs(u) =
1

d

+∞̧

n=−∞
F (u− n

d
) . (2.144)

The Fourier spectrum of the discretized function fs(x) is the sum of shifted versions
F (u−n/d) of the spectrum F (u). Hence, the spectrum Fs(u) is periodic with period 1/d.

We therefore only need to analyse the spectrum Fs(u) in the range [−1/(2d),+1/(2d)].
If the Fourier spectrum of f(x) is arbitrary, especially if it is long-tailed, summing the
shifted versions of F (u) will lead to a function Fs(u) which di�ers from F (u) in this interval.
This is because high frequencies of the spectrum F (u) outside, possibly far outside, the
interval will show up as low frequencies, due to the shift. Hence, a reconstruction of f(x)
� or, equivalently, of F (u) � from Fs(u) is impossible. This e�ect is called aliasing (from aliasing

Latin: alias = at another time or place), see the example in Fig. 2.16.

xx
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Figure 2.16: Sampling and aliasing. Sampling is done with a distance ∆x = d = 1.
Left: The sine-function f1 = sin(2πu1x) has frequency u1 = 10/9 = 1.111. The signal
appears to be reconstructable from the sampled function values. Right: The sine-function
f2 = sin(2πu2x) has frequency u2 = 10/23 = 0.435. The reconstruction of the original
function appears not possible. We observe a low frequency wave through the sampled points.
Hence the high frequencies of the original signal appear somewhere else in the spectrum,
namely at higher frequencies. � Following the sampling theorem perfect reconstruction is
only possible if u0 ≤ 1/(2∆x) where u0 is the maximum frequency. For ∆x = 1 the maximum
frequency must not be larger than 1/∆x = 0.5. Hence, the �rst signal is reconstructable,
the second is not.

It explains Moiree e�ects, such as appearing when taking digital images of a screen or
when observing a wheel in a video rolling backwards. In these cases, the sampling interval
is not short enough to catch the high frequencies of the space/time pattern.

2.6.2.2 Reconstruction by Interpolation

We now formalize the reconstruction of a continuous function from a sampled version.
This is usually done by interpolation. Interpolation can be represented as convolution of
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Figure 2.17: Aliasing in 2D. Left: Regular pattern of curtain tissue showing the high
frequency pattern of the weaving. Right: Overlaying two distorted pieces of tissue leads to
aliasing e�ects: a deformed grid pattern with longer wave length. The long range intensity
variations result from the non-�atness of the two pieces of tissue. The overlay e�ect can be
interpreted as sampling one of the tissue patterns with the other

fs(x) with an interpolation kernel k(x). The reconstructed signal thus is

pf(x) = fs(x) ∗ h(x) . (2.145)

The spectrum of this reconstructed signal ispF (u) = Fs(u)H(u) . (2.146)

Classical interpolation kernels are, assuming sampling distance d = 1:

1. Nearest neighbourhood interpolation in the spectral domain

H0(u) = rect(u) =

{
1 for |u| < 0.5
0 otherwise

(2.147)

with its inverse Fourier transform

h0(x) = sinc(x) =
sin(πx)

πx
(2.148)

2. Linear interpolation in the frequency domain with

H1(u) = Λ(u) =

 1 + u for − 1 ≤ u ≤ 0
1− u for 0 ≤ u ≤ 1
0 otherwise

(2.149)

with its inverse Fourier transform

h1(x) = sinc2(x) =
sin2(x)

x2
, (2.150)

since Λ(u) = rect(u) ∗ rect(u).

For a perfect reconstruction of the signal from fs(x) two conditions need to be ful�lled:

1. There should not occur any aliasing. Therefore, the signal must be band limited,
thus have only frequencies below a maximum frequency and the sampling distance
must be small enough relative to the shortest wavelength.

2. The interpolation kernel should not change the form of Fs(u) in the interval [−1/(2d),+1/2d)].

Hence, the two mentioned interpolation kernels with sampling distance d = 1 are not
suited for perfect reconstruction, as the amplitude of already small frequencies may be
changed. An interpolation kernel with Fourier spectrum rect(U(ud)) could be used if
the maximum frequency of f(x) is 1/(2d) or smaller. This leads to the sampling theorem
(Whittaker, 1915; Shannon and Weaver, 1949).

Theorem 2.6.8: Sampling theorem. A continuous function f(x) can only be
perfectly reconstructed from the discretized function fs(x) if
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1. the function f(x) is band limited, thus

F (u) = 0 for |u| ≥ u0 (2.151)

and

2. the sampling interval ∆x is small enough, namely

u0 ≤
1

2∆x
or ∆x ≤ 1

2u0
(2.152)

The frequency u0 is called the Nyquist frequency.

The reconstruction can be performed with an interpolation kernel rect(u∆x). This is
equivalent to performing the reconstruction as (see (Shannon and Weaver, 1949))

f(x) =
∞̧

n=−∞
fs(n∆x)sinc

(
x− n∆x

∆x

)
(2.153)

If ∆x < 1
2u0

we also can use a kernel k(x) for which H(u) = 1 for |u| < u0. Obvi-
ously, we would need in�nitely many samples for a perfect reconstruction. Therefore good
approximations of the sinc-function are used.

Proof: We have

F (u) = K(u)Fs(u) with K(u) = ∆x rect(u∆x) . (2.154)

The reason for the factor ∆x in the spectrum K(u) of the kernel is: The spectrum Fs(u) of the
sampled function is is a sum of F (u−n/∆x) divided by the sampling distance, see (2.144). Taking
the inverse Fourier transformation, we now obtain

f(x) = k(x) ∗ fs(x) with k(x) = sinc
( x

∆x

)
. (2.155)

This reads as

f(x) =

» ∞
y=−∞

sinc
(x− y

∆x

)
fs(y)dy =

∞̧

i=−∞
sinc

(
x− i∆x

∆x

)
fs(i∆x) (2.156)

�
The sampling theorem is relevant when geometrically transforming images especially

if they are reduced by large factors. Then we need to perform a low pass �ltering before
the reduction in order to suppress frequencies outside the Nyquist limit and avoid aliasing
e�ects.

2.7 Other Image Transforms

2.7.1 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.2 Haar Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7.3 Gabor Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.1 Wavelets

Representing a signal f(i) as a sum of sine and cosine waves, e.g., as f(i) = 1/n
°n−1
k=0 Fk exp(i2πik/n)

does not allow to analyse the frequency content of a signal locally, since the basis functions
refer to the complete range, e.g., (0, ..., n− 1), of the signal, e.g.,

F (k) =
n−1̧

i=0

f(i) exp(−i2πik/n) . (2.157)
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Figure 2.18: Three signals with three permuted sine-waves having mean 0.5, amplitudes
[2.0, 0.5, 1.0] and wavelengths [51.2, 25.6, 12.8], covering the range 1...400. The rest of the
signal in the range 401...512 is zero. Their amplitude spectrum of all signals is nearly
identical. It has three peaks at the frequencies approximately [51, 26, 13], with a height
representative for the amplitude

Example 2.7.16: Inhomogeneous 1D signals. Take as an example a signal consisting
of a sequence of sine-waves of di�erent amplitude and frequency followed by a constant signal,
see Fig. 2.18 Their amplitude spectrum is � practically � the same. Taking the three peaks at
[51, 26, 13], they do not tell where the according waves appear within the signal.

We would rather have a description of the local properties of the signal, ideally � for the �rst

signal � as show in in Fig. 2.19. This can be achieved by convolution of the original signal with

windowed sin/cosine waves, which focusses on a limited range in the spatial domain, thus only

taking into account a certain neighbourhood of f(x) at each position x, e.g., only two wavelengths.

�

Figure 2.19: Non-homogeneous signal. Top left: Sequence of sine waves with wavelengths
51.2, 25.6 ans 12.8. Mid and lower left Ideal (desired) response ideal response for ampli-
tude and wavelength. Lower right: Real (cosine) part of the Gabor �lter with wavelength
32 and position 256

When using as window function w(i) a Gaussian then we arrive at what are called
Gabor �lters,

gk(i) = w(i) exp(−i2πik/n) , (2.158)

which provide an amplitude/frequency response fk(i) = f(i) ∗ gk(i) of the original signal
localized in space and frequency. Figure 2.19 shows the real part of such a Gabor �lter,
which intuitively represents a frequency (wavelength 32, frequency 512/32 = 16) and a
position (i = 256).
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Unfortunately, generally there is no way to reconstruct the original signal f(i) from a
set of �lter responses fk(i), k = 0, ...,K; i = 0, ..., I.

This can be achieved by the concept of what is called a wavelet transformation. It
starts from a basic �lter, a small wave, called a mother wavelet ψ(x), from which scaled
and shifted versions are derived via

ψj,k(x) = 2j/2ψ(2jx− k) with j, k,∈ ZZ (2.159)

The scaling is performed in steps of a factor 2, resulting in a compressed signal. The
amplitude here is chosen, such that the integral of ψ2

j,k(x) is
³
ψ2(x)dx independent on

(j, k).
The wavelets are similar to the Gabor �lter in Fig. 2.19 lower right. The wavelet

transform essentially consist of applying the wavelets to a signal leading to a set of �ltered
signals

W [f ] : f 7→ c cj,k(x) = ψj,k(x) ∗ f(x) , (2.160)

tells the frequency and the position in the original signal. The concept of wavelets requires
that the original signal f(x) can be recovered from the transformed signals cj,k(x) via

f(x) =
¸
j,k

cj,k(x)ψj,k(x) . (2.161)

There are various ways how such wavelets can be de�ned, see Daubechies (1992). We will
discuss the most basic wavelet, the Haar wavelet hk(i), see Haar (1910). It is useful for
deriving a rich representation of a signal, and therefore used in texture analysis and object
recognition.

Since Haar wavelets show discontinuities, of the above mentioned Gabor �lters gj,k are
used, which also can be de�ned starting from a basic �lter g(x) by scaling and shifting
according to (2.159) and thus allow a local frequency analysis of the signal. Such Gabor
wavelets show a similar behaviour as cells in the visual cortex, and have regularly been
used for texture analysis, why we discuss them more in detail. However, they do not allow
a reconstruction of f(x) from its transformed elements f(x) ∗ gj,k(x).

Finally, we discuss what are called steerable �lters which eases the design and increases
the e�ciency of oriented �lters. Steerable �lters allow to realize rotated �lters as a weighted
sum of basic �lters. They require that the basic �lters have have speci�c properties and
show that partial derivatives of Gaussian �lters belong to this class, which are regularly
used for edge and line extraction.

2.7.2 Haar Wavelets

The most simple mother wavelet is the function, proposed by Haar (1910)

ψ(x) =

 1, if x ∈ [0, 1/2)
−1, if x ∈ [1/2, 1)
0, else.

with
»
ψ(x)dx = 0 and

»
ψ2(x)dx = 1 . (2.162)

It is shown in Fig. 2.20, upper left. If we do not channge the amplitude, we obtain the
functions ψj,k for j = 0, ..., 2; k = 0, ..., 2j − 1. These basis functions can approximate
functions with mean zero in the interval [0, 1] using (2.160).

Assuming discrete functions f = [fi] in the range i ∈ [0, 2n − 2] the basis functions in
a natural manner are related to the discrete Haar transform

c = Hf (2.163)
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Figure 2.20: Haar wavelets ψjk, j = 0, ..., 2; k = 0, ..., 2j − 1, from Weisstein (2023)

with the un-normalized matrices

H(1) =

[
1 1
1 −1

]
(2.164)

H(2) =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 (2.165)

H(3) =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


(2.166)

Observe, the �rst row of the matrices is meant to take the mean, while the other rows
are shifted di�erentiation �lters 1 ∗ [1 ,−1]. The matrices H(2j) are orthogonal but not
orthonormal, since the factor 2j/2 in (2.159) is not applied. The normalized matrices read
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as

H
(1)

=
1`
2

[
1 1
1 −1

]
(2.167)

H
(2)

=
1

2


1 1 1 1
1 1 −1 −1`
2 −

`
2 0 0

0 0
`

2 −
`

2

 (2.168)

H
(3)

=
1

2
`

2



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1`
2
`

2 −
`

2 −
`

2 0 0 0 0

0 0 0 0
`

2
`

2 −
`

2 −
`

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2


(2.169)

such that for the orthonormal matrices H
(2j)

holds

H
j
H
j)T

= I 2j . (2.170)

There is a simple recursive relation for the general non-normalized Haar matrices j

H(1) =

[
1 1
1 −1

]
(2.171)

Hj+1 =

[
H

(j) ⊗ [1 1]
I 2j ⊗ [1 − 1]

]
for j > 1, , (2.172)

modifying the rule given by Steeb et al. (2003), which holds for the normalized Haar
matrices

H
(1)

=
1`
2

[
1 1
1 −1

]
(2.173)

H
j+1

=
1`
2

[
H

(j) ⊗ [1 1]
I 2j ⊗ [1 − 1]

]
for j > 1 . (2.174)

Similar to using only a subset of waves for approximating a signal via a Fourier trans-
form in Fig. 2.9, we may approximate a signal using only the a subset of Haarwavelets,
see Fig. 2.21.

As already mentioned above, Haar wavelets have the disadvantage of leading to dis-
continuous approximations. Therefore, we address gabor �lters in the next section.

The Haar transformation can be applied to 2D signals, similar to the Fourier transfor-
mation in (2.103). For simplicity, let the 2D signal be the square 2j × 2j matrix A then
its (non-normalized) Haar transform is given by (omitting an indicator for the type of
transform)

H (g) : B = HAHT . (2.175)

We can interprete this expression taking the rows of the Haar matrix

H =


hT

1

...

hT
m

...

hT
2j

 (2.176)

and expressing elements Bmn

Bmn = hT
mAhn = tr

(
hnh

T
m A

)
= tr

(
(hmh

T
n)T A

)
. (2.177)
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Figure 2.21: Approximating an original signal using a subset of the Haar wavelets, namely
of index up to 1, 2, 4, 8, and 16, the last option yielding the original signal, , see the di�erence
to the result in Fig. 2.9, where the mean signal is not shown

With the individual 2D Haar wavelets

Hmn = hmh
T
n (2.178)

this can be written as

Bmn =
¸

k=1,...,2j ,l=1,...,2j

(Hmn)klBkl = 1T(Hkl ◦ B)1 (2.179)

expressing the sum of all elements of B weighted with the (kl)-matrix Hkl of the 2D Haar
transformation (the symbol ◦ denotes elementwise multiplication).

The complete set of the non-normalized Haar matrices for the cases j = 1 and j = 3
are shown in Fig. 2.22.

Figure 2.22: 2D Haar wavelets. Left: Case j = 1 with four 2× 2 wavelets. Right: Case
j = 3 with 64 8× 8 wavelets.

We start with the case j = 1.

• The set consists of 2× 2 2D Haar wavelets of size 2× 2.

• The upper left wavelet is responsible for the mean of the signal.

• The o� diagonal wavelets � up to a scaling � represent the elementary discrete
di�erentiation �lters ∆/∆x and ∆/ ∆y in column and row direction.
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• The lower right wavelet represents the torsion �lter ∆2/(∆x∆y).

All �lters have the same size; thus the di�erentiation �lters contain a smoothing part,
e.g., here the smoothing in row direction:

∆

∆x
=

[
1
−1

]
∗ [1 1] =

[
1 1
−1 −1

]
(2.180)

For the case j = 3 we obtain 8 × 8 2D wavelets of size 8 × 8. Again the upper left
wavelet is resopnsible for the mean. The other wavelets are either di�erentiaon �lters or
torsion �lters, possibly di�erently sized in x- and y-direction.

This suggest to interpret the Haar transformation as correlation of A with each wavelet:

Bmn = Hmn ~ B with m = 1, ..., 2j , n = 1, ..., 2j (2.181)

Since A and Hmn have the same size, the result is a scalar, the value Bmn.

Interpreting the wavelets as �lters, allows to perform a type of scale analysis, useing
the unshifted wavelets (k = 0) as a �lter bank, see Viola and Jones (2001), where in
addition also line type features are applied.

2.7.3 Gabor Wavelets

Gabor Filters in 1D. Gabor �lters allow to analyse the local frequency content of a
signal. They need to ful�ll two con�icting requirements: They need to focus on a certain
position and on a certain frequency. We will see that the position and the frequency of a
signal cannot be determined with arbitrary accuracy, similar to the uncertainty principle
in quantum physics, which states that the position and the momentum of a particle cannot
be measured simultaneously with arbitrary precision.

For a local frequency analysis let us take a certain frequency u0 and, instead of using
the complete sine or cosine wave, or the complete complex wave exp(i2πxu0), let us take
a windowed version of it, by multiplying exp(i2πxu0) with a window function w(x), which
we � following Gabor � assume to be a Gaussian, positioned at x = 0 and having a certain
width s0. Hence, we obtain a �lter of the following form:

G(x|u0; s0) =
1a
2πs2

0

exp

(
− x2

2s2
0

)
exp(i2πxu0) , (2.182)

or equivalently a windowed even (cosine) or odd (sine) �lter

Ge(x|u0; s0) =
1a
2πs2

0

exp

(
− x2

2s2
0

)
cos(2πxu0) (2.183)

Go(x|u0; s0) =
1a
2πs2

0

exp

(
− x2

2s2
0

)
sin(2πxu0) . (2.184)

Since the Fourier transform of the convolution of two signals is the product of the Fourier
transforms, and this also holds for the inverse Fourier transform, we obtain the Fourier
transform of the Gabor �lter as the convolution of the Gaussian window, which again is
a Gaussian function and the Fourier transform of the pure exponential which is a sum of
two delta functions:

F (G(x)) = F (h(x)) ∗ F (exp(i2πxu0)) . (2.185)

Due to (2.110) this is exp(−2π2s2
0u

2) ∗ δ(u − u0), hence a (non-normalized) Gaussian,
which has centre u0:

F (G(x)) = exp
(
−2π2s2

0(u− u0)2
)
. (2.186)

As we can see from Fig. 2.23, the �lter is concentrated in both, the spatial domain and
the frequency domain. The concentration depends on the chosen width s0 of the window
function. The concentration can be measured by the normalized second central moments,
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Figure 2.23: Three Gabor �lters with length N = 128, and di�erent wavelengths w0 and
frequencies u0 = N/w0, centred at N/2. The width s0 has been adapted to the wavelength
in order to capture the same number of waves, namely s0 = w0/2. Left: w0 = 32, u0 = 4.
Middle: w0 = 16, u0 = 8. Right: w0 = 8, u0 = 16. Top row: Even (blue) and odd (red
dashed) Gabor �lters. Bottom row: Fourier transform of the �lters: Gaussian with peak
at frequency u0. The product of the width σx of the discrete signal in the spatial domain and
the width σu in the discrete frequency domain is independent of s0 and equal to N2/(16π2)

i.e., the variances of the squared functions |G(x)|2 and |F (G(x))|2, in order to eliminate
the negative and imaginary parts. The variances therefore are

σ2
x(s0) =

³∞
x=−∞ x2|G(x)|2dx³∞
x=−∞ |G(x)|2dx

=
1

2
s2

0 , (2.187)

and

σ2
u(s0) =

³∞
x=−∞(u− u0)2|F (G(x))|2du³∞

x=−∞ |F (G(x))|2du
=

1

8π2s2
0

. (2.188)

Hence the product of both variances is

σ2
x(s0) σ2

u(s0) =
1

16π2
, (2.189)

independent of the width s0. The equation states, that re�ning the positioning accuracy, by
diminishing s0, leads to a less well de�ned frequency description, a larger σu, and vice versa.
Hence, we cannot determine the frequency content of a signal at a well-de�ned position
with arbitrary accuracy. This is the equivalent to Heisenberg's uncertainty principle. If the
window function is not chosen to be a Gaussian, then it can be proven, that the product
is larger than 1/(16π2), thus generally we have (see Folland and Sitaram (1997))

σ2
x σ

2
u ≥

1

16π2
. (2.190)

Gabor Filters in 2D. The concept of windowed �lters can easily be transferred to 2D.
here, we take a basis function sine and cosine waved with a frequency of w0 in a certain
direction φ, see Fig. 2.24. With the direction vector n = [nx, ny] = [cosφ, sinφ]T we start
from

cos(2πnTxw0) = cos(2π(x cosφ+ y sinφ)w0) . (2.191)

This is an in�nite wall roof pattern with Fourier transform

F (cos(2πnTxw0)) =
1

2
[δ(u− u0) + δ(u+ u0)] with . (2.192)

with the vector

u0 = nf0 =

[
u0

v0

]
=

[
cosφ
sinφ

]
w0 . (2.193)
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Figure 2.24: Gabor �lter: Left: Wave with given wavelength and direction. Mid: its
localized version, a 2D-Gabor �lter, Right: The absolute value of the 2D-Fouriertransform,
also localized

In order to focus the analysis onto a certain position (x, y), we again apply a Gaussian
window, especially a isotropic Gaussian with width s0 and achieve a 2D Gabor �lter

G(x, y|u0, v0, s0) =
1

2πs2
0

exp

(
−||x||

2

2s2
0

)
exp (i2π[u0x+ v0y]) , (2.194)

or more compactly

G(x|u0, s0) =
1

2πs2
0

exp

(
−||x||

2

2s2
0

)
exp

(
i2πuT

0x
)
, (2.195)

which again has an even (cosine) and an odd (sine) component:

Ge(x|u0, s0) =
1

2πs2
0

exp

(
−||x||

2

2s2
0

)
cos
(
2πuT

0x
)

(2.196)

Go(x|u0, s0) =
1

2πs2
0

exp

(
−||x||

2

2s0

)
sin
(
2πuT

0x
)
. (2.197)

The Fourier transform of the Gabor �lter again is a non-normalized Gaussian centred at
u0 = [u0, v0]T,

F (G(x, y)) = exp
(
−2π2s2

0[(u− u0)2 + (v − v0)2]
)
. (2.198)

As in the one-dimensional case, the �lter is located well in both, the spatial and the
frequency domain, as can be seen in Fig. 2.24.

Gabor Wavelets. Gabor �lters obviously can be designed to cover all frequencies and
� in two dimensions all directions � and thus are able to provide a full analysis of the local
spectral properties of a signal. As already seen in Fig. 2.23 the di�erent Gabor �lters can
be derived from what is called a basic mother wavelet by dilation and � in two dimensions
by rotation. In the following we only refer to two-dimensional images.

Let a Gabor �lter G(x|f, φ) be characterized by its direction φ and its frequency f .
Starting from φ0 = 0 and some smallest frequency f0 and assume the width of the Gaussian
window h(x) is half the wavelength, hence s0 = 1/(2f0), then we have the Gabor mother
wavelet

G(x|f0, φ0) =
f2

0

2π
exp

(
−2f2

0 ||x||2
)

exp
(
i2πxTu0(f0, φ0)

)
with u(f, φ) = f

[
cosφ
sinφ

]
(2.199)

with its Fourier transform

F (G(x|f0, φ0)) = exp

(
− π2

2f2
0

||u− u0(f0, φ0)||2
)

(2.200)

If we now want to cover the frequency plane by a set of Gabor �lters, we may choose a set
of directions φ and a set of frequencies f . Since we used an isotropic weight function, each
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Figure 2.25: The frequency domain can be tesselated with Gabor �lters: A �xed directional
resolution can be transferred to a �xed ratio of the frequencies, i.e., distances to the origin

�lter can be represented by a circle in the frequency plane. Hence, if we want to have a
circular band tesselated with circles, then, if we choose the number Mφ of directions, the
scale change between the frequencies is �xed, as can be seen in Fig. 2.25. There we chose
the smallest frequency f0 = 1 and the number of frequencies Mf = 5. then we arrive at
other Gabor �lters by choosing a set of directions φ and a set of frequencies f .

2.8 Exercises

1. Show the relation of the real and the complex coe�cients Bn, ϕn and B′n in (2.4)
and (2.5). Are there relations between the coe�cients Bn? Be speci�c.

2. Prove the �lter kernel for the backward and the forward di�erences (2.22) and (2.23).

3. Let a discrete signal (xi), i = −∞, ...,∞ be smoothed using a moving average of the
�ve elements around it:

yi =
1

5

i+2̧

j=i−2

xj with i = −∞, ...,∞ . (2.201)

Show, that this equation can be written as a convolution y = r ∗ x. Give the kernel
r explicitly.

4. Use (2.73), p. 35 to show that the elements [xi] are real if the elements [Xk] of its
discrete Fourier transform are related by Xk = X∗n−k. Use this result and show,
that only n real values are necessary for representing the Fourier spectrum of a real
signal. Hint: Discuss signals with odd and even elements separately.

5. For the reverse signal x = [x0, xn−1, ..., x1] show that the Fourier transforms of x
and x are related by X = x∗.

6. Given is a random n-vector x ∼ N (0,Σxx) with the cyclical covariance matrix
Σxx = Z (c). Its Fourier transform is given by X = Fx or Xk = fT

kx with fT
k =

[1, w−k, w−2k, ..., w−(n−1)k] with the unit root w = exp(2πi/n). Derive the 2 × 2
covariance matrix ΣUkUk := D(Uk) of the vector Uk = [<(Xk),=(Xk)] and the
variance of Xk. Hint: Use the two vectors ak = <(fk) and bk = =(fk).

(a) Under which conditions is bk = 0? Give the 2× 2-covariance matrix ΣUkUk for
these cases.

(b) Use the decomposition Z (c) =
°n−1
i=0 Z i =

°n−1
i=0 ciZ (ei), where ei is the i-

th unit vector and derive explicit expressions for the bilinear forms aT
kZ iak,

aT
kZ iak, as a function of the unit roots w for the case that bk /= 0. Hint: Use
<(a+ ib) = (eix + e−ix)/2 and =(a+ ib) = (eix − e−ix)/2. Simplify notation by
setting

°
i :=

°n−1
i=0 .
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(c) Give the 2× 2 covariance matrices of Uk for the cases that bk /= 0.

(d) Which distribution do the Fourier coe�cients Uk have.

(e) Which distribution do the coe�cients of the empirical power spectrum have?
Hint: Why is it necessary here to take into account whether bk is the zero
vector?

(f) The Fourier coe�cients are linear functions of the signal, hence, their real an
imaginary part are normally distributed.

(g) Since the coe�cients of the power spectrum are the sum of two squared normally
distributed random variables.
In case of real fk the imaginary part has variance zero. Therefore, the coe�-
cients Ck, k = 0, n/2 are the square of a normally distributed random variable,
namely Ck = X2

k with xk ∼ N (0, σ2
Xk

). Hence, we have the chi-square dis-
tributed variables

Ck
σ2
Xk

∼ χ2
1 for k ∈ {0, n/2} . (2.202)

In all other cases the real and the imaginary part of Xk have the same variance,
namely

V(<(Xk)) = V(=(Xk))) =
σ2
Xk

2
. (2.203)

Therefore we have the chi-square distributed variables

Ck
σ2
Xk
/2
∼ χ2

2 for k /∈ {0, n/2} . (2.204)

60



3 Logistic Regression

Logistic Regression is a basic tool for classi�cation. The �rst part of the note, taken from
a lecture, provides the basics for two class classi�cation, generalizes to multiple classes
and nonlinear decision boundaries, and provides some examples. The second part, more
of conceptual nature, had been an internal basis for the lecture, highlights the structure of
the decision boundaries, and focusses on the structure of the Hessian matrix and its rank.

3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Lecture on Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 The logistic function and the basic model of logistic regression . . . 62
3.2.3 Learning the parameters . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.4 General Separation Functions . . . . . . . . . . . . . . . . . . . . . . 66

3.3 The Strucure of the Hessian for a Symmetric Model . . . . . . . . . . . . . 67
3.3.1 The structure of the gradient and the Hessian . . . . . . . . . . . . . 71
3.3.2 The case for two classes . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 Preface

This notes consists of two parts. The �rst part is a section from a lecture on pattern
recognition from 2009. It provides the basics of logistic regression, and generalizes to
multiple classes and to nonlinear decision boundaries. The second part (2010/2022) is more
of conceptual nature and served as an internal basis for the �rst part. It summarizes the
note by Jordan (1995) and parts of the paper on the relation between Bayesian networks
and logistic regression by Roos et al. (2005) and especially focuses on rank and the use
of the Hessian during parameter learning, which is not discussed in Bishop (2006, Sect.
4.3.3).

3.2 Lecture on Logistic Regression

3.2.1 Motivation and Problem

We discuss a method for classi�cation that has the following favourable properties:

• The number of classes can be two or more.

• The number of features can be arbitrary.

• The class boundaries are linear. By transforming the features, we may realize non-
linear class boundaries.

• The number of parameters for the classi�er increases linearly with the number of
classes

• There is a more e�cient algorithm for Determination of the parameters from training
data.
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• The classi�er returns for each to be classi�ed object the a posteriori probability of
class membership.

• The underlying model is discriminative, i.e., the procedure serves to separate the
classes.

We start with the binary classi�cation, motivate the structure of the classi�cation
model, illustrate the functions involved and show that determining the parameters from
training data leads to a convex optimization problem. Then we formulate the problem for
more than two classes and show that non-linear class boundaries can also be realized.

3.2.2 The logistic function and the basic model of logistic regres-
sion

The so-called logistic function determines the name

σ(x) =
1

1 + e−x
(3.1)

with remarkable properties:

σ(−x) = 1− σ(x) (3.2)

σ′(x) = σ(x)(1− σ(x)) = σ(x)σ(−x) (3.3)

2σ(x) = 1 + tanh
(x

2

)
(3.4)

lim
t→0

σ
(x
t

)
= H(x) (3.5)

Its derivative σ′(x) looks similar to the Gaussian function, but it does not fall so quickly.
One can therefore also use σ(x) as a model for a soft step function. From σ(x/t) in the
limit one obtains a step function, also called Heaviside function, (3.5).

We start with the binary maximum a posteriori classi�cation of an object based on
a scalar feature. Given the class ωi, i = 1.2, we �rst assume the feature is normally
distributed with the class independent variance σ but di�erent mean µi

.
= µx|ωi , i = 1.2.

Then we get the posterior distribution

P (ω1|x) =
p(x|ω1)P (ω1)

p(x|ω1)P (ω1) + p(x|ω2)P (ω2)
(3.6)

=
1

1 +
p(x|ω2)P (ω2)

p(x|ω1)P (ω1)

(3.7)

=
1

1 + exp (ln p(x|ω2) + lnP (ω2)− ln p(x|ω1)− lnP (ω1))

=
1

1 + exp
(
lnG(x|µ2, σ

2)− lnG(x|µ1, σ
2) + lnP (ω2)− P (ω1)

)
and with

lnG(x|µ, σ2) = ln

(
1`

2πσ2
exp

(
−1

2

(x− µ)2

σ2

))
(3.8)

= ln
1`

2πσ2
+
−x2

2σ2
+

2µx

2σ2
+
−µ2

2σ2
(3.9)

= ln
1`

2πσ2
+
−x2

2σ2loooooooooomoooooooooon
independent of ω

+
µ(2x− µ)

2σ2
(3.10)

we receive

P (ω1|x) =
1

1 + exp
(
µ2(2x−µ2)

2σ2 − µ1(2x−µ1)
2σ2 + lnP (ω2)− lnP (ω1)

)
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Obviously, the exponent in the denominator is linear in x. Therefore, we can write

P (ω1|x) =
1

1 + exp(w0 + w1x)
(3.11)

with

w0 =
µ2

1 − µ2
2

2σ2
+ lnP (ω2)− lnP (ω1) (3.12)

w1 =
µ2 − µ1

2σ2
(3.13)

Correspondingly we get

P (ω2|x) = 1− P (ω1|x) =
exp (w0 + w1x)

1 + exp (w0 + w1x)
(3.14)

Now let us look at the logarithm of the ratios of the posterior probabilities

ln
P (ω2|x)

P (ω1|x)
= w0 + w1x (3.15)

to see that it is a linear function in x.

We now assume that this model is used for classi�cation, even if the distribution of
features is not normal: The logarithm of the two a posteriori probabilities is given as a
linear function of the feature modelled.

Remark: The logistic function (3.1) gives the model (3.11) because of (3.15) the name: logistic

regression. The term regression is misleading, since logistic regression as such is a classi�cation

method, though internally using a regression method. �
The classi�cation model can thus be formulated as follows: for a given feature x choose

the class ωi with maximum a posteriori probability:

pω = argmaxiP (ωi|x,w) (3.16)

with

P (ωi|x,wi) =
exp

(
wT
i x
)°

i exp
(
wT
i x
) =

exp (w0i + w1ix)°
i exp (w0i + w1ix)

(3.17)

with the parameters and the homogeneous feature vector

w1 =

[
w01

w11

]
=

[
0
0

]
w := w2 =

[
w02

w12

]
x =

[
1
x

]
(3.18)

The formulation (3.17) is symmetric in both classes. However, we have �xed the parame-
ters for the �rst class and combined the parameters for the second class in the vector w.
This does not change the decision boundaries, see the argument before Eq. (3.56).

3.2.3 Learning the parameters

Now suppose we have N training examples available. These are couples (ωn, xn)n, n =
1, ..., N , i.e. N objects with their properties xn and the classes ωn. The task is to determine
optimal parameters w. To do this, we collect the pairs in the two vectors

ω
N×1

=


ω1

...
ωn
...
ωN

 =

[
ω1

ω2

]
X
N×2

=


xT

1

...
xT
n

...
xT
N

 =

[
X 1

X2

]
(3.19)
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such that the �rst N1 pairs are grouped in ω1 and X 1 and the other N2 pairs in ω1 and
X 1. Apparently N = N1 +N2 applies.

The parameters are optimal if, given data X and parameters w, the overall probability
for the classes ω is greatest. So we want w from

pw = argmaxwP (ω|X ,w) (3.20)

with
P (ω|X ,w) =

¹
n

P (ωn|xn,w) (3.21)

Instead of P (ω|X ,w) we can also maximize the logarithm:

Q(w) = lnP (ω|X ,w) (3.22)

=
¸
n

lnP (ωn|xn,w) (3.23)

=
N1̧

n=1

lnP (ω1|xn,w) +
Ņ

n=N1+1

lnP (ω2|xn,w) (3.24)

=
N1̧

n=1

ln
1

1 + exp(wTx)
+

Ņ

n=N1+1

ln
exp(wTx)

1 + exp(wTx)
(3.25)

=
N1̧

n=1

(0− ln(1 + exp(wTxn))) +
Ņ

n=N1+1

(wTxn − ln(1 + exp(wTxn))

This is obviously a nonlinear optimization problem. At the minimum the condition

f(w) = ∇Q(w) =
∂Q

∂w
= 0 (3.26)

needs to hold. To determine these zeros, we apply Newton's method. If we have approxi-
mate values of w(0) we can iteratively get improved w from:

w(ν+1) = w(ν) −∆w(ν) (3.27)

∆w(ν) = ∇(f(w(ν)))−1f(w(ν)) = H−1 (Q(w)|w(ν))∇Q(w)|w(ν)

where H(Q) is the Hessian of the second derivatives of Q to w and ∇Q are the vector of
�rst derivatives.

First, we get the �rst derivatives

∇wQ(w) =
N1̧

n=1

xn

(
0− exp(wTxn)

1 + exp(wTxn)

)
+

Ņ

n=N1

xn

(
1− exp(wTxn)

1 + exp(wTxn)

)
. (3.28)

With the probabilities

pni(w) = P (ωi|xn,w) =

{
1

1+expwTxn
= σ(wTxn), if i = 1

expwTxn
1+expwTxn

= 1− σ(wTx) = σ(−wTx), if i = 2
(3.29)

this is

∇wQ(w) =
N1̧

n=1

−xnpn2(w) +
Ņ

n=N1+1

xnpn1(w) (3.30)

Due to σ′(x) = σ(x)(1− σ(x)) the second derivatives are

H(Q(w)) =
N1̧

n=1

−∂pn2(w)

∂w
xn +

Ņ

n=N1+1

∂pn2(w)

∂w
xn (3.31)

=
N1̧

n=1

−xnxT
npn1(1− pn1)−

Ņ

n=N1+1

xnxT
npn2(1− pn2)
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and since pn1(1− pn1) = pn2(1− pn2) �nally

H(Q(w)) = −
Ņ

n=1

pn(1− pn) xnxT
n (3.32)

Since the products pn(1− pn) are positive, the 2× 2 matrix is negative de�nite.
Altogether we get the iteration sequence

w(ν+1) = w(ν)+

(
Ņ

n=1

pn(w(ν))(1− pn(w(ν))) xnxn

)−1 ( N1̧

n=1

−xnpn2(w(ν)) +
Ņ

n=N1+1

xnpn1(w(ν))

)
(3.33)

The following Matlab program shows the essential steps. For any approximate values we
have:

• The slope of the logistic function should decrease with the distance between the
mean values

w1 =
1

µ2 − µ1
with µi =

1

Ni

¸
xni, i = 1.2 (3.34)

• The in�ection point x0 should be at (µ1 + µ2)/2, so w0 + w1x0 = 0 applies

w0 = −w1x0 = −w1
µ1 + µ2

2
(3.35)

% learn logistic regression: two classes, one feature

% X1 = vector with features class 1

% X2 = vector with features class 2

% maxiter = maximum number of iterations

function w=lr_2(x1,x2,maxiter);

N1=size(x1,1);N2=size(x2,1);N=N1+N2; % Number of samples

X1=[ones(N1,1),x1];X2=[ones(N2,1),x2];X=[X1;X2]; % X matrices

x1m=mean(x1); x2m=mean(x2); % class means

w1=1/(x2m-x1m); % approximate values

w0=-w1*(x1m+x2m)/2; % slope w1, mid-point between means

w=[w0,w1]';

delta_w=[1,1]'; % initial value

for iter = 1:maxiter % iteration loop

iter=iter

p=zeros(N,1);

for n=1:N1

p(n)=1/(1+exp(+w'*X(n,:)')); %p_n1

end

for n=N1+1:N

p(n)=1/(1+exp(-w'*X(n,:)')); %p_n2

end

p1=p(1:N1);p2=p(N1+1:N);

grad=(-ones(1,N1)*([1-p1,1-p1].*X1)+... % gradient

ones(1,N2)*([1-p2,1-p2].*X2))'

H=X'*diag(p.*(1-p))*X % Hessian

delta_w=H\grad; % solve for increments

if norm(w) > 100 | ...% check for convergence

abs(det(H))< 10^(-8) |...

norm(delta_w) < 10^(-6)

return

end

w=w+delta_w % update w

end

return
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3.2.4 General Separation Functions

The presented classi�cation method can be generalized in di�erent directions.

• The number of features can be arbitrary. Then for d features we have to use the
homogeneous parameter vector and the homogeneous feature vector

wi =

[
w0i

w1i

]
x =

[
1
x

]
. (3.36)

Figure 3.1: Two classes with two features and linear separation. Left: sample and dividing
line (double line). Right: maximum a posteriori probability

• The number of classes I can be arbitrary. That does not change the model (3.17).
The sum is only to be taken across all classes.

Figure 3.2: Sample (left), separation functions (middle) and maximum a posteriori prob-
ability (right) with six classes.

• The strongest limitation is the linearity of the separation functions. This limita-
tion can be removed by transforming the features. For this, we introduce modi�ed
features (sometimes called lifted features, due to the extension using polynomials)

φk = φk(x) (3.37)

For example, if we want to separate three classes with one feature, we choose that
transformed features

φ0 = 1 φ1 = x φ2 = x2 (3.38)

and get the model

P (ωi | x,wi) =
exp(wT

i φ(x))°
i exp(wT

i φ(x))
(3.39)

with

wi =

[
w0

wi

]
=

 w0i

w1i

w2i

 φ =

[
1
φ

]
=

 1
φ1

φ2

 (3.40)
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so

P (ωi | x,wi) =
exp(w0i + w1iφ1(x) + w2iφ(x))°
i exp(w0i + w1iφ1(x) + w2iφ(x))

=
exp(1 + w1ix+ w2ix

2)°
i exp(1 + w1ix+ w2ix2)

(3.41)
If e.g. the elements of class 2 lie within [−2,+2] and the features of the other class
to the left and right of it, and therefore one wants to separate at x = −2 and at
x = +2, we can choose the exponent

wTφ = (x− 2)(x+ 2) = −4 + x2 (3.42)

as wT = [−4, 0, 1]. The a posteriori probability for class 1 is shown in the �gure.

Figure 3.3: A posteriori probability 1/(1 + expwTφ) for a quadratic separation function
wTφ = −4 + x2.

The �gure below shows the learning outcome for four classes, each consisting of a
mixed distribution of two Gaussian distributions. The transformed characteristics
were ten monomials used up to degree three:

φT(x, y) = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3] (3.43)

Figure 3.4: Sample (left) and class boundaries (right) for four classes, each representing a
mixed distribution of two Gaussian distributions. As transformed features: monomials up
to degree three.

3.3 The Strucure of the Hessian for a Symmetric Model

Remark: This part of the note focusses on the structure of the Hessian in case of more than two

classes when starting from a symmetric model. Since it is written independently of the previous

lecture part, it starts from scratch and partially repeats arguments from the lecture. �
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We have given a training set (x, ωn)n, n = 1..., N of observed feature vectors xn of
dimension D and their given classes ωn ∈ Ω, with |Ω| = K being the number of classes.
We want to derive a classi�er which allows for a new test feature vector x to derive the
most probable class ω based on the posterior probability P (ω|x). For this we need to
specify the structure of this function P (ω|x) as a function of x.

This can be achieved in two ways:

1. Generatively, by using Bayes' rule

P (ωk|x) =
P (x|ωk)P (ω)°

l P (x|ωl)
(3.44)

Then we just need to specify the prior and the likelihood, i. e. the observation model.

2. Discriminatively, by directly modeling the posterior P (ω|x).

We now could rewrite (3.44) in the following way

P (ωk|x) =
exp{logP (x|ωk)P (ωk)}°
l exp {logP (x|ωl)P (ωl)}

(3.45)

We gain simplicity, in case P (ω|x) can be written as a linear function of the feature values
x, e. g. in case all P (x|ωk) are Gaussians with the same covariance matrix.

In general, therefore we assume the posterior can be modelled as

P (ωk|x,wk) =
exp(wT

kx)°
l exp(wT

l x)
(3.46)

This type of regression of P on the D + 1-vector

x =

[
1
x

]
(3.47)

with unknown parameters

wk =

[
wk0

wk

]
(3.48)

including a constant so-called bias-term wk0 is called logistic regression.
It results from the special form with K = 2 where we can write (3.45)

P (ω1|x) =
1

1 + exp
{
− log

[
P (x|ω1)
P (x|ω2)

]
− log

[
P (ω1)
P (ω2)

]} (3.49)

With the logistic function

σ(t) =
1

1 + exp(−t)
(3.50)

we observe the a posterior to be a logistic function of the likelihood ratio and the ratio of
the priors.

Example: Logistic regression in 1D. Let us assume three classes K = 3 separated
at x = −2 and x = 1. This can be achieved by choosing the parameters

w1 =

[
−3
−3

]
w2 =

[
5
1

]
w3 =

[
0
6

]
(3.51)

The three straight lines yk(x) = wT
kx or

y1(x) = −3− 3x y2(x) = 5 + x y3(x) = 6x (3.52)

intersect at x = −2 and x = 1. The maximum

y = maxx(yk(x)) = maxx(wT
kx) = maxx(−3− 3x, 5 + x, 6x) , (3.53)
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Figure 3.5: Left: maximum of yk is a convex polygon. Right: replacing the maximum
function maxx yk(x) by log

°
k exp yk(x) yields a convex function smoothly approximating

the convex polygon.

is a convex polygon, having its maximum for x ≤ 2 at y1(x), for −2 ≤ x ≤ 1 at y2(x) and
for x ≥ 1 at y3(x).

We write the posterior (3.46) as

P (ωk|x,wk) = exp logP (ωk|x,wk) = exp


wT
kx− log

¸
l

exp(wT
l x)looooooooomooooooooon

log dloooooooooooooomoooooooooooooon
logP


(3.54)

and investigate the interior underbraced expression, which is the logarithm log d of the
denominator in (3.46). For this, we compare the polygon with the function

y = log
°
k e

yk = log
°
k e

wT
kx = log(e−3−3x + e5+x + e6x) . (3.55)

Obviously we obtain a smoothed version of the polygon.
The logarithm logP of the posterior in (3.54) is close to 0 in case the straight line

wT
kx = 0 is identical to the convex polygon, thus the posterior is close to 1. Otherwise

the underbraced expression is negative, thus the posterior is far from 1. In case we would
a�nely stretch the polygon, e. g. by multiplying the functions yk with 2, which is equiv-
alent to multiplying the parameters wk by that factor, the smooth curve would be closer
to the polygon, and the transition of the posterior between the classes would be sharper.

The example gives us an insight into the number of free parameters. A common addend
in all exponents does not change the situation, as the polygon is just shifted. Moreover,
we may shear the polygon, and set one of the edges to 0, e. g. y1(x) = 0. This can be
achieved

P (ωk|x,wk) =
exp (−wT

1 x)

exp (−wT
1 x)

exp(wT
kx)°

l exp(wT
l x)

(3.56)

=
1°

l exp ((wl −w1)Tx)
(3.57)

=
1

1 +
°K
l=2 exp ((wl −w1)Tx)

(3.58)

Thus the problem has only (D + 1)(K − 1) degrees of freedom.
In the following we want to determine the parameters in the (D + 1)×K-matrix

W = [w1, ...,wk, ...,wK ] (3.59)
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Figure 3.6: Upper left: the logarithm of the denominator of the posterior. Lower left: The
posterior for the three classes. Right column: same as �g. 3.6 but with double values wk.
Upper right: the logarithm of the denominator of the posterior. Observe the di�erent scaling
in y. Lower right: The posterior for the three classes

from training data. For this we want to maximize the likelihood

L(W ) = P (ω,X |W ) =
¹
n

P (ωn,xn|W ) (3.60)

with

ω =


ω1

...
ωn
...
ωN

 X =


xT

1

...
xT
n

...
xN

 (3.61)

and assuming the samples to be mutually independent. Due to P (ω,X |W ) = P (ω|X ,W )P (X )
we also can maximize

P (ω|X ,W ) =
¹
n

P (ωn|xn,W ) (3.62)

or the logarithm

Q(W ) = logP (ω|X ,W ) =
¸
n

logP (ωn|xn,W ) =
¸
n

Qn(W ) (3.63)

Assume, in the ν-th iteration we have approximate values W (ν) for the complete K ×D
parameter matrix then an update rule would be

W (ν+1) = W (ν) −∆W (ν) (3.64)

with
∆W (ν) = −H−1(Q(W )) ∇Q(W ) (3.65)

where H(Q(W )) and ∇Q(W ) are the Hessian and the gradient of Q resp. Eq. (3.65)
suggests H(Q(W )) to be regular. Actually, it can be shown, that it is negative semide�nite,
but singular.

The problem now is: Investigate the structure of the Hessian of the logistic regression,
especially its rank and derive an explicit expression for (3.65).
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3.3.1 The structure of the gradient and the Hessian

The logarithm of the a posterior is

Q(W ) =
¸
n

Qn =
¸
n

logP (ωn|xn,W ) =
¸
n

(
wωnxn − log

[¸
l

expwlxn

])
(3.66)

as only the subvector wωn is relevant for the modelling of the class ωn.
Thus we obtain the �rst derivative for each En

∂Qn(W )

∂wk
= δk=ωnxn −

xn expwkxn°
l expwlxn

= xn (δk=ωn − P (ωk|xn,W )) (3.67)

being a K-vector. As we are interested in ∂Qn(W )
∂w we introduce the N ×K-matrix of all

conditional probabilities

P =


pT

1

...
pT
n

...
pT
N

 = [pnk] = [P (ωk|xn,W )] (3.68)

with the K-vectors pn, containing the current probabilities in the the sample to belong to
class k, and can write the partial derivative

∂Qn(W )

∂w
= (eωn − pn)⊗ xn (3.69)

being a K ×D-vector. The K-vector eωn is the ωn-th unit vector. The complete gradient
therefore is the K ×D-vector

∇wQ(W ) =
∂Q(W )

∂w
=
¸
n

∂Qn(W )

∂w
=
¸
n

(eωn − pn)⊗ xn (3.70)

The Hessian results from a further di�erentiation w. r. t. w. We �nd from (3.67)

∂Q2(W )

∂wk∂wT
k′

= −∂xnP (ωk|xn,W )

∂wT
k′

(3.71)

= −xn
∂P (ωk|xn,W )

∂wk′
(3.72)

The right factor can be obtained from

P (ωk|xn,W )
¸
l

expwlxn = expwkxn (3.73)

by di�erentiation of both sides

∂P (ωk|xn,W )

wT
k′

¸
l

expwlxn + P (ωk|xn,W )

°
l expwlxn

wT
k′

=
expwkxn
wT
k′

(3.74)

∂P (ωk|xn,W )

wk′

¸
l

expwlxn + P (ωk|xn,W )xT
n exp(wk′xn) = δkk′x

T
n expwkxn(3.75)

Thus we have

∂Q2
n(W )

∂wkwT
k′

= −xnxT
n(δkk′ − P (ωk′ |xn,W ))P (ωk|xn,W ) (3.76)

Again we write this in matrix form, leading to

∂Q2
n(W )

∂wkwT
k′

= −(Diag(pn)− pnpT
n)⊗ xnxT

n (3.77)
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Therefore the Hessian is

H(Q(W )) = −
¸
n

(
Diag(pn)− pnpT

n

)
⊗ xnxT

n (3.78)

The �nal correction can be written as

∆w = −

(¸
n

(
Diag(pn)− pnpT

n

)
⊗ xnxT

n)

)+¸
n

(eωn − pn)⊗ xn (3.79)

Now we analyse the rank of the Hessian. First, we observe that

(Diag(pn)− pnpT
n)1K = pn − pn.1 = 0 (3.80)

Therefore, the Matrix
B = 1K ⊗ ID (3.81)

is a right null space of the Hessian and the Hessian has maximum rank

rk(H) ≤ (K − 1)D (3.82)

Therefore, we solve for the parameters by[
w
κ

]
=

[
H(Q) B

BT 0D×D

]−1 [ ∇Q
0D×1

]
(3.83)

Second, in case the feature vectors are normalized such that

xT
n1D = 0 for all n (3.84)

a right null space is
C = IK ⊗ 1D (3.85)

In this case the rank of the Hessian is

rk(H) ≤ (K − 1)(D − 1) (3.86)

3.3.2 The case for two classes

We derive the equations for the two-class problem, hence, K = 2, starting at (3.59). We,
again, assume the N observed features to be sorted, such that the �rst N1 belong to class
ωn = 1 and the second N2 belong to class ωn = 2, hence:

ω = [ωn] =

[
ω1

ω2

]
, X =

[
xT

1

xT
2

]
, w = vec(W) =

[
w1

w2

]
. (3.87)

We assume

Pnk(w) := P (ωk | xn,w) =
exp(wT

kxn)°2
i=1 exp(wT

i xn)
k = 1, 2 , n = 1, . . . , N . (3.88)

with the 2-vectors
pn = (3.89)

Then we have the complete model:

P (ω | x,W ) = P (ω1 | x1,W )P (ω2 | x2,W ) . (3.90)

The likelihood we want to maximize, is

L(w) =
N¹
n=1

P (ωn,xn | w) . (3.91)
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Hence the log-likelihood is

Q(w) =
N1̧

n=1

logP (ω1,xn | w) +
Ņ

n=N1+1

logP (ω2,xn | w) (3.92)

=
N1̧

n=1

log
exp(wT

1 xn)

exp(wT
1 xn) + exp(wT

2 xn)
+

Ņ

n=N1+1

log
exp(wT

2 xn)

exp(wT
1 xn) + exp(wT

2 xn)
(3.93)

=
N1̧

n=1

w1xn +
Ņ

n=N1+1

w2xn −
Ņ

n=1

log(exp(wT
1 xn) + exp(wT

2 xn)) (3.94)

The necessary condition for the solution is, using

∇wQ(w) =
∂Q(w)

∂wT
= 0 . (3.95)

We use

∂ log(exp(wT
1 xn) + exp(wT

2 xn))

∂wT
1

=
xn exp(wT

1 xn)

exp(wT
1 xn) + exp(wT

2 xn)
n = 1, ..., N1 (3.96)

First, we have the derivatives w.r.t. w1:

∇w1
Q(w) =

N1̧

n=1

(
xn −

xn exp(wT
1 xn)

exp(wT
1 xn) + exp(wT

2 xn)

)
(3.97)

=
N1̧

n=1

xn

(
1− exp(wT

1 xn)

exp(wT
1 xn) + exp(wT

2 xn)

)
(3.98)

=
N1̧

n=1

(1− Pn1(w))xn (3.99)

Similarly, we have

∇w2
Q(wT) =

Ņ

n=N1+1

(1− Pn2(w))xn . (3.100)
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4 Forward and Backpropagation in a Neu-

ral Network

Multi-layer Neural Networks and Convolutional neural networks play an important role in
interpreting signals. We derive the basic relations for fully connected neural networks, es-
pecially the Jacobians for the backward propagation used for learning. Examples based on
a simple Matlab-implementation demonstrate the usefulness for elementary classi�cation
tasks. The corresponding relations for convolutionally connected layers, which usually are
de�ned by valid correlations, show a remarkably simple relation to those of fully connected
layers.
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4.1 Preface

The �rst part of the note (2017/2023) results from discussions in a reading group summa-
rizes the forward and backward propagation in a multi-layer neural network, realized and
tested in Matlab. The Jacobians required for convolutional networks are derived and
show a remarkable similarity.

4.2 Problem

Given a multi-layer neural network, derive the forward and backward propagation and
the Jacobians for the learning of the parameters. The derivation for fully connected layers
largely follow the notation in the book (Nielsen, 2017), however is fully described in matrix
notation. The derivations are extended for convolutional neural networks. Referring to
single intensity images, the relations are highly similar to those for fully connected layers.

4.3 Setup

A neural network is used to propagate information from the neurons n1
j of an input layer,

the �rst layer, to the neuron nL an output layer, the L-th layer, see Fig. 4.1. Each
layer consists of a number J` of neurons n`j which get information only from the neurons
n`−1
k and only send information to the neurons of the next layer. Each neuron n`j takes
the outputs a`−1

k of all neurons of the previous layers, performs a linear transformation,
depending on weights and an additive term, called bias, and applies an activation function
f .

a
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21w’
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1
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Figure 4.1: Neural network. The �gure can be interpreted as a neural network with two
layers or a subsection of two consecutive layers in a larger network; in this case we would
have given the neurons a superscript indicating the number of the layer they belong to, e.g.,
`− 1 and `. The �rst layer has four neurons n1

k =: nk. It sends values a = [a1, a2, a3, a4]T to
the next layer with two neuron n1

j =: n ′j . Each output value is weighted by w′jk depending
where it is sent from (k) and where it is sent to (j). The weights refer to the edges in the
graph, some weights are shown in the �gure. The prime at the weight w′jk indicates, that
it is the decision of the active neuron n ′j how to weight its input. The additive constant,
called the bias b′j , is only related to the processing neuron a ′j , thus related to the nodes in
the graph. It sets the level of the output of that neuron n ′j . An activation function decides
how much of the weighted output z′ = W

′a + b′ or z′j =
°
k w
′
jkak + b′j is taken as output

of the network or sent to the next layer (indicated by thin lines). Thus the transfer between
the two layers is a′j = f(

°
k w
′
jkak + b′j). If the function f is taken element wise we also have

a′ = f(z′) = f(W ′a + b′). The weights W ′ and the biases b′ are unknown and are to be
learned from training data. Observe, there are weights and biases related to all layers except
the input layer

The activation a`j of the j-th neuron in the `-th layer is related to the activations in
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the (`− 1)-th layer by (see (Nielsen, 2017, Eq. (23)))

a`j = f

(¸
k

w`jka
`−1
k + b`j

)
. (4.1)

Using vectors and matrices

a`
J`×1

= [a`j ]j=1,...,J` b`
J`×1

= [b`j ]j=1,...,J` W `

J`×J`−1

= [w`jk]j=1,...,J`;k=1,...,J`−1
. (4.2)

we also have (see (Nielsen, 2017, Eq. (25)))

a` = a`(W `, b`;a`−1) = f
(
W `a`−1 + b`

)
. (4.3)

We have L layers 1, ..., `, ..., L, starting with ` = 1. Hence, the vector a1 is the input layer,
and the vector aL is the result of the last layer, called the output layer. The result of the
output layer is compared to the desired input y, being a vector of J` elements.

There are di�erent choices for the activation function.

4.4 The Activation Function

The activation function f(x) needs to be nonlinear, since otherwise the concatenation of
the matrix operations in (4.1) would boil down to a single linear operation. We present
some common activation functions together with their derivative, which we need during
gradient descent estimation of the parameters.

At least the following activation functions are in use:

• The sigmoid function σ(x),

• the ramp function ReLU(x),

• the leaky or parametric ramp function PReLU(x), and

• the softplus function SoftPlus(x).

We discuss their relations and their derivatives, see Fig. 4.2. When appliying activation

Figure 4.2: Activation functions (black) and their derivatives (gray)

functions to a vector or matrix the function is meant to be used pointwise

f(A) = f([aij ]) := [f(aij)] . (4.4)
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4.4.1 The Sigmoid Function

The oldest activation function is the sigmoid function σ(x)

f(x) := σ(x) =
1

1 + e−x
=

ex

1 + ex
=

1

2

(
1 + arctan

(x
2

))
. (4.5)

with their derivative

σ′(x) =
dσ(x)

dx
= σ(x)(1− σ(x)) . (4.6)

Since exp(x) for large x leads to over�ow, the sigmoid function does not work for very
small negative x. We use the equivalence

σ(x) =


1

1 + e−x
if x > 0

ex

1 + ex
else

. (4.7)

Thus, we rede�ne

σ(x) =
emin(0,x)

1 + e−|x|
, (4.8)

which works for large positive and negative arguments.
The motivation for using σ(x) is, that all arguments are mapped to the interval [0, 1],

keeping the results numerically stable. The disadvantage is, that the derivative for large
values |x| practically is zero, which may hinder the estimation of the parameters within a
gradient descent procedure.

4.4.2 The Ramp Function

Often the activation function is chosen to be the ramp function ReLU(x) (recti�ed linear
unit):

f(x) := ReLU(x) = max(0, x) . (4.9)

The ReLU-function has the advantage, that large positive values of x still have an in�uence
onto the learning.

Its �rst derivative is the step function1

f ′(x) := ReLU′(x) = s(x) =
1

2
(1 + sign(x)) =

{
1 if x > 0
0 else

(4.10)

Observe, the step function is a crisp version of the sigmoid function:

s(x) = lim
a→∞

σ(ax) . (4.11)

4.4.3 The leaky or parametrized ramp function

Since the gradient of the ReLU-function is zero for negative values, which causes gradient
descent learning to neglect negative arguments, the leaky or parametrized ReLU function
PReLU may be used:

f(x) := PReLU(x, p) = max(px, x) with 0 < p < 1 . (4.12)

It derivative is a vertically shifte step function

f ′(x) := PReLU′(x, p) =
∂PReLU(x, p)

∂x
= (1 + p)s(x)− p . (4.13)

1It is sometimes denoted with H(x). We do not use this naming, since we otherwise come in con�ict
with the entropy Hx) of a random variable x.
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4.4.4 The SoftPlus Function

Since the ramp function is not di�erentiable at 0, often the softmax function, a smoothed
version of the ramp function, is taken

f(x) = SoftPlus(x) = ln(1 + ex) = − lnσ(−x) . (4.14)

The last expression can be used for implementation without over�ow, see (4.7). Its �rst
derivative is the sigmoid function

SoftPlus′(x) = σ(x) . (4.15)

The di�erence to the ramp function is small concerning the quality of the result. The
ramp function is much faster.

4.5 Forward propagation

We now assume we have more than two layers and want to express the result of the network
for a given input, which is called forward propagation.

Given an input x the output y(x) of the network is the recursive application of (4.3),
assuming a1 = x

y(x) := aL(x) = f

WL

f(...W 3 f(W 2a1 + b2)looooooomooooooon
a2

+ b3) + ...

+ bL

 . (4.16)

Observe, the superscripts ` of the weights W ` and the biases b` refer to the layer
number of the activated layer, thus they start with ` = 2.As iterative procedure we would
initiate a1 = x and then apply (4.3) L− 1-times, yielding the output y = aL. Hence, we
have the iterative algorithm for input x:

a1 := x , a` = f(W `a`−1 + b`) ; for ` = 2, ..., L , and y(x) := aL . (4.17)

4.6 Back propagation

The goal of learning is to �nd weightsW ` and biases b` fromN training data (xn,yn)n=1,...,N

(Nielsen (2017) assumes n training data). They should minimize a cost function, e.g., the
quadratic costs

C({W `, b`}) =
1

2

1

N

Ņ

n=1

||yn − aL(xn; {W `, b`})||2 =
1

2

1

N

Ņ

n=1

||aLn − yn||2 . (4.18)

We made the unknown parameters W ` and b` explicit. We obviously assume the training
samples are mutually independent. We may write the cost function as

C({W `, b`}) =
1

2

1

N

Ņ

n=1

Cn({W `, b`}) . (4.19)

For this we use a form of steepest descent algorithm. Let all unknown parameters be
collected in the vector θ

θ = [θ`]`=2,...,L =

[
w`

b`

]
`=2,...,L

with w`loomoon
W`×1

= vecW ` . (4.20)

The number W` of elements of W ` is

W` = J`J`−1 . (4.21)
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Let us further assume we have an approximate value θa for θ. The steepest decent
algorithm iteratively improves θa:

θ(ν+1) = θ(ν) − α ∂C

∂θT

∣∣∣∣
θ=θν

. (4.22)

Remark: We assume the derivative of a scalar product is d(aTb)/daT = b, such that the total

di�erential of the product aTb is d(aTb) = daT b+aTdb, which is why we di�erentiate w.r.t. the

transposed vector. Hence, d(aTb)/da = d(bTa)/da = bT. �

The main task is to determine the partial derivatives

∂Cn

∂θ`
=

[
∂Cn
∂w`

∂Cn

∂b`

]
, (4.23)

which are needed to �nd the minimum of C w.r.t. w`jk and b
`
j based on the N observations

a1
n = xn. We determine them stepwise following the chain rule:

∂Cn
∂w`

=
∂C

∂aLn

∂aLn
∂aL−1

n

. . .
∂a`+1

n

∂a`n

∂a`n
∂w`

, for ` = 2, ..., L (4.24)

and

∂Cn

∂b`
=

∂C

∂aLn

∂aLn
∂aL−1

n

. . .
∂a`+1

n

∂a`n

∂a`n

∂b`
, for ` = 2, ..., L . (4.25)

4.6.1 The Derivatives of C w.r.t. aLn

The cost function is quadratic in aL. Hence we have

∂C

∂aLT
nloomoon

J`×1

= aL(xn; {W `, b`})− yn =: aLn − yn . (4.26)

4.6.2 The Derivatives of a` w.r.t. W `, b`, and a`−1

We write the U` = W` + J` parameters

θ`
U`×1

=

 w`

W`×1

b`
J`×1

 . (4.27)

Thus (4.3) reads as (omitting the indices n for the training sample xn)

a` = f(z`(θ`)) , (4.28)

with

z`(θ`)
J`×1

= W `

J`×J`−1J`−1×1
a`−1 + b`

J`×1
=
((
a`−1

)T ⊗ I J`
)looooooooomooooooooon

J`×W`=J`×(J`−1J`)

w`

W`×1
+ b`
J`×1

. (4.29)

Here we used the general rule vec(ABC ) = (CT ⊗ A)vecB in the special form vec(Wa) =
vec(IWa) = (aT ⊗ I )vecW , where the Kronecker product is denoted with ⊗.

The Jacobian of a` w.r.t. the parameters θ`, or w.r.t. W ` and b`, thus results from
the chain rule

∂a`

∂θ`loomoon
J`×U`

=
∂a`

∂z`loomoon
J`×J`

∂z`

∂θ`loomoon
J`×U`

=
∂a`

∂z`

 ∂z`

∂w`loomoon
J`×W`

,
∂z`

∂b`loomoon
J`×J`

 (4.30)
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The derivatives ∂a`/∂z` depend on the choice of the activation function. We generally
have

∂a`

∂z`
J`×J`

= Diag(f ′(z`) . (4.31)

The derivatives w.r.t. the weights are

∂z`

∂w`
= (a`−1,T ⊗ I J`) (4.32)

The derivatives w.r.t. the biases are

∂z`

∂b`
= I J` . (4.33)

Finally, we have the Jacobian w.r.t. previous outputs, again using the chain rule

∂a`

∂a`−1
=

∂a`

∂z`loomoon
J`×J`

∂z`

∂a`−1loomoon
J`×U`

= Diag(f ′(z`))W ` . (4.34)

4.6.3 Complete derivatives of C

We now derive expression for the derivatives of C w.r.t. the parameters θL, thus need to
take the index n into account. They can be written as:

∂C

∂θL
=

1

N

Ņ

n=1

∂Cn
∂aLn

∂aLn
∂zLn

∂zLn
∂θL

(4.35)

=
1

N

Ņ

n=1

(
aL − yn

)Tloooooomoooooon
∂Cn/∂a

L
n

Diag
(
f ′(zL))

)loooooooomoooooooon
∂aLn/∂z

L
nlooooooooooooooooomooooooooooooooooon

εL,Tn

[
(aL−1,T
n ⊗ I J`) , I J`

]loooooooooooomoooooooooooon
∂zLn/∂θ

L

.

We �rst introduce an abbreviation for the �rst product, (Nielsen (2017) calls it δ, see his
equation (30))

εLn :=
∂C

∂zL,T

∣∣∣∣
n

= f ′(zLn) ◦
(
aLn − yn

)
. (4.36)

We call it the L-weighted residual, since it is weighted with the derivative of the activation
function of the L-th input zL.

Hence, using uT(vT ⊗ I ) = (1⊗ uT)(vT ⊗ I ) = (v ⊗ u)T, we obtain

∂C

∂θL
=

1

N

Ņ

n=1

εL,Tn

[
(aL−1,T
n ⊗ I J`) , I J`

]
(4.37)

=
1

N

Ņ

n=1

[
(aL−1
n ⊗ εLn)T εL,Tn

]
. (4.38)

This expression can be simpli�ed, if we separate the expressions for the Jacobians for
the elements of WL = [wLjk] and of bL = [bLj ]. We have the partial derivative of C w.r.t.
wLjk, which refers to the j-th output εLnj at level L and the k-th input aL−1

nk at level L− 1:

dC
dwLjk

=
1

N

Ņ

n=1

εLnja
L−1
nk . (4.39)
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Similarly, we have the partial derivative of C w.r.t. bLj

dC
dbLj

=
1

N

Ņ

n=1

εLnj . (4.40)

In vector notation this is

dC

dWL
=

1

N

Ņ

n=1

εLna
L−1,T
n and

dC

dbL
=

1

N

Ņ

n=1

εLT
n . (4.41)

Here we have assumed the partial derivative of a scalar to the elements of a matrix has
the same size as the matrix.

The Jacobian w.r.t. the parameters aL−1 is

∂Cn

∂aL−1
n

=
∂Cn
∂zLn

∂zLn
∂aL−1

(4.42)

= εL,Tn WL . (4.43)

Hence, we now can determine the Jacobian w.r.t. θL−1, which only occur in aL−1

∂Cn

∂θL−1
=

1

N

Ņ

n=1

∂Cn
∂zLn

∂zLn
∂aL−1

n

∂aL−1
n

∂zL−1
n

∂zL−1
n

∂θL−1
(4.44)

=
1

N

Ņ

n=1

∂Cn
∂zLnloomoon
εL,Tn

∂zLn
∂aL−1

n

∂aL−1
n

∂zL−1
n

 ∂zL−1
n

∂wL−1looomooon
J`−1×WL−1

,
∂zL−1

n

∂bL−1loomoon
J`−1×J`−1

 (4.45)

=
1

N

Ņ

n=1

εL,Tn WLDiag(f ′(zL−1))loooooooooooooomoooooooooooooon
εL−1,T
n

[(aL−2,T
n ⊗ I J`−1

) , I J`−1
]

. (4.46)

We now introduce the (L− 1)-weighted residual (see (Nielsen, 2017, Eq. (BP2)))

εL−1
n :=

∂Cn

∂θL−1,T
= f ′(zL−1

n ) ◦
(
WL,TεLn

)
(4.47)

and obtain

∂C

∂θL−1
=

1

N

Ņ

n=1

εL−1,T
n [(aL−2,T

n ⊗ I J`−1
) , I J`−1

] (4.48)

=
1

N

Ņ

n=1

[
(aL−2
n ⊗ εL−1

n )T , εL−1,T
n

]
. (4.49)

Elementwise we have
dC

dwL−1
jk

=
1

N

Ņ

n=1

εL−1
nj aL−2

nk . (4.50)

and
dC

dbL−1
j

=
1

N

Ņ

n=1

εL−1
nj . (4.51)

Analogously, we have the derivatives w.r.t. θ`

∂C

∂θ`
=

1

N

Ņ

n=1

∂C

∂aLn

∂aLn
∂aL−1

n

. . .
∂a`+1

n

∂a`n

∂a`n

∂θ`
with ` =, 2, ..., L . (4.52)
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or

dC

dW `
=

1

N

Ņ

n=1

ε`na
`−1,T
n and

dC

db`T
=

1

N

Ņ

n=1

ε`n . (4.53)

or individually
dC
dw`jk

=
1

N

Ņ

n=1

ε`nja
`−1
nk and

dC
db`j

=
1

N

Ņ

n=1

ε`nj . (4.54)

with the recursive de�nition of the residuals

ε`n = f ′(z`n) ◦
(
W `+1,Tε`+1

n

)
(4.55)

initiated by (4.36) at the highest level L.

For getting all derivatives, we need

1. in the forward propagation determine the inputs for each layer.

2. in a backward recursion determine the `-weighted residuals, and �nally

3. determine the Jacobians w.r.t. to the weights W ` and to the biases b`

4.7 Updating the Parameters

The goal is to update the parameters θ as a function of the residuals yn − aL following
(4.22)

θ(ν+1) = θ(ν) − α ∂C

∂θT

∣∣∣∣
θ=θν

. (4.56)

For the weights and the biases, we thus have

W `,(ν+1) = W `,(ν) − α 1

N

Ņ

n=1

ε`na
`−1,T
n , ` = L, ..., 2 . (4.57)

and

b`,(ν+1) = b`,(ν) − α 1

N

Ņ

n=1

ε`n , ` = L, ..., 2 . (4.58)

On a network with a large number U of parameters, we need a very large number N of
training data. The computational complexity for one iteration for homogeneous networks,
i.e., networks with the same number J of nodes in each layer, is approximately O(LJ2N).
This is prohibitive. The main factor is N .

Therefore, the steepest decent algorithm is modi�ed in the following manner: In each
iteration a random sample of size N ′ of the training data, a minibatch, is taken and the
parameters are updated. The update will � hopefully � lead into the correct direction,
such that with not to many iterations, the iteration sequence converges. This method is
called stochastic gradient method.

In order to guarantee that after using N samples in packages of N ′ all training data
are used, it is reasonable to partition the N training data in K0 = bN/N ′c minibatches of
size N ′. Passing through the training samples once is called an epoch. The next epochs
are built on the basis of a randomly shu�ed training data set. The number of epochs is
to be speci�ed. If there are E epochs, we use K = E bN/N ′c minibatches It should be
large enough that the procedure converges.

The choice of the learning rate α is tricky. Values between 0.0001 and 1 are reasonable,
so starting with α = 0.01 is �ne.
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4.7.1 Algorithm with Loop on Minibatch Elements

We assume we have N data, we require that E epochs with minibatch sizes of N ′ are
applied.

The algorithms thus has the following steps:

1. Initiate the weights and the biases

W `
jk ∼ N (0, 1) , ` = 2, . . . , L (4.59)

b`j ∼ N (0, 1) , ` = 2, . . . , L (4.60)

2. for all E epochs generate K0 = bN/N ′c minibatches and update the weights and
biases

(a) Initiate inputs
a1
n = xn , n = 1, . . . , N ′ (4.61)

(b) Perform forward propagation and store the outputs a`n at all levels.

a`n = σ
(
W `a`−1

n + b`
)
, ` = 2, . . . , L;n = 1, . . . , N ′ , (4.62)

yn = aLn , n = 1, . . . , N ′ . (4.63)

(c) In a backward loop update the weights and the biases and determine the
weighted residuals. Start with the weighted residuals
i. if ` = L

εLn = σ′(zLn) ◦ (aLn − yn) n = 1, . . . , N ′ (4.64)

ii. else

ε`n = a`n◦(1−a`n)◦
(
W `+1,Tε`+1

n

)
, ` = L−1, . . . , 2;n = 1, . . . , N ′ (4.65)

Then update the weights and the biases

W ` ← W ` − α 1

M

M̧

n=1

ε`na
`−1,T
n , ` = L, ..., 2;n = 1, . . . , N ′ (4.66)

b` ← b` − α 1

M

M̧

n=1

ε`Tn , ` = L, ..., 2;n = 1, . . . , N ′ . (4.67)

4.7.2 Ridge regression or L2 regularization

If we want the weights not to get too large, we might add a term in the cost function
which penalizes large parameters. For this we rewrite (4.19) we now have

C({W `, b`}) =
1

2

1

N

Ņ

n=1

Cn({W `, b`}) =
1

2

1

N

Ņ

n=1

Cn(w, b) . (4.68)

where the vectors w and b contain the weights and biases of all layers. Now we extend
this cost function by a quadratic term in the parameters and obtain the regularizing cost
function

C ′({W `, b`}) =
1

2

1

N

Ņ

n=1

Cn(w, b) +
λ

2

1

N
θTθ . (4.69)

Instead of (4.22), we now obtain the update rule

θ(ν+1) = θ(ν)−α∂C
′

∂θT
= θ(ν)−α

(
∂C

∂θT
+
λ

N
θ(ν)

)
=

(
1− αλ

N

)
θ(ν)−α

(
∂C

∂θT

)
. (4.70)

Experience suggest, that only the weights are to be regularized. Hence, we keep the update
of the bias terms (4.67), and replace (4.66) by

W ` ←
(

1− αλ

N

)
W ` − α 1

M

M̧

n=1

ε`na
`−1,T
n , ` = L, ..., 2;n = 1, . . . , N ′ (4.71)
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4.7.3 Algorithm with Matrices for Minibatch Elements

For simplifying the notation we collect all N elements belonging to the entities of a mini-
batch of training data in a matrix with N columns.

The algorithm can also be written as

1. Initiate the weights and the biases

W `
jk ∼ N (0, 1) , ` = 2, . . . , L (4.72)

b`j ∼ N (0, 1) , ` = 2, . . . , L (4.73)

2. for all E epochs generate K0 = bN/N ′c mini-batches and update the weights and
biases

(a) Initiate inputs
A1 = X , with X = [x1,x2, ...,xN ′ ] . (4.74)

(b) Perform forward propagation and store the outputs a`n at all levels.

A` = f
(
W `A`−1

n + b`1T
N

)
, ` = 2, . . . , L . (4.75)

Y = AL . (4.76)

(c) In a backward loop update the weights and the biases and determine the
weighted residuals. Start with the weighted residuals

i. if ` = L
EL = f ′(ZL) ◦ (AL − Y ) (4.77)

ii. else

E ` = f(Z `)◦
(
W `+1,TE `+1

)
f=σ
= A`◦(1−A`)◦

(
W `+1,TE `+1

)
, ` = L−1, . . . , 2

(4.78)

Then update the weights and the biases

W ` ← W ` − α 1

M
E `A`−1,T , ` = L, ..., 2 (4.79)

b` ← b` − α 1

M
E `1N , ` = L, ..., 2 . (4.80)

4.7.4 Algorithm as Pseudo Code

The pseudo code is given in Algorithm 1. The size of the �rst and the last layer is given by
the dimension of the input and output data. There is no W 2 and b2. 2 We select samples
of size K ′ = bN/N ′c {X s,Y s} from the shu�ed training data in each epoch e = 1, ..., E.

2In (LeCun et al., 1998) an n-layer network contains n − 1 hidden layers and one output layer, thus
re�ects the fact, that [W `, b`] only exist for n layers.
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Algorithm 1: Back propagation based on training data minimizing Ω = ||Y −
AL||2;
[{W `, b`}]=BackPropagation(X ,Y , J , f, f ′, α, E,N ′)
Input: training data X

DX×M
, Y
DY ×M

with columns of input and output data

Size of hidden layers: Jh = (J2, ..., J`, ..., J`−1)
activation function f , its derivative f ′

Learning rate: α
Number of epochs: E
Minibatch size: N ′

Output: weights { W `

L`×J`−1

} and biases { b`
J`×1
} .

1 Layers: J = (DX , Jh, DY ), L = |J |;
2 Initialize weights: W `

jk ∼ N (0, 1), ` = 2, ..., L, j = 1, ..., J`, k = 1, ..., J`−1;
3 Initialize biases: b`j ∼ N (0, 1), ` = 2, ..., L, j = 1, ..., J`;
4 Number of minibatches per epoch: K ′ = bN/N ′c;
5 for e = 1, ..., E do

6 Shu�e training data: {X r,Y r} := random_shuffle({X ,Y });
7 for k = 1, ...,K ′ do
8 Take N ′-sample {X s,Y s} from {X r,Y r};
9 Forward propagation;

10 Initialize: A1 := X s;
11 for ` = 2, ..., L do

12 Weighted inputs: Z ` = W `A`−1 + b`1T
N ;

13 Outputs: A` := f
(
Z `
)

14 end

15 Backward propagation;
16 for ` = L, ..., 2 do
17 if ` = L then

18 Residual: EL = f ′(ZL) ◦ (AL − Y s)
19 else

20 Residual: E ` := f ′(Z `) ◦
(
W `+1,TE `+1

)
21 end

22 Update weights: W ` := W ` − α/N E `A`−1,T;
23 Update biases: b` := b` − α/N E `1N
24 end

25 end

26 end
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4.8 Examples

4.8.1 Classi�cation with 2D Input Features

The following example shows the possibilities of such a network. In order to easily visualize
the results, we assume the objects are described with two features, i.e., points in the plane.
We simulate training and test data in three ways, leading to three tapes of generated data:

1. Partitioning the unit square by a Voronoi diagram, with linear region boundaries.
The class regions are mutually non-overlapping and convex.

2. Partitioning the unit circle, by transforming the Voronoi diagram using a polar
transformation. The class regions are mutually non-overlapping and non-convex.

3. For each class we generate a pair of Gaussian distributions, with random mean
vector, random covariance matrix, and random probability. The class regions are
overlapping and non-convex.

We start with an example from data type 2.

4.8.1.1 Classi�cation with Non-Overlapping 2D Input Features

The data are generated by

• Sampling C = 6 points in the unit square representing the centre of each of the 6
classes.

• SamplingMtr = 300 andMte = 300 training and test points x′m = [xm1, xm2]T,m =
1, ..., 600 in the unit square and performing a nearest neighbourhood classi�cation,
see Fig. 4.3c.

• Transforming the data with a (non-linear) polar-transformation (complex exponen-
tiation, see Fig. 4.3)

xm =

[
xm1

xm2

]
=

1

2e

[
ex
′
m1 sin(2πx′m2) + e

ex
′
m1 cos(2πx′m2 + e

]
. (4.81)

The resultant coordinates again are within the unit square.

a.) b.) c.) d.)

Figure 4.3: Non-linear Transformation, From left to right: raw grid, transformed grid, raw
data, transformed data (training data)

The neural network has four layers:

• The input layer with 2 neurons, for the x- and y-coordinates

• Two hidden layers with 18 and 12 neurons.

• The output layer with 6 neurons.

We use a minibatch size of N = 40 and perform E = 10 000 epochs, which corresponds
to K = EMtr/N = 75 000 iterations. The learning rate is set to α = 0.1. The acti-
vation function is the sigmoid function. The seed for the random numbers is 15 in the
Matlabprogram test_NN_2_x_c.m.
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The results are shown in Fig. 4.4. The convergence of the optimization is slow, see the
upper right sub�gure.

Figure 4.4: Example for learning using a neural network with non-overlapping classes
and non-linear class boundaries. Features are the coordinates of the points. We assume 6
classes. The structure of the network is (2-18-12-6), i.e., with two hidden layers with 18 and
12 neurons. Upper left: Training data for 6 classes. Upper right: Development of the
cost function C(k), k = 7 5000, ..., 75 000 over E = 10 000 epochs with a minibatch size of 40;
iteration units = 10 000. Lower left: Posterior with training data. Lower middle: Regions
learned by the neural network. Lower right: Test data Nte = 300 reach a classi�cation
accuracy of 95.25%

When applying the learned network to 100 × 100 grid points in the unit square, we
obtain the acceptance regions for the 6 classes (see the lower left sub�gure). They also
cover areas where there are no training data, especially at the border and in the interior.
The class boundaries appear quite smooth. Also, the thin protrusion of the red class area
in the lower part nicely re�ects the training data.

The classi�cation of the test data is shown in the lower right sub�gure. The classi�ca-
tion rate is 96.8%. The classi�cation error of 3.2% re�ects the uncertainty in identifying
the correct boundaries. This is mainly due to gaps between the classes.

4.8.1.2 Classi�cation with Overlapping 2D Input Features

The following sample shows the learning of the classes for overlapping 2D features.

The data are generated by simulating a mixture of two Gaussian distributions for each
class:

• The mean values µci; c = 1, ..., 5; i = 1, 2 are sampled from an isotropic Gaussian
distribution

µci ∼ N
([

0
0

]
,

[
20 0
0 20

])
. (4.82)

• The covariance matrices Σci; c = 1, ..., 6; i = 1, 2 are sampled using the representation
with the PCA of the weight matrix

Σ = (RDRT)−1 with R = R(φ) and D = Diag([d1, d2]) (4.83)
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The direction φ of a principal direction is taken from a uniform distribution [0, 2π].
The weights d1 and d2 in the principal directions are taken from a Gamma-distribution
with mean 0.1 and standard deviation 0.1.

• The number of samples is taken from an exponential distribution, and realized by
nc ∝ − log(0.9 r) with r ∼ U(0, 1). This way obtain a large enough variation of
sample sizes per Gaussian and at the same time avoid to small samples per class,
see Table 4.1.

black blue green cyan red
35.4 23.2 29.3 5.8 6.3
Table 4.1: Probability of the classes

An example is shown in Fig. 4.5

The network has two hidden layers with 25 and 10 neurons, respectively. We run 4000
epochs with a minibatch size of 10. The learning rate is α = 0.02.

The results are documented in Figs. 4.5 and Figs. 4.6.

(a) Training data

(b) Evolution of class boundaries: row wise

(c) Posterior (d) Final boundaries (e) Classi�ed test data

Figure 4.5: Example for learning using a neural network with overlapping class regions.
Features are the coordinates of the points. We assume 5 classes. The structure of the network
is (2-24-12-5), i.e., with two hidden layers with 18 and 12 neurons. Success rate 84.6%
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(a) Failure rate (b) Cost function

Figure 4.6: Development of the failure rate and the cost function as a function of the
epochs (in hundreds)

• The training data are highly overlapping (see sub�gure (a)), e.g., the read class and
with the black and the blue class, or the black and the green class. Also observe the
single data point of the cyan class on the left side between the two samples of the
black class.

• The development of the region boundaries is shown in sub�gure (b), to be read from
the upper left, row wise to the lower right. Obviously, the network �rst learns the
boundaries between the largest classes. The comparably small red class, overlapping
with the large black and blue classes, is represented later. The steps within the
iteration scheme and the corresponding failure rates are given in Table 4.2. The

epoch 1.2 11.1 30.9 60.5 100.0 149.4 208.6 277.8 356.8 400
failure rate [%] 64.5 29.9 15.4 15.0 13.8 13.8 13.7 14.1 14.3 15.4

Table 4.2: Failure rates

failure rate drops down to 13.57% after approximately 200 epochs, then slightly
increases, see also Fig. 4.6 (a). The development of the cost function does not show
a clear decay. Observe, that at the end, the region of the green class breaks out
at the left border, obviously trying to catch the few green training data below the
upper black cluster.

• The output of the last layer aL can be interpreted as a posterior P (y|x). Applying
it to 100 × 100 grid points in the unit square yields plot in Fig. 4.5 (c). White
areas indicate, the the classi�er `thinks' it is good. In the darker areas, especially
between the classes the classi�cation is uncertain. As a consequence of the break out
of the green class at the left border, the isolated point is classi�ed as green, though
it probably should have been classi�ed as cyan.

• The confusion matrix of the six classes, based on 1000 training data, is given in
Table 4.3

P (pyc|yc′) black blue green cyan red P (y′c)
black 94.4 0.0 5.4 0.0 0.3 35.5
blue 0.0 88.4 0.0 0.0 11.6 23.3
green 19.8 0.0 80.2 0.0 0.0 28.8
cyan 28.8 0.0 2.7 57.5 11.0 7.3
red 23.5 11.8 0.0 2.0 62.7 5.1

Table 4.3: Confusion matrix. Conditional probabilities P (pyc|yc′) given in units of 1%.
Number of training data is 1000
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4.8.2 Classifying Handwritten Numbers (MNIST)

The images in the MNIST data set have size 28 × 28. Taking the vector of the images
and no, one or two hidden layers and a minibatch size of 10 after 100 epochs yields the
results collected in Table 4.4. It also shows the number U of unknown parameters and the
running time.

structure U α failure rate [%] epochs CPU time [s]

1 784-10 7 850 0.001 12.7 100 725
2 784-10 7 850 0.0001 11.5 100 572
3 784-30-10 23 860 0.01 10.3 100 900
4 784-100-10 79 510 0.01 7.9 100 1907
5 784-300-10 238 510 0.01 4.5 300 14506
6 784-300-100-10 266 610 0.02 6.0 300 17881

Table 4.4: Results on the MNIST data set. The results of cases 1 and 5 correspond to
that was achieved by (LeCun et al., 1998). However, the failure rate for case 6 is worse than
3.05%, that was achieved by (LeCun et al., 1998)

The confusion matrix for the case 1, a linear classi�er, is given in Table 4.5. The
misclassi�cation probability that the digit 8 is classi�ed as digit 5 is P (5|8) = 9.1%. The
next largest misclassi�cation probability is P (2|3) ≈ 8.2%.

P (pyc|yc′) 0 1 2 3 4 5 6 7 8 9 P (y′c)
0 97.6 0.0 0.8 0.2 0.3 0.5 0.4 0.1 0.0 0.1 9.8
1 0.1 98.5 0.5 0.0 0.0 0.2 0.4 0.1 0.1 0.2 11.4
2 0.6 2.4 90.9 0.6 0.8 0.7 1.6 0.6 1.6 0.3 10.3
3 1.0 0.4 8.2 81.5 0.2 5.7 0.4 0.8 0.9 0.9 10.1
4 0.1 0.7 1.6 1.2 90.7 0.1 0.5 0.2 0.3 4.5 9.8
5 2.4 0.3 3.0 5.5 2.6 81.5 2.0 0.3 1.3 1.0 8.9
6 1.5 0.5 4.7 0.3 1.6 2.6 87.9 0.1 0.7 0.1 9.6
7 0.4 1.1 2.6 0.9 2.0 0.7 0.0 86.5 0.3 5.5 10.3
8 1.5 1.8 5.0 5.6 1.6 9.1 1.2 1.1 68.4 4.4 9.7
9 1.1 0.8 0.8 1.2 4.3 1.0 0.0 2.9 0.8 87.2 10.1

Table 4.5: Confusion matrix in percent for case 1, namely the (784-10) network with
learning rate α = 0.001. The number of test samples is 10 000

The network with the largest number of parameters, network 6 (784-300-100-10), af-
ter 300 epochs leads to a misclassi�cation rate of 6%. The maximum misclassi�cation
probability P (4|9 ≈ 5%.

P (pyc|yc′) 0 1 2 3 4 5 6 7 8 9 P (y′c)
0 98.7 0.1 0.2 0.3 0.0 0.2 0.4 0.0 0.1 0.0 9.8
1 0.0 98.3 0.5 0.2 0.0 0.1 0.4 0.0 0.4 0.0 11.4
2 1.0 0.3 94.3 1.5 0.5 0.1 0.4 1.0 1.0 0.1 10.3
3 0.0 0.0 1.0 95.6 0.1 1.1 0.1 0.5 1.2 0.4 10.1
4 0.0 0.1 0.6 0.1 95.7 0.0 0.7 0.1 0.8 1.8 9.8
5 0.4 0.1 0.1 1.5 0.3 94.8 1.2 0.3 0.8 0.3 8.9
6 0.4 0.4 0.4 0.1 0.6 0.7 97.0 0.0 0.3 0.0 9.6
7 0.0 1.2 1.7 1.2 0.5 0.0 0.0 93.3 0.2 2.0 10.3
8 0.3 0.2 0.6 1.5 0.6 1.3 0.3 0.5 94.0 0.5 9.7
9 0.4 0.6 0.3 0.9 1.4 0.8 0.1 1.2 1.0 93.4 10.1

Table 4.6: Confusion matrix in percent for case 1, namely the (784-300-10) network with
learning rate α = 0.01. The number of test samples is 10 000. The failure rate is 4.5%
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4.9 Backpropagation with Cross Entropy

Instead of the quadratic loss function we also can use, what is called the cross entropy of
the outputs aLn of the last layer and the labels yn. For this we assume the yn are boolean
vectors.

The cross entropy of two di�erent distributions of the same variable, with is de�ned as
the expectation of the number of bits to code the variable A, but using the optimal code
for B:

HA(B) = EA(− logP (B)) = −
¸
i

P (A = Ai) logP (B = Bi) . (4.84)

Since the elements of yn can only take values 0 or 1, here we obtain (applying the logarithm
elementwise)

C := Hy(aL) = −
Ņ

n=1

yT
n log

(
aLn
)

+ (1− yn)T log
(
1− aLn

)
. (4.85)

This cost function is minimum if y = aL. Finding the minimum of C can be interpreted
as �nding the best distribution (aL) to encode the given labels.

What we need �rst is the Jacobian of C w.r.t. aL. Taking the ratios element wise, it
is given by

∂C

∂aLn
= −

(
yn
aLn
− 1− yn

1− aLn

)
(4.86)

= −
(
yn ◦ (1− aLn)− (1− yn) ◦ aLn

aLn ◦ (1− aLn)

)
(4.87)

= −
(

yn − aLn
aLn ◦ (1− aLn)

)
. (4.88)

The L-weighted residual therefore is

εLn =
∂C

∂zLT
n

(4.89)

= −σ
′(zLn) ◦ (yn − aLn)

aLn ◦ (1− aLn)
(4.90)

= −σ(zLn)(1− σ(zLn)) ◦ (yn − aLn)

σ(zLn) ◦ (1− σ(zLn)
(4.91)

= aLn − yn . (4.92)

Hence, we obtain the Jacobians w.r.t. to WL and bL

∂C

∂W T
=

1

N

ņ

n=1

(aLn − yn)aL−1,T
n and

∂C

∂bL
=

1

N

ņ

n=1

(aLn − yn) (4.93)

The other partial derivatives remain the same, especially the recursive de�nition of the
`-weighted residual.

4.10 Convolutional connections between layers

The number of parameters (W `, b`) for each layer is ` is J`J`−1, see (4.2). When dealing
with images, this number becomes prohibitively large.

We may require, that the weights are

• translation invariant, and

• only refer to a local neighbourhood of a pixel.

These two constraints are ful�lled, if the layer ` is formed by a convolution of layer `−1 with
a small kernel. Networks with such a structure are called convolutional neural networks
(CNN), or short convolutional networks.
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4.10.1 Convolution and Correlation

We repeat parts of the section on Linear Signal Theory. We �rst address discrete in�nite
signals, and then specialize to �nite signals.

4.10.1.1 General De�nition

We refer to the two left sub�gures in Fig. 4.7 and �rst assume the signals have in�nite
length.

Figure 4.7: Finite convolution and correlation of the 3-kernel w(i), i = 0, ..., 2 and the
6-input a(i), i = 0, ..., 5 with class full and valid leading to the output signal b(i): From
left to right: valid correlation b = w~ a, full convolution b = w ∗ a, valid convolution

b = w ∗ a, full correlation b = w ~ a. Not shown: The mode same convolution and same

correlation takes as output a subset of the output of full convolution or of the full correlation
with the length identical to the input signal, the selection depending on the implementation

We will refer to the signal a(i) as the input signal and to the signal w(i) as the
convolution or correlation kernel, the convolution or correlation �lter. The result of the
convolution or correlation is the output signal b(i). Most operations are not commutative,
why the order of the factors is relevant.

We start with the correlation3 c = w ~ a of an input signal a(i) with the kernel w(i),
both de�ned on the lattice ZZ:

c = w ~ a or c(i) = w(i) ~ a(i) (4.94)

with

c(i) =
+∞̧

k=−∞
w(k)a(k + i) . (4.95)

Correlation describes a moving sum of the values of a(i + k) weighted with the values of
w(k). Observe, correlation is not symmetric, thus w ~ a /= a~ w.

A convolution4 c(i) is de�ned similarly

b = w ∗ a or b(i) = w(i) ∗ a(i) (4.96)

with

b(i) =
+∞̧

k=−∞
w(k)a(i− k) . (4.97)

3Sometimes this operation also it is also called cross correlation.
4see Sect. ?? on Linear Systems Theory
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Observe, convolution is symmetric, thus w ∗ a = a ∗ w, which can be seen by setting
k → i− k′ and thus i− k → k′ and reversing the summation direction for k′.

Obviously, with the �ipped kernel

w′(i) = w(−i) (4.98)

convolution can be described as a moving average weighted with the �ipped kernel

w(i) ∗ a(i) = w′(i) ~ a(i) and w(i) ~ a(i) = w(−i) ∗ a(i) , (4.99)

vice cersa, correlation can be described as the convolution with the �ipped kernel.
Treating the indices as 2 or higher dimensional vectors leads to two-dimensional, three-

dimensional convolution and correlation. All relations then still hold. As an example, with
the convolution

b(i, j) = w(i, j) ∗ a(i, j) =
+∞̧

k,l=−∞
w(k, l)a(i− k, j − l) (4.100)

and the correlation

c(i, j) = w(i, j) ~ a(i, j) =
+∞̧

k,l=−∞
w(k, l)a(k + i, l + j) (4.101)

we have
c(i, j) = w(i, j) ~ a(i, j) = w(−i,−j) ∗ a(i, j) . (4.102)

We also use the function for negating the indices, possibly taking their range into account,

w′(i, j) = w(−i,−j) (4.103)

to write
c(i, j) = w(i, j) ~ a(i, j) = �ip(w(i, j)) ∗ a(i, j) . (4.104)

4.10.1.2 De�nitions for �nite signals

The situation becomes trickier for �nite signals a(i) with i ≥ 0 or i > 0. The previous
equations cannot be used directly, since negative indices may occur.

We assume the given signals are de�ned for non-negative indices:

a(i), i =∈ Na with Na = [1, Na − 1] and |Na| = Na , (4.105)

and
w(i), i ∈ Nw with Na = [1, Na − 1] and |Nw| = Nw . (4.106)

We write convolution in two forms

b(i) = w(i) ∗ a(i) : b(i) =
¸
k

w(k)a(i− k) =
¸

k+l=i

w(k)a(l) . (4.107)

Similarly, we write correlation in the two forms

b(i) = w(i) ~ a(i) : b(i) =
¸
k

w(k)a(i+ k) =
¸

l−k=i

w(k)a(l) . (4.108)

For �nite signals there we can de�ne several modes of convolution, depending on the range
of the indices of the output signal b(i) and the relative size Na of the input signal a(i) and
size Nw of the kernel w(i) see Fig. 4.7.

We start with two standard cases, where only sums appear in the de�nition in order
to avoid the access to indices outside the range of the de�nition of the signals.
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1. Valid correlation. Correlation in mode valid is the default transition for convolu-
tional neural networks. For valid correlation (see Fig. 4.7 right) we use the �rst
form of the de�nition. The indices appear in all combinations, however, with the
constraint that the index i + k ∈ Na must not ly outside the range of the input
signal:

b(i) = w(i) ~ a(i) : b(i) =
¸
k

w(k)a(i+ k) for Nw ≤ Na (4.109)

with

i ∈ Nb = {i|i+ k ∈ Na, k ∈ Nw} = [0, Na −Nw] with |Nb| = Nw −Na + 1 .
(4.110)

As discussed above, correlation is not commutative. If the size Nw of the kernel is
larger than 1, the size of the output is smaller than the size of the input. Moreover,
valid correlation is only de�ned for Nw ≤ Na. For Nw = Na we obtain a single
element, namely b(0), which is the scalar product wTa.

2. Full convolution. Convolution in mode full occurs as the default operation during
backpropagation in convolutional neural networks. For full convolution (see Fig. 4.7
second right) the indices again appear in all combinations without any restrictions
on Na and Nw. Hence, we use the second form of the de�nition of the convolution:

b(i) = w(i) ∗ a(i) : b(i) =
¸

k+l=i

w(k)a(l) (4.111)

with5

i ∈ Nb = {k + l|k ∈ Nw, l ∈ Na} = [0, Nw +Na − 2] with |Nb| = Nw +Na − 1 .
(4.112)

Since addition and multiplication are commutative, also full convolution is commu-
tative, a unique property for �nite signals. If the kernel size is larger than 1, the size
of the output b(i) is larger than the input a(i).

We now express correlation as convolution and vice versa, and arrive at the following
modes of convolution and correlation. For this we use the �ipped kernel

w′(i) = w(Nw − i) with i ∈ Nw . (4.113)

In contrast to the standard de�nitions above, we indicate valid convolution and full cor-
relation by an underbar and an overbar.

1. Full correlation (see Fig. 4.7 second left) similarly is derived from full convolution

b(i) = w(i)~ a(i) := w′(i) ∗ a(i) (4.114)

or explicitely
b(i) =

¸
k+l=i

w′(k)a(l) =
¸

k+l=i

w(Nw − k)a(l) (4.115)

with
i ∈ Nb = {k + l|k ∈ Nw, l ∈ Na} = [0, Nw +Na − 1] . (4.116)

2. Valid convolution (see Fig. 4.7 left) is derived from valid correlation by exchanging
the kernel by the �ipped kernel:

b(i) = w(i) ∗ a(i) := w′(i) ~ a(i) for Nw ≤ Na (4.117)

5The index set at the same time is the Minkowski sum Nw + Na of the index sets of the kernel and
the input
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or explicitely

b(i) =
°
k w
′(k)a(i+ k) =

°
k w(Nw − k)a(i+ k) (4.118)

with
i ∈ Nb = {i|i+ k ∈ Na, k ∈ Nw} = [0, Na −Nw + 1] . (4.119)

Valid convolution is not commutative as we see from the constraint of the last sum-
mation: when exchanging the order of kernel and input, the constraint would be
k + l = i+Na. Also valid convolution is not de�ned for Nw > Na.

As an example, take

w =

 1
0
2

 and a =


3
2
1
5
6
7

 (4.120)

we obtain

w ~ a =


5
12
13
19

 ,w ∗ a =



3
2
7
9
8
17
12
14


,w ~̄a =



6
4
5
12
13
19
6
7


,w ∗a =


7
9
8
17

 . (4.121)

Finally, we might de�ne the mode same convolution or same correlation, where the
output signal has the same size as the input signal. This can be based on the result of the
full convolution or the full correlation by choosing a subvector having the length of the
input signal. This still is not unique: For odd �lter kernels we might take the �rst, last or
the middle part of the full output signal.6

Symmetric de�nition of �nite valid convolution. Obviously, valid convolution
results in an output which is a subset of full convolution. This observation may be used
to de�ne valid convolution such that it remains commutative. This, then also allows to
de�ne correlation in the case when Nw < Na.

We start with full convolution de�ned as

b(i) = w(i) ∗ a(i) : b(i) =
¸

k+l=i

w(k)a(l) for i ∈ [0, Nw +Na − 2] (4.122)

The range for the valid convolution is [0, Na −Nw] for Nw < Na. The di�erence of the
two lenghtes is 2(Nw − 1). This is why the valid convolution contains the centre part of
the full convolution, i.e., omitting Nw − 1 elements at both ends. Hence we could have
de�ned valid convolutions as

b(i) =
¸

k+l=i+(Nw−1)

w(k)a(l) for i ∈ [0, Na −Nw] (4.123)

6Convolution is implemented in Matlab (funtion conv(a,b,mode)) and in Python (function
np.convolve(a,b,mode)). Both are based on cross correlation by �ipping the second argument a. The
results partially are di�erent. Python's realization for all modes is commutative, since - after �ipping
the second argument - internally the two signals are swapped such that the �rst signal is the longer one
implying in mode same the output has the length of the longer argument
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If we want to de�ne convolution symmetrically, we still would like to take the centre
part of the full convolution, which in case Na > Na would be

b(i) = a(i) ∗w(i) : b(i) =
¸

k+l=i+(Na−1)

a(k)w(l) for i ∈ [0, Nw −Na] (4.124)

We can symmetrize the de�nition by ensuring then index ranges for both cases are the
same, independent of the order of the two factors. Hence the index range should be

i ∈ [0, |Na −Nw|] (4.125)

Then we need to omit

D =
1

2
(Nw +Na − 2− |Na −Nw|) = min(Na, Nw)− 1 (4.126)

elements on both ends of the full convolution and arrive at the symmetric de�nition of
valid convolution

b(i) = w(i) ∗ a(i) : b(i) =
°
k+l=i+D w(k)a(l) for i ∈ [0, |Nw −Na|] (4.127)

Since D and the range Nb are symmetric w.r.t. the sizes Na and Nw we now have com-
mutativity ensured

w(i) ∗ a(i) = a(i) ∗w(i) . (4.128)

Since the above de�nition of valid correlation only works for Nw < Na, we now may
de�ne correlation, such that it works also for Na < Nw, as

w(i) ~ a(i) : w′(i) ∗ a(i) = a(i) ∗w′(i) . (4.129)

but still it is not commutative, i.e., w(i) ~ a(i) /= a(i) ~ w(i).
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4.10.2 Multi-channel images and �ltering

In this context we use matrices where the indices start with 0 in order to simplify equations.
We will distinguish one-channel images, colour images and hyperspectral images. Hence,

we have for grey level images

A
Ni×Nj

= [Ai,j ] , i = 0, ..., Ni − 1 , j = 0, ..., Nj − 1 (4.130)

for colour images

A
Ni×Nj×3

= [Ac] = [Ai,j,c] , i = 1, ..., Ni − 1 , j = 0..., Nj − 1 , c ∈ {r, g, b} , (4.131)

and for hyperspectral images7 8

A
Ni×Nj×Nc

= [Ai,j,c] , i = 0, ..., Ni − 1 , j = 0, ..., Nj − 1 , c = 0, ..., Nc − 1 . (4.132)

We will use two-dimensional Mi×Mj �lter kernels W = [W (i, j)] for two-dimensional
images. We will use three dimensional Mi ×Mj × 3 �lter kernels W = [W (i, j, c)] for
colour images, and three dimensional Mi ×Mj ×Mc �lter kernels W = [W (i, j, c)] for
hyperspectral images, of course allowing Mc = Nc.

Though color images and hyperspectral images may be seen as sets of one-channel
images, their physical meaning is somewhat di�erent.

Color images, having the three channels red, green and blue, are related to visual per-
ception, even if some colour transformation has been applied. Therefore, it is meaningful
to treat the three channels as a unit, where the labels or indices are only relevant for
perception, thus do not induce an order relation. Hence, even if the indices c (computer
internal) are represented by integers, we will not use their order relation.

Hyperspectral images are meant to capture the spectral response as a function of the
wavelength. Hence the indices of the channels are related to a physical property, why the
order of the indices c is essential.

Sometimes we refer to the individual channels, making the interpretation as a list of
matrices explicit:

A = [A(i, j, c)] = [Ac] with Ac = [Ac(i, j)] with i = 0, ..., Ni−1; j = 0, .., Nj−1; c = 0, ..., Nc−1 .
(4.133)

Since images always will be �nite, in the following we need to take into account three
aspects, which are relevant when using convolution operations in neural networks:

1. Correlation as default.

2. Padding of �nite images.

3. Skipping rows or columns (dilation for increasing the window size.

4. Using a larger step size (Stride) to reduce images.

5. Aggregating information (Pooling) to reduce images.

In detail we have
7Arrays of any number of dimension are called tensors, where the dimension of a tensor often is called

the rank of the tensor. This should not to be confused with the rank of a matrix. We often distinguish
vectors, matrices and higher (≥ 3) order tensors.

8There are two conventions to use brackets. The classical one, used in linear algebra, is to use single
brackets for column vectors and matrices, e.g., x = [xi] and A = [Aij ]. Alternatively, as in software
packages such as Tensor�ow, tensors of rank r are treated as lists of tensors of rank r − 1, where rank-1
tensors are row vectors. We stick to the convention of linear algebra.
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1. Correlation: In the context of convolutional neural networks the de�nition of the
kernels refers to correlation. Instead of the basic de�nition for in�nite images we
now have for two-dimensional images the correlation of

c(i, j) = w(i, j) ~ a(i, j) , (4.134)

with the Mi ×Mj-kernel W = [w(i, j)]

c(i, j) =
Mi−1¸
k=0

Mi−1¸
l=0

w(k, l)a(k + i, l + j)

for i ∈ [0, Ni −Mi] , j ∈ [0, Nj −Mj ] . (4.135)

since a(i, j) is only de�ned for 0, ..., Ni − 1 and 0, ..., Nj − 1. When using the �ip
function (to avoid the interrelation of the prime with the superscript)

�ipW = �ip([Wi,j ]) = [WMi−i,Mj−j ] . (4.136)

Hence, we have in matrix notation

C
(Ni−(Mi−1))×(Nj−(Mj−1))

= W
Mi×Mj

~ A
Ni×Nj

= �ip(W ) ∗ A . (4.137)

Therefore, if the �lter kernel is larger than 1 × 1, the resulting image C is smaller
than the given image A.

2. Padding: Since real images have a limited size, the sum's upper and lower limits of
the indices need to be taken care of.
We may enlarge the original image, by extending its border, to obtain a �ltered
image C which has the same size as the input image A. If the �lter kernel has an
uneven size 2h+ 1, we need to extend all four borders by (at least) h. This is called
padding. There are several ways to pad, we include the case, where there is no
padding, called valid padding

• no padding, called valid padding.

• Extending the image by zero, called zero-padding.

• Extending the image by used speci�ed constant, called constant-padding.

• Extending the image by re�ection, i.e., extending the image by a re�ected copy
of the image, e.g., keeping the left border column and adding the second-left
column of the image to the left border. This is also called re�ection padding.

• Extending the image by replication, i.e., extending the image by replicating
rows and columns, e.g., adding the left column of the image to the left border.
This is also called replication padding.

Assume an image is given by the matrix A. Then we obtain the following padded
image matrices, see Fig. 4.8

A =


5 4 9 7 5
6 6 3 8 7
8 7 4 9 9
8 7 4 9 9

 , A
(0) =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 5 4 9 7 5 0 0 0
0 0 0 6 6 3 8 7 0 0 0
0 0 0 8 7 4 9 9 0 0 0
0 0 0 3 8 6 4 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


(4.138)
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Figure 4.8: Original and padded images. The original image has intensities in the range
[3, 9], see (4.138)

A
(c,4) =



4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 5 4 9 7 5 4 4 4
4 4 4 6 6 3 8 7 4 4 4
4 4 4 8 7 4 9 9 4 4 4
4 4 4 3 8 6 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4


, A

(r) =



4 6 8 3 8 6 4 4 4 6 8
9 4 7 8 7 4 9 9 9 4 7
8 3 6 6 6 3 8 7 8 3 6

7 9 4 5 4 9 7 5 7 9 4
8 3 6 6 6 3 8 7 8 3 6
9 4 7 8 7 4 9 9 9 4 7
4 6 8 3 8 6 4 4 4 6 8

9 4 7 8 7 4 9 9 9 4 7
8 3 6 6 6 3 8 7 8 3 6
7 9 4 5 4 9 7 5 7 9 4


(4.139)

A
(s) =



4 7 8 8 7 4 9 9 9 9 4
3 6 6 6 6 3 8 7 7 8 3
9 4 5 5 4 9 7 5 5 7 9

9 4 5 5 4 9 7 5 5 7 9
3 6 6 6 6 3 8 7 7 8 3
4 7 8 8 7 4 9 9 9 9 4
6 8 3 3 8 6 4 4 4 4 6

6 8 3 3 8 6 4 4 4 4 6
4 7 8 8 7 4 9 9 9 9 4
3 6 6 6 6 3 8 7 7 8 3


, A

(e) =



5 5 5 5 4 9 7 5 5 5 5
5 5 5 5 4 9 7 5 5 5 5
5 5 5 5 4 9 7 5 5 5 5

5 5 5 5 4 9 7 5 5 5 5
6 6 6 6 6 3 8 7 7 7 7
8 8 8 8 7 4 9 9 9 9 9
3 3 3 3 8 6 4 4 4 4 4

3 3 3 3 8 6 4 4 4 4 4
3 3 3 3 8 6 4 4 4 4 4
3 3 3 3 8 6 4 4 4 4 4


(4.140)

3. Dilation: In order to increase the kernel size, without increasing the number of
parameters the kernel may be dilated, such that the spacing of the addressed input
elements is increased. As an example, if the dilation is performed with a factor d we
have the dilated correlation

c(i, j) =
Mi−1¸
k=0

Mj−1¸
l=0

w(k, l)a(dk + i, dl + j)

for i = 0, ..., Ni − dMi , j = 0, ..., Nj − dMj . (4.141)
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4. Stride: In order to reduce the output image by down sampling, we may proceed as
when building image pyramids. The ratio, by which the resulting image is reduced,
in the context of CNNs the degree of reduction is called the stride. A stride s = 1
implies no reduction. A stride s = 2 implies a reduction by a factor two. Hence, we
might write the correlation with a given stride s as

c(i, j) =
Mi−1¸
k=0

Mj−1¸
l=0

w(k, l)a(k + si, l + sj)

with i = 0, ...,

⌊
Ni −Mi

s

⌋
, j = 0, ...,

⌊
Nj −Mj

s

⌋
(4.142)

In order to stay �exible, the stride in row and column-direction may be di�erent.

5. Pooling: For reducing the size of an image, one possibility is to aggregate the infor-
mation in a window of the previous layer by a max or mean operation. For a 2× 2
window we have the elements

A`(i, j) = max
(
A`−1

2i,2j , A
`−1
2i−1,2j , A

`−1
2i,2j−1, A

`−1
2i−1,2j−1

)
, (4.143)

or the elements

A`(i, j) =
1

4

(
A`−1

2i,2j +A`−1
2i−1,2j +A`−1

2i,2j−1 +A`−1
2i−1,2j−1

)
. (4.144)

of the resulting matrix being reduced by a factor 1/2.

4.10.3 Multiple �lters

It may be meaningful to provide multiple, say Mk, correlation kernels W k applied to an
image, where the �lter kernels W k may be two- or three-dimensional, e.g.,

W = [W k] = [W (i, j, c, k] with W k = Wk(i, j, c) (4.145)

and

i = 0, ...,Mi − 1; j = 0, ...,Mj − 1; c = 0, ...,Mc − 1 ; k = 0, ...,Mk − 1 . (4.146)

For the following discussion we make the following assumption: We only handle grey
level images, colour images or feature images, no hyperspectral images. Speci�cally, we
assume the third dimension of the �lter kernel to have dimension Mc = 1 for one channel
images and we assume Mc = Nc for color images or Mc = Nk for feature images. Hence
the c-dimension of the �ltered image will have dimension 1, which we will not make explicit
in the result. Therefore, we have the correlation result

B = W ~ A = [B(i, j, k)] with Bk = Bk(i, j) = W k(i, j, c) ~ A(i, j, c) . (4.147)

Observe, B also is a three-dimensional array, this time the third dimension referring to
the feature number k.

Then, padding is applied to the �rst two indices for each channel individually, and
denoted as

Ap := padd(A, p) = [padd(Ac, p)] or padd(A, p) = [padd(Ak, p)] . (4.148)

where p denotes the mode of padding.
Hence convolving a three-channel image with a single three-channel kernel (Mk = 1),

will result in a one-dimensional image.

We are now prepared to describe forward propagation. For the derivations we will
restrict to the case

Mc = 1 and Nk = 1 , (4.149)

in order to simplify notation, thus assume one-channel images and a single �lter. Then
the arrays mentioned up to now are matrices. We follow https://www.jefkine.com/

general/2016/09/05/backpropagation-in-convolutional-neural-networks/.
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4.10.4 Forward propagation

We will allow for three di�erent ways to come from one layer to the next.
Instead of vectors a` or z` we now have N ` ×N ` arrays A` or Z `.

1. A convolutional connection. We assume no padding. Here we have, when referring
to the outputs,

A`

N`i×N`j
= f

(
W `

M`
i×M`

j

~ A`−1

(N`−1
i )×(N`−1

j )
+ B`

N`i×N`j

)
(4.150)

or, when referring to the inputs,

Z ` = W ` ~ f(Z `−1) + B` . (4.151)

With the number p` of the additional rows and columns during pooling the matrices
of the input layer `− 1, the sizes of the matrices are related by

N `
i = N `−1

i −M `
i + 1 and N `

j = N `−1
j −M `

j + 1 . (4.152)

The correlation kernel is assumed to be of odd size Mi ×Mj = (2h+ 1)× (2h+ 1),
usually with h = 1, thus a 3× 3 kernel.

2. A pooling connection, which allows to reduce the image. We only discuss a special
max-pooling with a stride of 2: For non-overlapping 2 × 2 subimages we take the
maximum value. This reads as (see above)

A`(i, j) = max
(
A`−1

2i,2j , A
`−1
2i−1,2j , A

`−1
2i,2j−1, A

`−1
2i−1,2j−1

)
, (4.153)

and leads to a reduction of the image

M ` =

⌊
M `−1

2

⌋
and N ` =

⌊
N `−1

2

⌋
(4.154)

3. A full connection, as above. This usually is applied after an adequate reduction of
the image and applied to its vector. Hence, we have

a` = f(W `a`−1 + b`) , (4.155)

with for the transition from convolutional to full connections

a`−1

(N`−1
i )(N`−1

j )
= vecA`−1 . (4.156)

The size of the layer ` can be chosen arbitrarily.

We can specify such a CNN by the sequence of triplets, assuming the kernels are quadratic
3× 3×k:[

[N1
i , N

1
j ], {[M `

i ,M
`
j ], t`, f `}

]
with t` ∈ {conv(M `

k), pool, full) for ` = 2, ..., L
(4.157)

specifying the size of the layer, the type of connection to this layer, possibly including the
number of �lter kernels, and the activation function for this layer. Software packages such
as Tensor�ow or PyTorch allow for more general speci�cations.

In the following assume the following restrictions:

• We assume only two-dimensional convolutional kernels.

• for a pooling layer, the activation function is f `(x) = x, there are no parameters to
be estimated.

• for full layers N ` = 1, and

• there are � up to now � no convolutional layers after a full layer.

We may have several convolutional layers without a pooling layer.
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4.10.5 Backpropagation and Jacobians

We minimize a cost function, e.g., the quadratic costs, as above

C({W `,B`}) =
1

2

1

N

Ņ

n=1

||Y n−AL(A1
n; {W `,B`})||2 =

1

2

1

N

Ņ

n=1

||ALn−Y n||2 =
1

2

1

N

Ņ

n=1

Cn .

(4.158)
Again, we made the unknown parameters W ` and B` explicit.

4.10.5.1 Jacobian of convolutional connections

We need the Jacobians of the optimization function w.r.t. the unknown parameters,
namely the elements of the matrices W `, either convolution kernels or transfer matrices,
and the element of the bias B, see (4.24) and (4.25), namely

∂C

∂W `
=

[
∂C

∂W (i, j, c, k)`

]
and

∂C

∂B`
=

[
∂C

∂B(i, j, k)`

]
, (4.159)

which have the same size as W ` and B`.

Jacobian of C w.r.t. W `. We start with the Jacobian w.r.t. W `. With the chain rule
we have

∂C

∂W `

M`
i×M`

j

=

[
∂C

∂W `
mn

]
=

[
∂C

∂z`
∂z`

∂W `
mn

]
(4.160)

with the vector z = vecZ of the matrix Z . Observe, the product in the last bracket can
be un-vectorized, leading to[

∂C

∂W `
m,n

]
=

[¸
i,j

∂C

∂Z`i,j

∂Z`i,j
∂W `

m,n

]
= tr

[ ∂C

∂
[
Z`i,j

]]T
∂
[
Z`i,j

]
∂W `

m,n

 . (4.161)

since generally
°
i,j Ui,jVi,j = (vecU)TvecV = tr(UTV ). We use the abbreviations (taken

the large greek letter E )

E `

N`i×N`j
:=

∂C

∂Z `
=

[
∂C

∂Z`i,j

]
and ε` := vec(E `) =

∂C

∂z`,T
. (4.162)

The partial derivative ∂Z`i,j/∂W
`
m,n can be derived from

[Z`i,j ] =

[ ¸
m′,n′

W `
m′,n′A

`−1
i+m′,j+n′ +B`i,j

]
(4.163)

such that for m = m′ and n = n′ we have

∂[Z`i,j ]

∂W `
m,n

= [A`−1
i+m,j+n] . (4.164)

since all other summands in (4.163) lead to zero derivative w.r.t. Wm,n. Now, inserting
(4.162) and (4.164) into (4.161) we �nd

∂C

∂W `

M`
i×M`

j

=

[¸
i,j

∂C

∂Z`i,j

∂Z`i,j
∂W `

m,n

]
=

[¸
i,j

E`i,jA
`−1
i+m,j+n

]
= E `

N`i×N`j
~ A`−1

N`−1
i ×N`−1

j

, (4.165)

see (4.53) left, there including all N samples. Observe, we have the size of the correlation
matrix, e.g., for the �rst index

N `−1
i − (N `

i + 1) = N `−1
i −

(
N `−1
i − (M `

i + 1) + 1
)

= M `
i , (4.166)

see (4.137).
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Jacobian of C w.r.t. B`. Similarly, we have

∂C

∂B`
=

[
∂C

∂B`ij

]
=

[
∂C

∂z`
∂z`

∂B`ij

]
. (4.167)

Since all partial derivatives of ∂Zij/∂Bij = 1 are one (see (4.151)) this expressions sim-
pli�es to

∂C

∂B`
=

[
∂C

∂B`ij

]
=

[
∂C

∂Z`ij

]
= E ` . (4.168)

see (4.53) right.

Recursive relation. We start from (4.151)

Z ` = W ` ~ A`−1 + B` with A`−1 = f(Z `−1) . (4.169)

The partial of the second expression simply is

∂A`i,j
∂Z`i,j

= f ′
(
Z`−1
i,j

)
. (4.170)

since all other partial derivatives ∂Ai,j/∂Ai′,j′ , i /= i′, j /= j′ are zero, which we take into
account in the following.

Therefore, we are interested in the Jacobian

E `−1
i,j =

∂C

∂Z`−1
i,j

=
¸
m,n

∂C

∂Z`m,n

∂Z`m,n

∂Z`−1
i,j

=
¸
m,n

E`m,n
∂Z`m,n

∂Z`−1
i,j

for i ∈ [0, N `−1
i −1] , j ∈ [N

`−1)
j −1]

(4.171)
We need to take care of the range of the summation indices: The matrix E `−1 generally is
larger than the matrix E `, due to the convolution of E `−1 with the kernelW `. Furthermore,
the Jacobian Z`m,nZ

`−1
i,j expresses the e�ect of changes in Z ` due to changes in Z `−1, which

only are local, due to the limited size of the convolution kernelW `. Hence, the non-zeros in
this Jacobian will be identical to the non-zeros in W `. Hence, the range of the summation
will only be [0,M `

i − 1]× [0,M `
j − 1].

The second factor now can be derived from (4.163)

Z`i,j =
¸
m′,n′

W `
m′,n′f(Z`−1

i+m′,j+n′) +B`i,j (4.172)

In order to be able to di�erentiate w.r.t. Z`−1
i,j we change the index of Z`i,j

Z`i−m,j−n =
¸
m′,n′

W `
m′,n′f(Z`−1

i+m′−m,j+n′−n) +B`i,j (4.173)

for all elements of Z `

i−m ∈ [0, N `
i − 1] and j − n ∈ [0, N `

j − 1] . (4.174)

When taking the derivative w.r.t. Z`−1
i,j only those factors where m = m′ and n = n′

are non-zero, hence

∂Z`i−m,j−n

∂Z`−1
i,j

= W `
m,n f

′(Z`−1
i,j ) or

∂Z`i−m,j−n

∂Z`−1
i,j

= W `
m,n f

′(Z`−1
i,j ) , (4.175)

for

i ∈ [0, N `−1
i − 1] , j =∈ [0, N `−1

j − 1] ,m ∈ [0,M `
i − 1] , n ∈ [0,M `

j − 1] . or i ∈ N `−1

(4.176)
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Otherwise, the Jacobian is zero.
We now shift the summation indices in (4.171) and obtain

E `−1 =
[
E`−1
i,j

]
(4.177)

=

[¸
m,n

E`i−m,j−n
∂Z`i−m,i−n

∂Z`−1
i,j

]
(4.178)

=

[(¸
m,n

E`i−m,j−nW
`
m,n

)
f ′(Z`−1

i,j )

]
(4.179)

=

[( ¸
k+m=i,l+n=j

E`k,lW
`
m,n

)
f ′(Z`−1

i,j )

]
(4.180)

= f ′(Z `−1) ◦ (W ` ∗ E `) (4.181)

The convolution obviously is a full convolution.
Hence the size of the resulting matrix is, e.g., for the �rst index

N `
i +M `

i − 1 = (N `−1
i − (M `

i − 1)) +M `
i − 1 = N `−1

i , (4.182)

as required, and consistent with the size of f ′(Z `−1).

4.10.6 Synopsis

We collect the main relations for full and for convolutional connections between layers
in Tab. 4.7. We observe the following intuitive relations, mainly resulting from the
vectorization of the matrices when handling convolutional connection:

• The const functions are identical and related by vectorization.

• The recursive form of the forward propagation for full connections is a matrix mul-
tiplication, for convolutional connections a matrix correlation by construction. I.e.
the weight matrices are to be �ipped, i.e., mirrored at the centre, in order to realize
convolutions.

• The L-weighted residuals are related by vectorization.

• The partial derivatives w.r.t. weights again are matrix multiplications and matrix
correlations, respectively. I.e. the matrix valued `-weighted residuals of convolu-
tional connections need to be �ipped.

• The partial derivatives w.r.t. biases are related by vectorization.

• Finally, the recursive structure of backward propagation for full connections contains
a matrix vector multiplication of the weights with the `-weighted residuals. For
convolutional connections, we need a convolution of the weights and the `- weighted
residuals, � in contrast to the forward propagation, where we need to realize a
correlation. In all cases we can use the correlation ~, when using the �ip operation
during backpropagation, as indicated in the last row.

4.10.7 Jacobian of the pooling

For being able to determine the gradient, we rewrite this operation in another form. We
use the 2× 2 submatrix

A`i,j =

[
A`2i,2j A`2i−1,2j

A`2i,2j−1 A`2i−1,2j−1

]
, (4.183)

referring to the index (i, j) of the output image, and the 4-unit vector e`α,i,j denoting the
maximum in this 2× 2-matrix:

e`α,i,j =
(
vecA`i,j == max

(
vecA`i,j

))
. (4.184)
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full convolutional

cost function
°
n Cn/(2N) Cn ||aLn − yn||2 ||ALn − Y n||2

forward propagation recursion z` = W
`f(z`−1) + b` Z

` = W
` ~ f(Z `−1) + B

`

L-weighted residuals εL ,ELn f ′(zL) ◦
(
aL − y

)
f ′(ZL) ◦ (AL − Y )

partials w.r.t. weights ∂C/∂W ` ε`a`−1,T E
` ~ A

`−1

partails w.r.t. bias ∂C/∂b` , ∂C/∂B` ε` E
`

backward propagation recursion ε` = f ′(z`) ◦
(
W
`+1,Tε`+1

)
E
` = f ′(Z `) ◦ (W `+1 ∗ E `+1)

E
` = f ′(Z `) ◦ (�ip

(
W
`+1

)
~E `+1)

Table 4.7: Relations for deep networks. Full network for vectors, convolutional network
for matrices. Transition from convolutional to full network by vectorization. Observe: in
all cases we can use the correlation ~, as shown in the last row, there however being a full
correlation

to arrive at the (i, j)-element of the pooled matrix A`+1, which is reduced by a factor 2:

A`+1
i,j = e`,Tα,i,jvecA

`
i,j . (4.185)

Hence, the Jacobians for the backpropagation are the 4-unit vectors indicating which
elements had been maximum during forward propagation:

∂vecA`i,j
∂A`+1

i,j

= e`α,i,j
4×1

. (4.186)

These vectors need to be stored during forward propagation.
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5 Bayes- and Maximum-Likelihood-Estimation

The principle of Bayesian estimation and Maximum likelihood estimates is explained and
illustrated for the simple example of observing an unknown entity for the cases with
and without outliers. It is generalized to the linear Gauss-Markov model, indicating the
close relation between generalized least squares estimation, ML-estimation and Bayesian
estimation. The relation to the iteration scheme of Levenberg-Marquardt are given.
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5.1 Preface

This note (2021) served as background for a lecture on the application of estimation theory
to point cloud registration. It can be seen as a comment on the corresponding subsections
(4.1.1 and 4.1.2) in Förstner and Wrobel (2016).

5.2 Goal

The goal of this note is to explain the principle of Bayesian estimation and of maximum-
likelihood estimation. In detail, we want to formalize a set of uncertain statements using
probability theory:

• We can model preliminary information or one's belief about unknown values of param-
eters, before performing any measurement of these parameters as a priori probability
density.

• We can model the measuring process1 and its uncertainty (or possible variations of
the outcome of some observation) as conditional probability density. It may include
the assumption that observations may be outliers. It may at the same time be used to

1We distinguish between the measurement process and the measurement. The measurement process
characterizes the physical boundary conditions for making the measurements, which includes the mea-
suring instrument, the meteorological boundary conditions, the ability of the operator to handle the
instrument, etc. The measurement is the result of using the measuring device and usually is a physical en-
tity with its unit. We also call measurements observations, and the measurement process the observation
process.
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characterize the certainty (likelihood) how a given observational value might explain
the parameter.

• We can fuse the preliminary information and the knowledge about the measurement
process and describe it as conditional probability density, i.e., the a posteriori density,
and in this manner model an improved belief about the parameters after performing
the measurement process.

• From the model of the observation process and the available observations one can de-
rive an optimal estimator2 for the parameters, what is called the maximum likelihood
estimation or ML estimation. In case the observation model allows for outliers, we
arrive at robust estimators.

• If prior information is available, one can come to an optimal estimator for the pa-
rameters from the combination of this prior information, the observation model and
the observations, the so-called Maximum-a-posteriori-estimator, or MAP-estimator.
Since the so-called Bayes theorem is used, it is also called Bayes estimation.

• The Bayesian estimator can serve as an explanation for an estimation method pro-
posed by Levenberg and Marquardt, which also works in the case a parameter vector
is not completely observed.

We illustrate the connections using the determination of a distance and the classic Gauss�
Markov model.

5.3 Establishing the model

We refer to the following two examples

1. First, we handle the simple case of the length θ of a box, which we want to determine
by some measurement. For our purpose, we assume that we have some preliminary
knowledge about the length and wish to combine it with the knowledge about the
measuring process and the concrete result of a measurement. Hence, we want to
correct our belief, we have before the actual measurement, using the result of the
measurement process. The goal is to describe this situation probabilistically and use
it for some best estimator for the length of the box.

2. We then generalize the situation for the case of the linear Gauss�Markov model.

5.3.1 The preliminary knowledge

In our context we start from the following assumptions: We assume the length of the box
is 1.2 dm or 1.6 dm, since we are not sure which of two boxes we have. However, we
presume we are more likely to measure the shorte side. The preliminary knowledge about
the length is uncertain by 0.1 dm.

This preliminary knowledge we may formalize in the following manner: With a proba-
bility P (µ = 1.2) the length is normally distributed with mean µ1 = 1.2 dm and standard
deviation σ1 = 0.1 dm. With the same probability P (µ = 1.6 the length of has a mean of
µ2 = 1.6 dm and the same standard deviation σ2 = 0.1 dm.

This preliminary knowledge can be visualized as probability density, as in the following
5.1 The area below the curve of course is 1, and both densities around 1.2 dm and around
1.6 dm contribute the same way. Using the Gaussian density function

g(θ | µ, σ2) =
1`

2πσ2
exp

(
−1

2

(
(θ − µ)

σ

)2
)

(5.1)

the preliminary knowledge would formally be

θ ∼ p(θ) = P (µ = 1.2)g(θ | 1.2, 0.12) + P (µ = 1.6)g(θ | 1.6, 0.12) . (5.2)
2An estimator is a rule for deriving an estimate of a parameter (vector)
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Figure 5.1: Preliminary knowledge about the parameter θ represented as probability den-
sity, We assume, that the smaller mean is a bit more probable, namely P (µ = 1.2) = 0.55
and thus P (µ = 1.6) = 0.45

The equation means the following: The random variable θ represents our uncertain knowl-
edge about the length. It follows the distribution shown by the density p(θ).

In statistical nomenclature there are two ways to express this situation:

1. The prior distribution3 of θ is characterized by the density p(θ).

2. The belief, that we have about the length θ prior to some measurement is character-
ized by p(θ).

The second formulation has the advantage, that we make explicit, that our belief may,
possibly stepwise, change by future measurements.

5.3.2 The measurement process

Now we model the measuring process. The model describes the uncertain relation between
the observations and the parameter. The model provides two types of information:

1. How large are the deviations between the observation and the parameter. This is
equivalent to describe the uncertainty of the measurements, in case the parameter
value is known.

2. How well does the observation explain properties of the parameter? This is equivalent
to the question: How certain are we about the value of the of the parameter if we
know the observational value?

5.3.2.1 The measurement

Let us assume, the measurement device has an uncertainty of 0.15 dm. I.e. the deviations
of the observation and the length of the box are 0.15 dm on an average. Again, we formalize
this statement using a density function, namely the conditional density p(y | θ), which
tells how the random variable y is distributed in case we know θ:

y | θ ∼ p(y | θ) = g(l | θ, σ2) ∝ exp

(
−1

2

(
y − θ
σ

)2
)
. (5.3)

The vertical bar �|� indicates, that we have full knowledge about what stands right of � |�
which we take as �xed information.

3Random variables are underscored
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5.3.2.2 Explanation of the parameters by the observation � the likelihood

We may interpret p(y | θ) in an alternative manner, since it only depends on the di�erence
y − θ, see (5.3): In case the measurement value y in known, the function p(y | θ) tells us
in some way how well we may explain y by the parameters.

The English language has several words for expressing uncertain or uncertainty: probable
or probability and likely or likelihood. 4

Therefore, the function p(y | θ) for �xed y also is called likelihood or likelihood
function:

L(θ) = p(y | θ) , (5.4)

where one implicitly assumes L(θ) refers to a speci�c observation y, sometimes added as
index, thus Ly(θ). Observe, the function L(θ) is no density, since the integral over θ is
not 1 in general.

If in our example we observe y = 1.5 dm, and assume the measurement process postu-
lates an uncertainty of σ = 0.15 dm then we obtain for this observation the likelihood

L(θ) = p(1.5 | x) = g(1.5 | x, 0.152) ∝ exp

(
−1

2

(
1.5− x

0.15

)2
)
. (5.5)

Figure 5.2: Likelihood-function L(θ) = p(y | θ) for θ, if the uncertain observation is y = 1.5
and has standard deviation 0.15 dm

5.3.3 The fusion of preliminary knowledge and measurement

Now we fuse these two types of information and interpret its result in two ways.

5.3.3.1 Bayes' rule

Scalar valued form of Bayes' rule. We assume that the preliminary knowledge has
no in�uence onto the measurement. Then we have two mutually independent statements
about θ represented by their densities p(θ) and p(y | θ).

4The German language only has one word for probable (wahrscheinlich) or probability (Wahrschein-
lichkeit). If we use the German word Sicherheit (certainty) it implies a high probability, since otherwise
we use the word Unsicherheit. Statistical nomenclature distinguishes the two: The word likelihood is
used, in case we want to express the certainty/uncertainty of an event, but one wants to avoid the word
probability, since generally the likelihood does not have the mathematical properties of a probability
or density, e.g., it does not sum/integrate to 1.
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The statement I know that θ is distributed according p(θ) and (simultaneously)

that the uncertainty of the measurement is characterized by p(y | θ) therefore
has a density which is the product of the two densities of concern:

p(θ) p(y | θ) . (5.6)

But this is identical with the joint density of y and θ

p(θ | y) = p(θ) p(y | θ) . (5.7)

This density is di�cult to interpret. We really would like to known the most probable
value for θ in case we know the observation y or we want to characterize the belief about
θ after having observed it. This belief can be characterized by the conditional density
p(θ | y), whose maximum may be taken as a plausible estimator for θ.

To achieve this goal, we apply the relation p(θ, y) = p(θ) p(y | θ) in a second form,
where y and θ are exchanged and in a �rst step obtain

p(θ, y) = p(θ) p(y | θ) = p(y) p(θ | y) . (5.8)

Solving for p(θ | y) directly yields

p(θ | y) =
p(θ) p(y | θ)

p(y)
. (5.9)

This is the a posteriori density of x for a given observational value y. For our example,
the function is shown in the Fig. 5.3 together with p(θ) and p(y | θ).

Figure 5.3: The prior density p(θ) (bold) shows the belief, that the length θ of the box
is around 1.2 dm or 1.6 dm. The likelihood function L(θ) = p(y | θ) (dashed) results from
the measurement y = 1.5 The joint density p(θ, y) (thin) is proportional to the posterior
density p(θ | y), since we have p(θ, y) = p(θ | y)p(y) and the density p(y) is constant, since
the observational value l is a �xed entity. the conditional density p(θ | y) characterized the
uncertainty of our belief about θ after knowing the value of the observation. We can take
as best estimator the maximum value, which is called the Bayes-estimator or a posterior
estimator. This integrates the preliminary knowledge and our measurement value. The
maximum of p(θ | y) is close to pθBayes ≈ 1.57, closer to the right local maximum of the a
priori density. In case we do not use the preliminary knowledge, but only the knowledge
about the measurement process, i.e., the likelihood-function, then the best estimator can be
taken as the maximum of p(y | θ) called the maximum likelihood estimator pxML = 1.5 which
in our simple case is identical to the measurement value
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Obviously, the uncertainty about the length θ of the box is diminished, since the peak
at 1.57 dm is narrower than that at the observation of the preliminary values. Instead
of two relative maxima of the same height we now have two maxima of clearly di�erent
height. The absolute optimum is close to 1.57 dm. It lies between the observational value
and the right maximum of the prior density. However, we might not be sure, that it is the
best choice to take this absolute maximum as best value for θ. One might be tempted to
report about the second (largest) relative maximum, or � instead of the maximum value
take the mean value of p(θ | y) - alternatives we do not discuss here further.

Robust likelihood. Generally we cannot assume, that the belief is supported by ob-
servations. In case preliminary knowledge and observations collide, e.g., if we would have
measured y = 2.2 dm, the belief about the length of the box would have been diminished,
approximately by a factor 1/2 � unless we would have allowed outliers within the mea-
suring process or in case we would have allowed to update our model for the measuring
process, e.g., by concluding that the uncertainty of the observations may be adapted, e.g.,
including the variance of the measurements into the parameter vector.5

We now show the power of this setup and assume that the measurment my be an
outlier. This directly has an in�uence onto the likelihood: We need to specify our belief,
say Pout, that an measurement is an outlier and in which range it lies, say uniformly in
the range [a, b]. The the prior could be speci�ed by

p(y | θ, possibleoutlier) = (1− Pout)p(θ | nooutlier) + Poutp(θ | outlier) . (5.10)

This leads to a robust likelihood, which allows observations � practically � not to in�uence
the estimate.

In the Fig. 5.4 we assume Pout = 0.2 and [a, b] = [0, 6]. Hence, the prior would be

p(y | θ, possibleoutlier) = 0.8g(1.5 | θ, 0.152) + 0.2U(0, 6) . (5.11)

The combination of the prior and the likelihood function leads to a quite di�erent result

Figure 5.4: Likelihood-function L(θ) = p(y | θ) for θ, if the uncertain observation is
y = 2.2 and has standard deviation 0.15 dm, thus actually is an outlier. We assume with a
probability of 20 % the measurment may be in the range between 0 and 6. The density in
the interval [0, 6] therefore is larger than 0.2/6 = 1/30. The density outside the interval is
practically 0

than before. An estimator based on a likelihood which allows for outliers usually is termed
a robust estimator, as in this example.

5It is interesting to think about the meaning of the above reasoning in case we replace the notion
belief by the notion prejudice.
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Figure 5.5: A case with an outlier and robust likelihood. The prior density is the
same as before. The density p(θ) (bold) shows the belief, that the length θ of the
box is around 1.2 dm or 1.6 dm, and the ssmaller mean is a bit more likely. The
likelihood function L(θ) = p(y | θ, possibleoutlier) (dashed) results from the mea-
surement y = 2.2, which is an outlier, but we do not know this. However, we al-
low that observations may be outliers. This leads to a robust likelihood function p(y |
θ, possibleoutlier). The joint density p(θ, y, possibleoutlier) (thin) is proportional to
the posterior density p(θ | y, possibleoutlier), since we have p(θ, y, possibleoutlier) =
p(θ | y, possibleoutlier)p(y) and the density p(y) is constant, since the observational value
y is a �xed entity. The conditional density p(θ | y, possibleoutlier) characterized the un-
certainty of our belief about θ after knowing the value of the observation. We again can
take as best estimator the maximum value. The maximum of p(θ | y, possibleoutlier)

is close to pθBayes ≈ 1.2 very close to the left local maximum of the a priori density, since
the likelihood alows the observation to be an oulier and � practically � not in�uence the
prior. But since the prior density for the smaller mean µ = 1.2 is higher than for the larger
mean µ = 1.6, the best estimate is close to the smaller mean. The prior in the range of the
observation around y = 2.2 is very small, compared with the likelihood, except for a small
range between 1.7 and 2.0, where the prior and the observation compete

Vector valued form of Bayes' rule. Eq. (5.9) is called Bayes equation or Bayes-
Theorem and is central to statistical pattern recognition. In our context we use it as basis
for fusion of prior knowledge and observations. The eq. also holds for vector (representing
sets) of observations and parameters, y and θ:

p(θ | y) =
p(θ) p(y | θ)

p(y)
. (5.12)

In our context of parameter estimation from observations it contains:

1. The a priori density p(θ) for the parameters, which we want to determine. This prior
information may come from rough estimates, from maps, from earlier measurements,
and so on. It speci�es the belief we have about θ before performing the measurement
process leading to measurements y.

2. The conditional density p(y | θ) characterizes the uncertainty we have about the
measuring process. It is the (conditional) density of the observations in case the
parameters were known, thus in essence model the observations as a function of
the parameters. from their predictions and their random deviations during the
measurement process. In case it is interpreted as the likelihood-function L(θ) :=
p(y | θ), it tells how well the parameters explained the observations.
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3. The conditional density p(θ | y) is the a posterior density of the parameters. It
characterizes the uncertainty of the parameters θ, after the observational values y
ar known. It also speci�es the belief we have about θ corrected by the measurements.

4. The density p(y) is a constant if the measurement values are given. It also can be
interpreted as factor for enforcing the integral of the right-hand side over θ to be 1.

5.3.3.2 Belief propagation, correction of belief

The belief we have about θ occurs twice in the Bayes equation. We want to denote it with
belt(θ), where the index indicates the situation or time the belief refers to.

1. The belief about θ before measuring e.g., is

bela priori(θ) := p(θ) . (5.13)

2. The belief about θ afte the measurement then is

bela posteriori(θ) := p(θ | y) . (5.14)

They are connected by the likelihood L(θ) := p(y | θ) which tells how well the observations
are explained by θ

bela posteriori(θ) = k p(y | θ) bela priori(θ) with k =
1

p(y)
. (5.15)

In case we imagine a situation where at di�erent times we perform observations we also
could write

belt(θ) = kt p(yt | θ) bel(θt−1) with kt =
1

p(yt)
. (5.16)

The constant value kt serves for normalization, since beliefs in our context are conditional
densities. The index t of the observations yt refers to the time, when the observations have
been mad, and in case it refers to the parameters, the time before and after performing
the measurement. as shown in the diagram Fig. 5.6 with the time axis running from left
to right.

Figure 5.6: Belief propagation, correction of the belief about θ caused by observations y

5.4 Estimation principles

There are many principles to motivate an estimation. We present two of them, one which
is based on the likelihood-function L(θ) and one which is based on the a posteriori density
p(θ | y).

5.4.1 The maximum-likelihood-estimation and its generalization

In case we only know the measuring process and the actual observations, it is plausible to
choose as best value for the parameter θ the one which optimally explains the observed
value, i.e., the one where the likelihood-function L(θ) is maximal. The we obtain, what is
called the Maximum-Likelihood estimation (ML estimation) from

pxML = argmaxx L(θ) = argmaxx p(y | θ) . (5.17)
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Actually, we used this argumentation as intuitively plausible, when we concluded that the
observed value k = 1.5 dm is a good estimate for θ.

We easily can generalize this principle to multiple observation and parameters: In case
we have an unknown U -vektor θ which we want to derive from a set of N observations
y and are able to characterize the measuring process probabilistically, i.e., are able to
provide the density of the observations for given parameters

y | θ ∼ p(y | θ) (5.18)

then together with the likelihood-function

L(θ) = p(y | θ) (5.19)

we obtain the ML-estimator frompθML = argmaxx L(θ) = argmaxx p(y | θ) . (5.20)

The principle is very general. Take as second example the Gauss�Markov model in the
form

y = Xθ + e und e ∼ p(e) = g(0,Σee) . (5.21)

here the design matrix is Z and the observational deviations e have mean 0 and covariance
matrix Σee. We rewrite this model and characterize the observations as a function of the
parameters in a probabilistic manner, we may write

y | θ ∼ g(E(y | θ),D(y | θ)) mit E(y | θ) = Xθ und D(y | θ) = Σee (5.22)

The left-hand side shows the random vector �y for given θ� whose distribution is related
to the situation, which is unknown up to the parameter vector θ. The we also can write

y | θ ∼ p(y | θ) = g(y | Xθ,Σee) . (5.23)

or explicitely

y | θ ∼ p(y | θ) =
1

(2π)N/2
exp

(
−1

2
(y − Xθ)TΣ−1

ee (y − Xθ)

)
. (5.24)

The ML estimator results from maximizing p(y | θ). Since the exponential function is
monotonically increasing, we also can obtain the ML estimator by minimize the negative
logarithm − log p(y | θ)pθML = argminx (− logL(θ)) = argminx (− log p(y | θ)) . (5.25)

For the case of a linear Gauss�Markov model and omitting constant terms we then obtain

pθML = argminx (y − Xθ)TΣ−1
ee (y − Xθ) . (5.26)

This obviously is a weighted least squares estimation6, using the invers covariance matrix
as weight matrix,

pθKQ = argminx (y − Xθ)TW (y − Xθ) mit W := Σ−1
ee , (5.27)

with the solution based on the normal equation system

XTΣyyX pθML + XTΣyyy = 0 . (5.28)

If we argue backward, we may interpret each weighted least squares estimator as ML
estimator by saying: The weighted least squares estimator � implicitly, i.e., without as-
suming this explicitly or without mentioning � assumes as stochastical model a Gaussian
distribution for with mean zero and covariance matrix Σee = W−1. This allows to check
the plausibility of the weighted least squares estimator, especially the plausibility of the
assumed weight matrix.

6Sometimes called generalized least squares (GLS)
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5.4.2 The Bayes or maximum a posterior estimator

Now we, in addition to the observations, also want to use some preliminary information
about the parameters. Then we obtain the following estimator from the posteriori density:

pθMAP = pθBayes = argmaxx p(θ | y) . (5.29)

It si the maximum a posteriori estimator for θ or MAP-estimator. Since the a posterior
density is kinked with the a priory density via the Bayes equation, this estimator sometimes
is called the Bayes estimator of θ. 7

As we know for the Bayes equation (5.12) the denominator is irrelevant, since it is a
constant for given observational values. Therefore we also may de�ne the Bayes estimator
as pθMAP = pθBayes = argmaxx p(θ)p(y | θ) . (5.30)

If we now take the Gauss�Markov model and assume we have some prior information
about the parameters, e.g., when estimating coordinates and taking approximate values θ0

of the point coordinates from a map, and in the most simple case represent this uncertain
prior information as normal distribution with mean θ0 and some covariance matrix Σx0x0

.
The we have two types of �observations�: (1) the � possibly quite vague � prior information
{θ0,Σx0x0

} and (2) the measurement values following a measurement process ({y,Σyy),
now using Σee = Σyy:

θ0 ∼ p(θ) = g(θ | θ0,Σx0x0
) (5.31)

y | θ ∼ p(y | θ) = g(y | Xθ,Σyy) (5.32)

One can show, the product (5.30) of the two normal distributions (5.31) und (5.32)
can be rearranged and the Bayes estimator is identical with the ML estimator, in case we
take both observational groups for determining the parameters, see Bishop (2006, Sect.
2.3.2). Therefore, the model for estimating the parameters with prior information can be
written as[

θ0

y

]
=

[
I

X

]
θ +

[
ex0

e

]
mit D

([
ex0

e

])
=

[
Σx0x0 0

0 Σyy

]
. (5.33)

This leads to the following estimator

pθBayes = (Σ−1
x0x0

+ XTΣyyX )−1(Σ−1
x0x0

θ0 + XTΣyyy) . (5.34)

This is identical to

pθBayes = (Σ−1
x0x0

+ Σ−1
pθpθ,ML

)−1(Σ−1
x0x0

θ0 + Σ−1
pθpθ,ML

pθML) . (5.35)

Thus we obtain the important insight: Die Bayes estimator, pθBayes, is the weighted mean
of the prior information {θ0,Σθ0θ0} and the result {pθML,Σpθpθ,ML

} of the ML estimator

(without prior information), when taking the inverse covariance matrices as weights.

Finally, we establish a relation between the two estimates. We may write the Bayes
equation also as

p(θ | y) =
p(θ)

p(y)
p(y | θ) (5.36)

7In the statistical literature sometimes the terms ML estimator and Bayes estimator are di�erentiated:
In case only probabilistic information is used, thus the a posteriori density is optimized, the estimator is
called MAP estimator. If in addition some expected costs for the estimated value are taken into account,
e.g., by its deviation from the mean value, the estimator is called Bayes estimator, re�ecting the motiva-
tion of Thomas Bayes (1701�1761), who was interested in optimizing his games' stake. Here, we use the
two terms interchangeable.
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In case the density p(θ) of the prior information is a constant, this is equivalent to the
statement: We do not have any prior information. 8 The both conditional densities are
proportional.

p(θ | y) = k p(y | θ) . (5.37)

The we have pθBayes = argmaxx p(θ | y) ≡ pθML = argmaxx p(y | θ) . (5.38)

The maximum likelihood estimator can be interpreted as Bayes estimate without prior.
For the Gauss�Markov model we observe, that the right hand side on (5.24) � upto a

constant factor � is identical to p(θ | y). Hence, we have a relation between the weighted
least squares estimator and the Bayes estimator:

The weighted least squares estimator for a linear model and Gaussian distribution of the
observational deviations is identical with the Bayes estimator without prior information.

5.5 Incomplete measurements and Levenberg-Marquardt

method

The Bayesian estimator allows to determine parameters even in case we do not have enough
observations to estimate them using the ML estimator. Then the corresponding normal
equation matrix, the matrix XTΣ−1

yy X in (5.28), is singular:

• If the observations do not allow we still can estimate the parameters following (5.35)

pθBayes = (Σ−1
x0x0

+ XTΣ−1
yy X )−1(Σ−1

x0x0
θ0 + XTΣ−1

yy y) . (5.39)

As an example, in case a scene point, say, with coordinates θ0k, is not observed,
then in spite of the singularity of the resulting normal equation matrix, we obtain a
solution, reproducing the a priori values θ0k of the coordinates.

• Similarly, in case we do not know, whether all parameters are estimable, we might
introduce prior values for the parameters in order to guarantee estimability within
a Bayes estimation. This is easy, especially also within an iterative procedure (as-
suming the model is nonlinear), since we may set the prior for the corrections ∆θ0

to zero and simply choose a multiple of a unit matrix as covariance matrix Σx0x0 .
Then we obtain the corrections to the parameters as

x∆θLM = (λI + XTΣ−1
yy X )−1 XTΣ−1

yy ∆y . (5.40)

Levenberg (1944) and Marquardt (1963) have proposed to diminish the parameter
λ, which actually is a common weight for the prior values ∆θ0, during the sequence
of iterations ν, say choosing an exponential decay λ(ν) = λν0 , such that the prior
information on one hand allows an estimation on the other hand does not disturb
the solution.

5.6 Appendix: Probability p(y) for the double mixture

model

The posterior density is given by

p(θ | y) =
p(y | θ)p(θ)

p(y)
. (5.41)

8In a �nite universe the range of θ is limited, such that p(θ) = c > 0. In case we restrict the range of
the normal distribution accordingly, the e�ect onto the density is negligible.
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For drawing the �gures we determined p(y) numerically:

p(y) ≈
¸
θi

p(y | θi)p(θi)∆θ . (5.42)

We mow want to give an explicit expression for the doubly mixture model with the prior

p(θ) = P (µ = µ1) g(θ | µ1, w1) + P (µ = µ2) g(θ | µ2, w2) (5.43)

and the likelihood

L(θ) = p(y | θ) = Pin g(y | θ, wy) + (1− Pin) U(a, b) . (5.44)

The denominator of the posterior is

p(y) =

»
θ

p(y | θ)p(θ)dθ . (5.45)

It is a sum of four integrals

p(y) = A1 +A2 +B1 +B2 =

»
θ

(a1 + a2 + b1 + b2) dθ . (5.46)

of the following terms

a1 = P (µ = µ1)Pin g(θ | µ1, w1)g(y | θ, w) (5.47)

a2 = P (µ = µ2)Pin g(θ | µ2, w2)g(y | θ, w) (5.48)

b1 = P (µ = µ1) (1− Pin) g(θ | µ1, w1)U(a, b) (5.49)

b2 = P (µ = µ2) (1− Pin) g(θ | µ2, w1)U(a, b) . (5.50)

The �rst two terms contain the factors of two Gaussians

ai0 =
1

2πσiσθ
exp

(
−1

2
wi(θ − µi)2

)
exp

(
−1

2
w(θ − y)2

)
, (5.51)

while the second two terms contain factors of a Gaussian with an uniform density

bi0 =
1a

2πσ2
i

exp

(
−1

2
wi(θ − µi)2

)
U(a, b) . (5.52)

We simplify the argument qi of the exponential in ai0. It is a sum of two quadratic
forms

qi = wi(θ − µi)2 + w(θ − y)2 . (5.53)

It can be rewritten as

qi = (wi + w) θ2 − 2(wiµi + wy) θ + (wiµ
2
i + wy2) (5.54)

= (wi + w)

(
θ2 − 2

wiµi + wy

wi + w
+
wiµ

2
i + wy2

wi + w

)
(5.55)

= (wi + w)

((
θ − wiµi + wy

wi + w

)2

+

(
wiµ

2
i + wy2

wi + w
−
(
wiµi + wy

wi + w

)2
))

(5.56)

= (wi + w)

((
θ − wiµi + wy

wi + w

)2

+
wwi (µi − y)

2

(w + wi)
2

)
(5.57)

=

(
θ − wiµi+wy

wi+w

)2

1/(wi + w)
+
wwi (µi − y)

2

(w + wi)
(5.58)

We now take the weighted mean

µ̄ =
wiµi + wy

wi + w
(5.59)
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the corresponding variance

σ̄ =
1

wi + w
=

1
1
σ2
i

+ 1
σ2

=
σ2
i σ

2

σ2
i + σ2

(5.60)

and the weigthted squared di�erence

d̄2
i =

wwi (µi − y)
2

(w + wi)
=

(µi − y)
2

σ2
i + σ2

(5.61)

and arrive at

ai0 =
1

2πσiσθ
exp

(
−1

2
d̄2
i

)
exp

(
−1

2

(θ − ȳ)2

σ̄2

)
(5.62)

Therefore we obtain for the integral of the �rst two terms»
θ

aidθ = P (µ = µ1) Pin
1

2πσiσθ
exp

(
−1

2
d̄2
i

) »
θ

exp

(
−1

2

(θ − ȳ)2

σ̄2

)
dθ (5.63)

= P (µ = µ1) Pin
1

2πσiσθ
exp

(
−1

2
d̄2
i

) `
2πσ̄ (5.64)

thus �nally at

Ai =

»
θ

aidθ = P (µ = µ1) Pin
1`

2π
a
σ2
i + σ2

exp

(
−1

2

(µi − y)
2

σ2
i + σ2

)
(5.65)

The integral of the second two terms bi0 actually are»
θ

bi0dθ =
1

|a− b|

∣∣∣∣∣
» b
a

g(θ, µi, σ
2
i )dθ

∣∣∣∣∣ =
1

|a− b|

∣∣∣∣Φ(b− µiσi

)
− Φ

(
a− µi
σi

)∣∣∣∣ (5.66)

Therefore, we have

Bi =

»
θ

bidθ = P (µ = µi)
1− Pin

|a− b|

∣∣∣∣Φ(b− µiσi

)
− Φ

(
a− µi
σi

)∣∣∣∣ (5.67)
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6 Evaluation of Estimation Results � An

Example

We give three examples for parameter estimation and evaluation. We provide the speci�c
models and equations for the examples. The discussion includes general hints how to
use the evaluation methods in other applications and how to report evaluation results in
publications. The note served as an appendix to Chapt. 4 of Förstner/Wrobel (2016), GC
11, Springer.

6.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 GMM for linear regression with two unknowns with evaluation . . . . . . . 121

6.3.1 The Model and the Estimates . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 The Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3 Evaluating the Precision of the Estimates . . . . . . . . . . . . . . . 125
6.3.4 Testing and the Sensitivity of the Estimation . . . . . . . . . . . . . 131

6.4 Gauss�Markov Model for Planar Similarity Transformation with Evaluation 135
6.4.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4.2 The Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Gauss�Helmert Model for Planar Similarity Transformation . . . . . . . . . 140
6.5.1 Sensitivity Analysis for the Gauss�Helmert Model . . . . . . . . . . 140
6.5.2 Estimation a Similarity Transformation using the Gauss�Helmert

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1 Preface

This note is identical to the Example to Chapter 4 of Förstner and Wrobel (2016) at
https://www.ipb.uni-bonn.de/book-pcv/software/PCV-A-4-examples.pdf and pro-
vides positive and negative examples how to evaluate estimation results.

6.2 Summary

We give three examples for parameter estimation and evaluation

1. Gauss�Markov model for linear regression with two unknowns with evaluation.

2. Gauss�Markov model for linear regression for similarity transformation with evalu-
ation.

3. Gauss�Helmert model for linear regression for similarity transformation with evalu-
ation.

We provide the speci�c models and equations for the examples.
The discussion includes general hints how to use the evaluation methods in other

applications and how to report evaluation results in publications.
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Partly we refer to problems addressed in the book. The results with concrete num-
bers derived with the Matlab-code, are given in example boxes. The background color
green indicates recommended procedures, red indicates pitfalls, other text has light grey
background.

For the theory we refer to Chap. 4. References to sections are given as `PCV-
NUMBER', e.g., PCV-4.2, references to equation as `PCV-(NUMBER)', e.g., PCV-(4.138).
For the software we refer to the home page of the book http://www.ipb.uni-bonn.de/

book-pcv/.

6.3 GMM for linear regression with two unknowns with

evaluation

The scope of this example is to demonstrate the estimation and the evaluation in the linear
Gauss-Markov model. TheMatlab-script �le is GMM/DEMOS-GMM/demos_GMM_regression.m
under http://www.ipb.uni-bonn.de/book-pcv/#cod.

6.3.1 The Model and the Estimates

The observations yn, n = 1, ..., N depend linearly on the time t. The intercept x1 and the
slope x2 are unknown, see Fig. 6.1.

1 2 t

l

x

x

1

2

Figure 6.1: Model for Example 1: linear regression

We assume all observations to be uncorrelated and have the same standard deviation
σ := σyn :

E(y
n
) = x1 + x2tn , D(y

n
) = σ2 . (6.1)

Collecting the observations, parameters and coe�cients in the corresponding vectors and
matrices, namely

y =


y1

. . .
yn
. . .
yN

 , θ =

[
θ1

θ2

]
(6.2)

and the partitioned design matrix

A
N×2

=


1 t1
. . .

1 tn
. . .

1 tN

 = [1 t] := [C ,D] with C = 1 and D = t . (6.3)

the model reads as
E(y) = Aθ , D(y) = σ2IN = w−1IN , (6.4)

see PCV-(4.34). This is the same model we use for the �tting line in Chap. 10.5 for
deriving the uncertainty of the 2D line through given points. The normal equation matrix
can be given explicitly

N =

[
Nw w

°N
n=1 xn

w
°N
n=1 xn w

°N
n=1 x

2
n

]
, (6.5)
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see PCV-(4.40). The estimated residuals are

pv = (pθ1 + pθ2ti)− y , (6.6)

see PCV-(4.41). A numerical example is given in the box on page 123. The estimated
sum of the squared residuals and the estimated variance factor are

Ω = w
Ņ

n=1

v2
n and pσ2

0 =
Ω

N − 2
, (6.7)

see PCV-(4.81) and PCV-(4.80).
The theoretical and the empirical covariance matrices are

Σpθpθ = σ2
0N
−1 and pΣpθpθ = pσ2

0N
−1 . (6.8)

The covariance matrix of the residuals is

Σvv = Σyy − AΣpθpθA
T . (6.9)

For getting insight into the structure of the result, we reduce the times ti to their centroid

tn = tn − µt with µt =

°N
n=1 tn
N

(6.10)

and obtain the design matrix for the centred model

A(c) = [1 tn]n=1,...,N . (6.11)

Hence the new mode reads as

E(y
n
) = x

(c)
1 + x2t

(c)
i , (6.12)

where the intercept refers to the abscissa at centroid µt. A numerical example is given in
the following box. The the covariance matrix of the unknown parameters then is diagonal

Σpθpθ =
σ2

0

wN
°N
n=1)t

2
n

[ °N
n=1 t

2
n 0

0 N

]
=
σ2

0

w


1

N
0

0
1°N

n=1 t
2
n

 (6.13)

Hence the standard deviation of the estimated intercept in the centred model, which is at
the centroid, is

σpx1
=

σ`
N
, (6.14)

which decreases with increasing number N of observations.
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Example 6.3.17: Linear regression with two parameters (1). Figure 6.2 shows
the result of an example generated with demos_GMM_regression.m and initialization of the
random number generator with init_rand=15. We will refer to this numerical example in
the following.
The true values are given by:

θ̃ =

[
0.5
1.0

]
, σ = 0.5 , t =


−1
1
2
14

 , ỹ =


−0.5
1.5
2.5
14.5

 , ẽ =


−0.6271
−0.3932
−0.5604
3.5861

 , y =


0.1271
1.8932
3.0604
10.9139

 .
(6.15)

The true errors ẽ result from sampling from N (0, σ2) with σ = 0.5. We also introduce
an outlier in order to demonstrate the di�culty to identify outliers. Observation y4 is
changed by the error ∇l4 = −4; this error is 8 times the standard deviation of the assumed
observational noise. The estimated parameters and estimated residuals

pθ =

[
1.1956
0.7008

]
, pv =


0.3678
0.0032
−0.4633
0.0922

 . (6.16)

Observe, this result can be obtained by just assuming the observations have the same stan-
dard deviation, though this needs not be known.

If we would have ground truth, i.e., the true values for the parameters, we could report
the di�erences pθ − θ̃ =

[
0.1956
0.2008

]
. (6.17)

Without knowing anything about the observational process, i.e., the structure of the prob-
lem and the level of the observational noise, this di�erence cannot be evaluated. Moreover,
if we � as a reader of such a result � would have a di�erent experimental setup, using the
same functional model (here a linear regression with two parameters), e.g., more observa-
tions, possibly distributed di�erently, then we would not be able to predict the performance
in our situation. This indicates, that even if we give the di�erences pθ − θ̃ of the estimates
to some ground truth, the reader does not learn something from this di�erence, if not
provided with more information; this will be discussed below.

�

The standard deviation of the slope is

σpx2
=

σ
Ņ

n=1

t
2
n

. (6.18)

With the root mean square distance of the observed times from their centroid

RMSEt :=
1

N

gffe Ņ

n=1

t
2
n . (6.19)

We hence have the standard deviation of the estimated slope

σpx2
=

σ`
N

1

RMSEt
. (6.20)

A numerical example is given in box on page 126.

6.3.2 The Estimation

The estimation is realized in the Matlabfunction GaussMarkovModelLinear.m. It in a
�rst step follows Alg. 1, PCV-p.91. An additional routine diagnostics_1d.m performs
the sensitivity analysis. Given a set rU of parameters of interest it determines all diagnostic
parameters of interest:
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Figure 6.2: Result of regression. From top left to bottom right: (1) original data yn; (2)
estimated residuals pvn, (3) redundancy numbers rn; (4) estimated errors ∇yn; (5) minimal
detectable outliers ∇0yn; (6) test statistics zn; (7) sensitivity factors µn. Explanation see
text.

• the covariance matrix of the estimated parameters

Σpθpθ = (ATW yyA)−1 (6.21)

assuming the a priori variance factor is σ2
0 = 1. It allows to derive the standard

deviations of the estimated parameters σpθu =
b

Σpθu pθu from the diagonal elements

of the covariance matrix. It does not depend on real observations, but only on the
mathematical model of the design, i.e., the geometric con�guration and the assumed
uncertainty of the observations.

• the residuals pvi and the estimated varaince factor

pvn = aT
n
pθ + an − yn and pσ2

0 =
pvT
W yypv

N − U
. (6.22)

• the test statistics zn (PCV-(4.284))

zn =
−pvn
σpvn

. (6.23)

• the redundancy numbers as diagonal elements of the redundancy matrix (PCV-
(4.61))

rn = Rnn . (6.24)

• the minimum size ∇0yi of detectable outliers (PCV-(4.304), (4.300))

∇0yi = δ0
σyi`
ri
. (6.25)

We use δ0 = 4.13, see PCV-p.67, Table 3.2.

• the sensitivity factor w.r.t. all 4 parameters (PCV-(4.292))

µx,n =

c
1− rn
rn

; (6.26)
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• the sensitivity factor w.r.t. the selected set rU of parameters (in PCV-(4.296) referred
to as parameter set κ)

µx1,n =

c
un
rn

. (6.27)

6.3.3 Evaluating the Precision of the Estimates

6.3.3.1 Simulations vs. Theoretical Derivations

We have three methods to derive the theoretical precision of estimates, which in a �rst
step are equivalent:

1. Using the Cramer-Rao bound based on the numerical determination of Σpθpθ for well
selected cases, see PCV-(4.49). This requires only one simulation and estimation for
each con�guration.

2. Using the Cramer-Rao bound based on an algebraic derivation. In this case we
derive algebraic expressions for the design matrix, the normal equation matrix and
its inverse, as in PCV-13.3.6.1 done for the relative orientation of the image pair.
This gives direct insight into the dependencies of the standard deviations of the
parameters of the con�guration.

3. Using sampling techniques as described in PCV-4.6.8.2: For each con�guration
(choice of the functional and mathematical model) this requires K > 25 samples
and therefore estimates for obtaining an accuracy of better than 5%.

Depending on the complexity of the problem, we can choose between them.

125



Example 6.3.18: Linear regression with two parameters (2). The following infor-
mation presumes, that some a priori standard deviation σ of the observations is known, i.e.,
the user of the estimation software knows how accurate the observations are.
All residuals are below σ, hence the result appears �ne, though we know there is an outlier
in the 4-th observation.
The estimated variance factor is

pσ0 =

°N
n=1 pv2n/σy2n
N − U = 0.8467 . (6.28)

For determining pσ0 we exploit the assumption, that the observations are mutually uncor-
related. The estimated variance factor pσ2

0 is not signi�cantly deviating from the a priori
value σ2

0 = 1. However, since the redundancy R = N − U = 4 − 2 = 2 is very low, this
value is very uncertain, see the discussion on the estimated variance factor in PCV-4.2.3.

The theoretical covariance matrix and the theoretical standard deviations of the parameters
are

Σpθpθ =

[
+0.0915 −0.0072
−0.0072 +0.0018

]
, σpθ1 = 0.3025 , σpθ2 = 0.0426 . (6.29)

This is the Cramer-Rao bound, the lower bound for the achievable precision in this experi-
ment, i.e., for this design, the distribution t of the observations, the assumed model and the
assumed noise level σ.

The evaluation of the deviations of the estimates pθ = (1.1956, 0.7008) from the ground truth
θ̃ = (0.5, 1.0) now can be related to the theoretical covariance matrix, which depends on
both, the design of the experiment and the assumed noise level of the observations. This
deviation is signi�cant, since the test statistic (the Mahalanobis distance of pθ from θ̃)

X = (pθ − θ̃)TΣ−1
pθpθ (pθ − θ̃) = 53.45 > χ2

2,0.99 = 9.21 . (6.30)

is larger than the tolerance, see the test PCV-(3.32).
Such a comparison is valuable for both the author (having performed the experiment and
publishing this in a paper) and the reader (of a conference or journal paper): It tells
whether all information of the observations is exploited. For the author this indicates, that
there appear not to be any hidden systematic errors left. For the reader this indicates, that
the method appears to be adequately designed. This of course has to seen in the context
of the size of the experiment, which here is too small.

�

Before trusting the Cramer-Rao bound and the algebraic derivations, it is useful to
perform comparisons between these measures and the result of simulations, in order to get
experience for which type of problems simulations appear necessary.

The checks of the implementation as discussed in PCV-4.6.8 are based on the required
coherence between the simulations and the other �one-shot� methods using the Cramer-
Rao. The evaluation can be based on statistical tests, which allow evaluation as a function
also of K. The test only work, if the underlying model is linear enough, i.e., second order
e�ects do not disturb. In order to avoid confusion between di�erent sources for deviations,
very small standard deviations (for avoiding second order e�ects) and large number of
iterations (in order to avoid biased estimates) need to be chosen.

A numerical example is given in box on page 127.
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Example 6.3.19: Linear regression with two parameters (3). We want

to check the correctness of the implemented software. For this we refer to PCV-

4.6.8 and generate a su�ciently large number of samples for the observations

for a �xed parameter vector, following the mathematical model of the estima-

tion procedure, hence without outliers. We choose K = 25 in order to ob-

tain accurate results for the check. We refer to the result with init_rand=15.
The check leads to the following results:

• The mean of the estimated variance factors is s2 = 0.6654. This appears small
compared with the expected value E(pσ0

2) = 1. However, the con�dence interval
[Tl, Tu] for a signi�cance level is [0.4981, 1.6983]. Hence we have

s2 = 0.7672 ∈ [0.5593, 1.5923] , (6.31)

and the alternative hypotheses, that the estimated variance factors signi�cantly de-
viate from 1, is to be rejected.

• The theoretical covariance matrix and the empirical covariance matrix, derived from
K = 25 estimated parameter vectors pθk are

Σθθ =

[
+0.0915 −0.0072
−0.0072 +0.0018

]
, D(pθ) =

[
0.0834 −0.0065
−0.0065 0.0021

]
. (6.32)

The test statistic X2 (see (4.358)) for checking, whether the estimated covariance
matrix signi�cantly deviates from the theoretical covariance matrix, is within the
con�dence interval:

X2
Σ = 0.7528 ∈ [0.0717, 12.8382] . (6.33)

• Finally, we check whether the estimated parameters are biased using PCV-(4.360).
The mean of the estimated parameters is xmpθ = [0.5479, 1.0070]T. The Mahalanobis
distance from the true parameter vector [0.5, 1.0] also lies within the con�dence
region

X2

bias = 1.0756 ∈ [0.0100, 10.5966] . (6.34)

Hence, we have no reason to assume the implementation has errors.
�

6.3.3.2 The Ideal Dependencies

The theoretical precision of the result is representative for many estimation problems.
We summarize and interprete these results, and discuss its relevance for other estimation
problems.

Recall, the theoretical precision of the estimated parameters is:

σpx1
=

σ`
N

and σpx2
=

σ`
N

1

RMSEt
(6.35)

• The standard deviations of the estimates σxu linearly increase with the standard
deviation σ of the observations.

• The standard deviations decreases with the square root of the number N of obser-
vations. This strictly only holds for the centroid. The standard deviation of the
slope only decreases with

`
N if the average distance of the observations from the

centroid remain unchanged. This holds (approximately) if the density of the obser-
vation over time is changed, but the time interval tN − t1 remains constant. This
often is a reasonable model: for example when analysing the absolute or relative
orientation of images using well distributed points in the images, then the average
spread (RMSEx) would characterize the distribution of the observed image points
independent of the number of image points. Then the standard deviations of the
pose parameters will approximately decrease with 1/

`
N , where N is he number of

points in the image.
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The graph of y = 1
`
N however visually is similar to the graphs of a = 1/N or

y = 1/ logN . Showing the decay of the standard deviations of the parameters
therefore should be accompanied by a graph, showing`

Nσpx2
=

σpx2

RMSEt
(6.36)

This ideally does not depend on the number of observations, if the con�guration
does not change, only the density of the observations. Deviations easily can be seen.

• The standard deviation of the slope decreases linearly with the width RMSEt of the
data. This is typical for geometric problems, where the observed features �carry� the
information: The larger the width of the data, the more precise the solution. The
width in structure from motion problems may refer to

� the coverage of the image area,

� the viewing angle,

� the length of a straight line segment, or

� the area of a planar regions covered by 3D points.

The special structure of a geometric problem may also lead to other dependencies of
the width of the data: As an example: the standard deviation of the rotation angles
(ω and ϕ) of a camera across the viewing direction decrease quadratically with the
width d of the image area covered by image features. Here, a plot of d2σω for varying
d should show no dependency on d.

Numerical examples are given in the box on page 129.

6.3.3.3 Causes for Deviations from the Ideal Dependencies

Often these dependencies are derived by simulations to demonstrate the �robustness� of
the solution (actually the theoretical precision): showing the uncertainty of the estimated
parameters as a function of the noise added to the observations. This is derived by
repeating the estimationK times, and reporting the RMSE of the parameters as a function
of σ. If the number K of samples is large enough the linear dependency should be visible
in the graph.

Deviations from the linearity may either be have di�erent causes, e.g., :

• a too low number K of samples. The relative precision of the estimated standard
deviation is appr.

a
1/K. For achieving a 5% accuracy at least K = 25 samples

need to be taken.

• the in�uence of the linearization of a non-linear model, see the discussion in Sect.
2.7.6.

• a lack of convergence of an iterative estimation scheme. This may even occur for a
linear problem, if no direct solution, e.g., by Gaussian elimination is used to solve
the normal equations, but e.g., a conjugate gradient method.
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Example 6.3.20: Linear regression with two parameters (4). We want to demon-
strate dependencies of the noise level σ using simulated data, and discuss how to visualize
such results.

We repeat the simulations used for checking the correctness of the implementation for the
following noise levels:

σ ∈ [0.01, 0.05, 0.1, 0.15, 0.20] , (6.37)

and visualize the corresponding standard deviations from the empirically determined co-
variance matrices (6.32), right. There, for σ = 0.5 we would obtain pσpx1 = 0.2889 andpσpx2 = 0.0453. The red lines in the top row of the �gure shows the standard deviationspσpxi(σ), i = 1, 2 for the two parameters. They approximately increase linearly with σ; the
theoretical increase is shown as dashed blue line. The discrepancies are due to the number
K = 25 of samples used for the simulation, which causes a relative error of 5%. This blue
dashed curve usually is not known, unless for a single choice of σ the theoretical covariance
matrix Σpθpθ is determined, which for equally weighted observations is

Σpθpθ = σ2(AT
A)−1 , (6.38)

see (PCV-(4.49)). A linear dependency easily can be mistaken for an a�ne dependency,
where there is an o�set at σ = 0, if the simulations do not start with a very small sigma.

Standard deviation of the the parameters as a function of the noise level. The
empirical dependency is given in red, the theoretical dependency is given in dashed
blue. Top left: Standard deviation pσpθ1(σ). The dependencies should linearly in-
crease. Top right: Standard deviation pσpθ1(σ). Bottom left: Standard deviationpσpθ2(σ)/σ. Bottom right: Standard deviation pσpθ2(σ)/σ. The dependencies here
should be a constant

If not a very small noise level σ for the observations is included in the simulations, it is
recommended to visualize the ratio

r1(σ) =
pσpx1(σ)

σ
, (6.39)

which should be a constant. This easily can be checked visually; see the bottom row.
�

• a Levenberg-Marquardt solution is used in the presence of a singular normal equation
system. Hence, the geometry of the problem represents a degenerate con�guration.
Then the unknown parameters are not estimable, and the regularizer enforces a
solution close to the one yielding a minimum norm for the covariance matrix of
the unknown parameters. Then the estimates depend on the approximate values.
This might lead to a deviation of the linear relationship between the RMSE for the
unknown parameters and the assumed noise standard deviation.
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Example 6.3.21: Linear regression with two parameters (5). Similarly as for
the noise standard deviation, we want to demonstrate dependencies on the density of the
observations using simulated data, and discuss how to visualize such results. We therefore
assume the observations to be regularly spaced in a �xed interval, and vary N . We assume
this interval to be 100, and the noise standard deviation to be 0.2.

We assume the observations are taken in a �xed interval, and vary N . For the sequence

N ∈ [4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128, 181, 256, 362] (6.40)

the red line in the top row in Fig. 6.3.3.3 shows the estimated pσpθi , i = 1, 2. The standard
deviations are decaying, as expected.

Standard deviation of the the parameters as a function of observational density The
empirical dependency is given in red, the theoretical dependency is given in dashed
blue. Top left: Standard deviation pσpθ1(N). Top right: Standard deviationpσpθ2(N). The theoretical dependencies follow approximately 1/

`
N . Bottom left:

Standard deviation
`
N

estσpθ1(N). Bottom right: Standard deviation
`
N pσpθ2(N). The dependencies

here should be a constant

In order to con�rm the dependency on N , namely a decay with 1/
`
N , we show

r2(N) =
`
N pσpxi(N) , (6.41)

in the bottom row. It should be a constant.
Often the level of the theoretical precision is not known or di�cult to obtain, e.g., since
the software does not provide the standard deviations of the estimates. In this case the
blue dashed curves in top row could be replaced by a best �tting function σpθi = ai/

`
N

in order to visually prove the type of dependency, and avoid the normalize plots in the
bottom row.
�

• inconsistencies between the simulated data and the used model. Hence the simulation
checks both: the program for generating arti�cial data and the estimation routine.

• suboptimal implementation of the simulation or the estimation.
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6.3.4 Testing and the Sensitivity of the Estimation

The evaluation of the result can be based on useful measures for identifying outliers and
weaknesses in the geometric con�guration, see the box on page 133 and Fig. 6.2, p. 124.

6.3.4.1 Detectability of Outliers and Testing

The largest residual is pv3 = −0.463, much larger in magnitude than pv4 = 0.092, though
we know that there is an outlier in y4.

To obtain insight into the geometry of the observational design we investigate the
redundancy matrix,1 which shows how deviations in the observation in�uence the residuals.

Relating the observations to the centroid the redundancy matrix is

R = I − A(ATA)−1A = I − 11T

1T1
− t t

T

t
T
t
. (6.42)

or with the mean position RMSEt

R = I − 1

N
11T +

1

N

t t
T

RMSE2
t

. (6.43)

In our case we obtain

∇pv = −R∇y with R =


0.5688 −0.3587 −0.3225 0.1123
−0.3587 0.6848 −0.2935 −0.0326
−0.3225 −0.2935 0.7210 −0.1051
0.1123 −0.0326 −0 .1051 0.0254

 . (6.44)

Hence, even if the outlier in observation y4 would have a much larger size, the e�ect onto
the residual of observation y3 would be larger than the e�ect onto pv4. It can be seen
from the elements of the redundancy matrix: Since the o�-diagonal term r34 = −0.1051 is
approximately 4-times larger than the redundancy number, namely r4 = 0.0254|r43| > r4,
residual pv3 is more in�uence by an outlier in y4, than the corresponding residual pv4.

Using the relative distances

dn =
tn

RMSEt
with |dn| ≤

`
N − 1 . (6.45)

the redundancy numbers rn thus are

rn = 1− 1 + d2
n

N
= 1− un ∈ [0, 1] . (6.46)

They obviously sum to the redundancy R = N − U = N − 2.
The redundancy numbers show two extreme distribution.

• If the observations are equally spaced, e.g., tn = t0 + n∆t then the redundancy of
the middle observation (assuming N is odd) r(N+1)/2 = (N − 1)/N , whereas the
redundancy number of the �rst (or the last) observation is r1 = (N − 1)/N (N −
2)/(N + 1) < r(N+1)/2. Hence if the number of observations is larger than 40, all
redundancy numbers are above 0.9. This simpli�es the analysis, and allows to work
with approximations. The �rst approximation for the redundancy numbers

rn ≈ rn =
R

N
(6.47)

just assumes the redundancy numbers do not vary too much; this approximation
is assumed in the variance analysis using the triangulation, see PCV-15.4.1.3, Eq.
(15.132). The second approximation is rn ≈ 1 assuming U � N . Then also R ≈ I ,
which simpli�es the analysis of the residuals, as they are assumed to be uncorrelated.

1The redundancy matrix only is symmetric if all observations have the same weight.
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• If N−1 of the observations are clustered and one observation is far o�, we obtain the
maximum redundancy number rn ≈ 11/(N − 1) for the observations in the cluster
and rn ≈ 0 for the observation far o�, since it is necessary for determining the slope
of the line. Hence, no approximation of the redundancy numbers can be derived,
and they need to be used for a reliable analysis.

Testing the residuals is mandatory if outliers are to be expected. The standardized
residuals

zn =
−vn
σvn

=
−vn

σyn
`
rn
, (6.48)

via the redundancy number rn take the geometry into account. They are more sensitive if
the redundancy number is small, i.e., at the borders of the observations. A less sensitive
test statistic for outlier detection is the normalized residual

z∗n =
−vn
σyn

. (6.49)

The detectability of outliers can be characterized by the minimum size of an outlier
which can be detected reliably by a statistical test. Following PCV-(4.285) and PCV-
(4.289) we have this minimum size of a detectable outlier for the two tests

∇0yn = δ0
σyn`
rn

and ∇∗0yn = δ0
σyn
rn

=
1`
rn
∇0yn . (6.50)

They di�er by a factor 1/
`
rn ≥ 1. Hence is rn is small, say below 0.1, we not only see just

10% of the causing outlier in the residuals, but � in our example � instead of ∇0yn ≈ 12σn
for the statistical test we can only �nd outliers larger than ∇∗0yn ≈ 30σl.

6.3.4.2 The Theoretical Sensitivity w.r.t. all Parameters

We now analyse the sensitivity of the result w.r.t. to possible outliers.
The sensitivity factor w.r.t. all parameters is

µθ,n =

c
1− rn
rn

=

d
1 + d2

n

N − (1 + d2
n)
. (6.51)

Leverage Points: The e�ect of observations, besides the number N of observations,
essentially depends on the relative distance of the observation to the centroid. Fig. 6.3
shows this dependency for the case N = 10. Obviously, observations with small redun-
dancy number have a large in�uence onto the estimated parameters. Such points are called
leverage points, see PCV p. 127.
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Example 6.3.22: Linear regression with two parameters (6). We collect the
decisive numbers w.r.t. outlier detection. We have the following indicators (see Fig. (6.2),
p. 124)

n vn rn z∇yn zn z∗n ∇0yn ∇∗0yn
1 0.3678 0.5688 -0.6466 0.9754 0.7356 2.6518 3.5159
2 0.0032 0.6848 -0.0047 0.0078 0.0064 2.4169 2.9206
3 -0.4633 0.7210 0.6425 -1.0911 -0.9265 2.3554 2.7739
4 0.0922 0.0254 -3.6362 1.1582 0.1844 12.5584 78.8571

Evaluation of outlier detection. We assumed δ0 = 4, see PCV, Table 3.2, p. 67

Observe the e�ect of using a suboptimal, non-su�cient test statistic z∗n: (1) the test statistic
z∗n (in this example) points towards a wrong observation, (2) outliers must be large by a
factor of at least 79 of their standard deviation to be detectable.
Reporting these numbers (except z∗n and ∇∗0yn) for visual inspection of the result may be
appropriate for problems with a not too large number of observations. A summarizing report
however is useful, where the extreme values are collected together with an indicator whether
they are acceptable. These extreme numbers are part of a self-diagnosis of the estimation
procedure.

The minimum redundancy number belongs to the 4-th observation:

r4 = 0.025 . (6.52)

It indicates, that if the observation is changed by some amount, the e�ect onto the cor-
responding residual is only approximately 2.5% of that amount. The other 97.5% of this
amount in�uence the parameters, as we will see, when analysing the sensitivity of the
estimates.

The estimated size of a possible outlier in this observation is

y∇y4 =
−pv4
r4

= 3.64 , (6.53)

which is in the right order of magnitude.

A statistical test, does not indicate an outlier: the maximum test statistic occurs at the
4th observation:

z4 = − pv4
σpv4

= 1.16 ≤ 2.58 . (6.54)

It correctly points towards the erroneous observation, though it is not signi�cant; for a
signi�cance level of S = 99% the two-sided test has a non-rejection region [−2.58,+2.58].

The largest size ∇0yn of a detectable outlier, when using a statistical test with zn, is in
observation y4, namely

∇0y4 = 12.56 . (6.55)

An outlier in this observation needs to be larger than 25 times (!) the standard deviation
of σ = 0.5 to be detectable with a minimum probability of 80%. This three times larger,
than the outlier of size ∇y4 = −4 we introduced.

�

6.3.4.3 The Theoretical Sensitivity w.r.t. Centroid

We now investigate the sensitivity of then result for the case, that we are only interested
in one of the two parameters. We start with the sensitivity w.r.t. the centroid, i.e., the
value f(µt) with f(t) = x1 + x2t and µt =

°
n tn/N .

The question is: How much in�uence does a non detectable outlier in one of the
observations have onto the centroid. Hence the slope of the line is of no interest and
treated as a nuisance parameter. This is like we would be only interested in the position
of an object in 3D space, and not interested in his orientation (rotation matrix).

We eliminate the scale following PCV-(4.122) and obtain the part C of the reduced
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Figure 6.3: Sensitivity factor µθ,n as a function of the relative distance d of the observation
from the centroid. For leverage points, i.e., single points lying far apart from the others the
relative distance is large. Changes in the corresponding observation have a large in�uence
on the parameters

design matrix:

C = C = 1 and Σx1x1
= σ2 1

N
. (6.56)

We now need the value ux1n, see PCV-(4.128),

ux1,n =
1

N
. (6.57)

Therefore the sensitivity factor w.r.t. to the centroid is, see PCV-(4.296)

µx1,n =

c
un
rn

=

d
1

N − (1 + d2
n)
≤ µθ,n . (6.58)

Figure 6.4 shows the dependency of the sensitivity factor µx1,n on the relative distance of
an observation to the centroid. It is signi�cantly smaller than µx,n, since parts of the non
detectable errors are absorbed by the slope, which is a nuisance parameter.

Figure 6.4: Sensitivity w.r.t. the centroid (red) compared to the sensitivity w.r.t. all
parameters (green). Moderate leverage points mainly in�uence the slope, hence have only
a limited in�uence onto the centroid. Only in extreme situations, where the distance of a
point is very far o�, non-detectable outliers are large enough to still have an in�uence on
the centroid

6.3.4.4 The Theoretical Sensitivity w.r.t. Slope

In a similar manner we can analyse the sensitivity of the estimated slope. This is similar
to analysing the sensitivity of the estimated rotation of an object, observed by a motion
capture system, taking the 3D coordinates of the centre of gravity as nuisance parameters.
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Here we reduce the normal equation system to the slope, and obtain the reduced design
matrix

D = D = t and Σx2x2 = σ2 1

NRMSE2
t

. (6.59)

Here we now need ux2n:

ux2,n =
t
2
n

NRMSE2
t

=
d2

N
. (6.60)

Therefore the sensitivity factor w.r.t. to the slope is

µx2,n =

d
d2

N − (1 + δ2
n)
≤ µθ,n (6.61)

The dependency of the sensitivity factor µx2,n on the relative distance of an observation
to the centroid is shown in Fig. 6.4. Obviously the di�erence is largest for points close to
the centroid, reducing the sensitivity factor to 0: this is plausible, since these observations
have no in�uence on to the slope at all.

Figure 6.5: Sensitivity w.r.t. the slope (red) compared to the sensitivity w.r.t. all param-
eters (green). Points close to the centroid have no in�uence on the slope, as to be expected

6.4 Gauss�Markov Model for Planar Similarity Trans-

formation with Evaluation

This section gives more details on the estimation of a similarity transformation used for
generating Fig. 4.11. It at the same time explains the corresponding Matlab source �le
fig_4_11_test_sensitivity_factors_GMM_similarity.m.

6.4.1 The Mathematical Model

The geometric model is the following[
x′i
y′i

]
=

[
axi − byi + c
bxi + ayi + d

]
. (6.62)

It holds for the true or expected values.
We assume the coordinates xi = [xi, yi]

T are given �xed values, the transformed coordi-
nates x′i = [[x′i, yi]

T are observed and the 4 parameters [a, b, c, d] are unknown. We assume
the observed coordinates have the same uncertainty, with covariance matrix Σx′ix

′
i

= σ2I 2.
Figure 6.6 shows
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Figure 6.6: Results and diagnostic parameters for a similarity transformation, σ = 0.01 m.

We collect the N = 2I observations (lines 93/94) and the U = 4 unknown parameters
(lines 69) in the vectors

y :=


x′1
. . .
x′i
. . .
x′I

 and θ :=


a
b
c
d

 . (6.63)

The N × U design matrix is (see lines 95/96) is

A = [AT
i ] =


[
xi −yi 1 0
yi xi 0 1

]
looooooooooomooooooooooon

AT

i

∣∣∣∣∣∣∣∣∣∣
i=1,...,I

 . (6.64)

The Gauss�Markov model reads

y + v = Aθ + a , Σyy = σ2IN , (6.65)

with the constant vector a = 0. Observation wise this is

yi + vi = AT
i θ , Σyiyi = σ2I 2 , (6.66)

A numerical example is given in the box on 137
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Example 6.4.23: Similarity transformation (1). Figure 6.6 shows the result of
a similarity transformation using GaussMarkovModelLinear_groups.m with initialization of
the random numbers with init_rand= 15. We used this con�guration for generating the
images in PCV-Fig.4.11. We will refer to this �gure in the following. The true values are
given by:

θ̃ =


2.0
0.5
3.0
−2.0

 , σ = 0.01 , [(xi, yi)] =


−7.0 7.0
1.0 1.0
2.0 2.0
−1.0 −2.0
−2.0 −1.0

 , ỹ =


−14.5 8.5

4.5 0.5
6.0 3.0
2.0 −6.5
−0.5 −5.0

 .
(6.67)

The true errors ẽ are generated as sample from N (0, σ2).

ẽ =


0.0159 0.0003
0.0033 0.0121
0.0026 0.0038
0.0108 0.0072
−0.0082 0.0204

 y =


−14.4841 8.5003

4.5033 0.5121
6.0026 3.0038
2.0108 −6.4928
−0.5082 −4.9796

 . (6.68)

The estimated parameters and the residuals, shown in Fig. 6.6 upper left, are

pθ =


1.9986
0.4996
3.0023
−1.9899

 , pv =


−0.0008 0.0030
−0.0019 −0.0038
−0.0022 0.0027
−0.0079 0.0061
0.0129 −0.0080

 . (6.69)

�

6.4.2 The Estimation

The estimation is realized in theMatlab function GaussMarkovModelLinear_groups.m.
It in a �rst step follows Alg. 1, PCV-p.91. An additional routine diagnostics_GMM_multi_d.m
performs the sensitivity analysis. Given a set rU of parameters of interest it determines
all diagnostic parameters of interest:

• the covariance matrix of the estimated parameters

Σpθpθ = (ATW yyA)−1 (6.70)

assuming the a priori variance factor is σ2
0 = 1.

• the residuals pvi and the estimated variance factor

pvi = AT
i
pθ + ai − yi and pσ2

0 =
pvT
W yypv

N − U
(6.71)

• the test statistics Xi (PCV-(4.302))

Xi = pvT
i Σ−1
pvipvipvi . (6.72)

• the diagonal d× d block Rii of the the redundancy matrix R (PCV-(4.299))

Rii = ΣpvipviW yiyi . (6.73)

• the minimum size ∇0yi of detectable outliers (PCV-(4.304), (4.300))

∇0yi = δ0

b
λmax(R−1

ii Σyiyi) . (6.74)

We use δ0 = 4.13, independent on the dimension. This is a useful choice if the group
size of the observations is not too large. As can be seen in Table 3.3, PCV-p.68,
in our case of d = 2 this corresponds to applying a test with signi�cance number
α = 0.3% and requiring a minimum power of β0 = 80% for �nding an outlier.
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• the sensitivity factor w.r.t. all 4 parameters

µx,n =

b
λmax(R−1

ii − I d) ; (6.75)

From PCV-(4.310) we have ΣpyipyiΣ
−1
pvipvi = (Σyiyi − Σpvipvi)Σ−1

pvipvi = ΣyiyiΣ
−1
pvipvi − I 2 =

R−1
ii − I 2.

• the sensitivity factor w.r.t. the selected set rU of parameters (in PCV-(4.315) referred
to as parameter set κ)

µx1,n =

b
λmax(U rU ,ii R

−1
ii ) . (6.76)

This holds since U rU ,ii = C
T

i ΣrU rUC iW yiyi (see PCV-(4.125))

The main results for the example are collected in the box on 140. It explicitly addresses
tools for self-diagnosis:

• The covariance matrix or the standard deviations of the estimated parameters tell
the sensitivity of the result w.r.t. randm errors in the observations.

• The estimated variance factor indicates the overall consistency of the model with
the data. Here it can be determined from

pσ2
0 =

°N
i=1 pvT

iW pvipvipvi
N − U

=

°N
i=1 |pvi|2/σ2

2I − 4
with pσ0

2 ∼ FN−U,∞ . (6.77)

The �rst expression for determining the estimated variance factor assumes the obser-
vational groups yi to be uncorrelated, but may have individual and full covariance
matrices Σyiyi = W−1

yiyi . The second expression exploits the assumption that all
points have the same isotropic uncertainty Σyiyi = W−1

yiyi = σ2I 2. cFor a discussion
on the evaluation of the estimated variance factor see PCV-4.2.3.

• The maximal residual max(vn) (or max(|vi|)) should always be reported, though, if
the design is not homogeneous it does not tell whether there are no outliers. Observe,
if the observations have the same standard deviation σ and are uncorrelated, the
RMSEv of the residuals (the dimension of the observational groups is d)

RMSEv =

gffe 1

N

Ņ

n=1

v2
n =

gffe 1

dI

Ņ

i=1

|vi|2 (6.78)

is related to the variance factor by

pσ2
0 =

N

N − U
1

σ2
RMSE2

v , (6.79)

a result which allows us to statistically test the root mean square error. If the
observations have di�erent weight or are correlated, the RMSEdoes not follow a χ2-
distribution; it does not lead to a su�cient test statistic, since the prior knowledge
about stochastical model is not used.

• The maximal redundancy number min(rn) should be above 0.1.

• The maximum test statistic max(zn) should always be reported in order to be sure
that the statistical test dose not suggest an outlier to be present, if it remains in the
non-rejection region which can be derived from the χ2-distribution.

• The maximum just detectable outlier max(∇0yn) indicates in a application oriented
way whether the geometry allows to identify outliers. Observe, the value 0.102 is
more than 10 times the standard deviation. This measure only is relevant if the goal
of the estimation is to �nd outliers.
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• The maximum sensitivity factor max(µx,n) should always be reported. It should be
lass than5 or 10, since then non-detectable outliers have an in�uence of less than 20
or 40 times the standard deviation of the resultant estimates.

• The maximum sensitivity factor max
(
µxrU ,n

)
is very useful if the goal of the esti-

mation is to estimate the parameters in rU , and the user wants to have a guarantee
that non-detectable outliers do not perturb the result. Observe, this sensitivity
factor may be small, even if quite large outliers may stay undetected.

Such a summarizing self-diagnosis is useful for a quick evaluation of the quality of the
result of the estimation. Visualizing the individual numbers, as in Fig. 6.6, of course
needs to be adapted to the individual estimation problem. If the estimation process is
one module within a chain of modules, the characterizing numbers may be used by the
subsequent module.
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Example 6.4.24: Similarity transformation (2). The quality of the result of the
estimation needs to be documented. The covariance matrix of the estimates is

Σpθpθ = 10−4


0.0102 0 0.0142 −0.0142

0 0.0102 0.0142 0.0142
0.0142 0.0142 0.2398 0
−0.0142 0.0142 0 0.2398

 (6.80)

Observe, the parameters px1 = pa and px2 = pb representing scale and rotation are uncorrelated,
also the two translation parameters px3 = pc and px4 = pd are uncorrelated. This is caused by the
assumption that the observed points are uncorrelated and have the same standard deviation,
thus the uncertainty of the point group is isotropic.

The standard deviations of the parameters are

σpx1 = σpx2 = 0.0010 , σpx3 = σpx4 = 0.0049 . (6.81)

The estimated variance factor is pσ2
0 = 0.7863 . (6.82)

The quality of the observations can be characterized by the following statements, which
are taken from the Matlab output:

Maximal residual ....................... = 0.01520 at observation 5

Minimal redundancy number .............. = 0.16260 at observation 1

Maximal test statistic ................. = 1.25145 at observation 5

Maximum of minimal detectable outlier .. = 0.10242 at observation 1

Maximal sensitivity factor ............. = 2.26936 at observation 1

Maximal sensitivity factor translation . = 0.63752 at observation 4

Here we have assumed the user is also interested in the sensitivity of the estimated trans-
lation parameters x3 and x4 only, see PCV-Fig.4.11 right.

The quality measures indicate, that there is no reason to assume the model not to be
consistent with the data and that the geoemtric con�guration is acceptable.

�

6.5 Gauss�Helmert Model for Planar Similarity Trans-

formation

This section has two goals:

1. Demonstrate the sensitivity analysis for the Gauss�Helmert model.

2. Discuss the conditions for the equivalence of the Gauss�Helmert model and the
Gauss�Markov model.

6.5.1 Sensitivity Analysis for the Gauss�Helmert Model

The sensitivity analysis aims at investigating the ability to �nd outliers in the observations
and to determine the e�ect of non-detectable errors on the estimated parameters.

Let the group of observations related to the i-th constraint be collected in the vectorpvi. We assume that constraints do not share observations, see PCV-4.8.2.5. The direct
approach would require the inversion of the covariance matrix Σpvipvi of the corresponding
group of estimated residuals. Let the size of this group be Ni.

It can be derived from PCV-(4.456)

Σpvpv = ΣyyBW gg(Z
TΣyyZ − XΣpθpθX

T)W ggB
TΣyy . (6.83)

Assuming Σyy = Diag({Σyiyi}) the covariance matrix related to the i-th group is

Σpvipviloomoon
Ni×Ni

= ΣyiyiB
T
ilooomooon

Ni×G

Zloomoon
G×G

BT
i Σyiyilooomooon
G×Ni

with Z = W gg(Z
TΣyyZ − XΣpθpθX

T)W gg . (6.84)
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Since generally G < Ni the rank of this Ni ×Ni is only G, thus it cannot be inverted.
However, testing the group yi related to the i-th set of constraints is equivalent to

testing the residual cg,i of that constraint. This equivalent to use the residual

vg = ZTv (6.85)

and use the linearized Gauss�Markov model (see PCV-457)

g(y, pθa) + pvg = −X x∆θ with D(vg) = ZTΣyyZ , (6.86)

for testing w.r.t. outliers in the values cg,i. This type of diagnosis is realized in the
Matlab function diagnostics_GHM_constraints_multi_d.m.

6.5.2 Estimation a Similarity Transformation using the Gauss�
Helmert Model

If the observations can be expressed as functions of the unknown parameters, the Gauss�
Markov model is the most appropriate model for estimation. If the similarity transforma-
tion has to be estimated from point pairs, which both are observed, we obtain constraints
between the observations (xi, yi, x

′
i, y
′
i) and the unknown parameters (a, b, c, d):

gi :=

[
x̃′i
ỹ′i

]
−
([

a −b
b a

] [
x̃i
ỹi

]
+

[
c
d

])
=

[
0
0

]
. (6.87)

This constraint not easily can be transformed into a Gauss�Markov model. Therefore,
here the Gauss�Helmert model is the appropriate choice for estimation.

The model is linear in the unknown parameters and, starting from approximate values
zero, can be written as

g(pyai , pθa) + XT
i
x∆θ + Z iy∆yi = 0 , D(y

i
) = Σyiyi , (6.88)

with

θ :=


a
b
c
d

 , yi =


xi
yi
x′i
y′i

 , (6.89)

and

gi := 0 , XT
i :=

[
−xi yi −1 0
−yi −xi 0 −1

]
, ZT

i :=

[
−a +b 1 0
−b −a 0 1

]
. (6.90)

The covariance matrix of the observations is assumed to be block diagonal, i.e., the obser-
vational groups are mutually uncorrelated. However, the covariance matrix of each group
may contain arbitrary correlations. What is relevant in our context, the covariance matrix
also may be singular, as long as the covariance matrix Σgigi = ZT

i ΣyiyiZ i is regular.
Hence we can simulate the model used in the previous section, where the coordinates

(xi, yi) are assumed to be �xed, non-stochastic values by using the covariance matrix

D(yi) = D



xi
y
i
x′i
y′
i


 =


0 0 0 0
0 0 0 0
0 0 σ2

x′i
σx′iy′i

0 0 σx′iy′i σ2
y′i

 . (6.91)

The estimation process does not need the inverse covariance matrix of the observations,
therefore this way of modelling �xed observations does not lead to numerical di�culties.

The Matlab function demo_GHM_similarity.m allows to simulate the result of the
Gauss�Markov model with the boolean variable simulate_GMM_similarity=true, yield-
ing the same result. Since the model is linear, only one iteration needs to be performed.
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7 Gauss�Helmert Model as Optimiza-

tion Problem

The Gauss�Helmert generalizes the well-known Gauss�Markov model by allowing implicit
relations between the observations and the unknown parameters. The classical derivation
of the estimation procedure refers to the statistical nature of the Maximum-Likelihood op-
timization. The note separates the description of the model and the optimization function
from the generally iterative numerical optimization procedure, in order to elucidate the
non-statistical properties of the intermediate steps before treating point of convergence as
�nal estimate.

7.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 The Gauss�Helmert model for estimating parameters . . . . . . . . . . . . . 143

7.3.1 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.2 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4 The solutions for linear models . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.1 The solution for the basic linear Gauss�Helmert model . . . . . . . . 145
7.4.2 The Gauss�Helmert model for general covariance matrix . . . . . . . 146
7.4.3 Gauss�Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.4 Model with constraints between the observations only . . . . . . . . 148
7.4.5 The quasi Gauss�Markov model . . . . . . . . . . . . . . . . . . . . 148
7.4.6 Results using pseudo inverses . . . . . . . . . . . . . . . . . . . . . . 149

7.5 The non-linear Gauss�Helmert model . . . . . . . . . . . . . . . . . . . . . . 151
7.5.1 The algorithm for estimating the parameters . . . . . . . . . . . . . 153
7.5.2 Derivation of the procedure . . . . . . . . . . . . . . . . . . . . . . . 154

Remark: While throughout the notes we use one of the classical statistical notation (obser-

vations y, and parameters θ) , in this note we adopt one of the notations used in Geodesy and

Photogrammetry which better �ts to the notation used by Boyd and Vandenberghe (2004), thus

we name the observations l and the unknown parameters x. �

7.1 Preface

This note (2021) describes the estimation within the Gauss�Helmert model as a speci�c
optimization problem, making explicit the numerical character of the numerical process
for determining the parameters, omitting the statistical interpretation of the intermediate
steps within the optimization procedure. This clari�es (1) the role of the stochastical
model at the beginning of statistical parameter estimation task and used for evaluating
the uncertainty of the result, and (2) the non-statistical role of the numerical method for
achieving the �nal parameters. It is common to derive the estimator for a parameter vector
within a statistical framework, and not distinguish the di�erent aspects of the whole task:
(a) the speci�cation of the model, (b) the speci�cation of the optimization function, (c)
the numerical process of optimization, and (d) the evaluation of the obtained parameters.
This note is intended to separate these steps.
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7.2 Motivation

Parameter estimation consists in determining unknown parameters from given observa-
tions. Its mathematical model consists of the functional model, relating the mean values
of the observations to the unknown parameters, and the stochastical model which describes
the uncertainty of observation process. We often categorize functional models according
to their algebraic structure. The Gauss�Markov model is a functional model, where the Gauss�Markov

modelmean observations are an explicit function E(l) = f(x) of the parameters.
Here we discuss the mathematical model of an estimation task with a functional model,

where the mean observations and the parameters are related by an implicit function This is
called the Gauss�Helmert model. Given are N observations l together with the uncertainty Gauss�Helmert

modelof the observation process D(l), implicitly assuming the measuring deviations are normally
distributed. The mean values E(l) of the observations are functionally related to unknown
parameters x by G implicit equations

g(x,E(l)) = 0 . (7.1)

The task is to �nd optimal estimates x for the unknown parameters.

The derivation, presented here, is based on the following assumptions.

• We consider the cases where the representation of the parameters and observations
may be redundant, such as for normalized homogeneous coordinates or rotation
matrices. Instead of including constraints, such as a length or an orthogonality
constraint, we allow that the estimation refers to a minimal representation of the
corrections, close to the approximate values of the parameters or the observations,
namely in the tangent space de�ned by the individual constraints. As a consequence,
the observations and parameters may be lists of individual groups of possibly redun-
dantly represented entities, e.g., x := {R, t, λ) for the rotation, the translation, and
the scale of a spatial similarity, the corrections, however, are vectors of a locally
minimal representation, e.g., ∆x = [∆rT,∆tT,∆λ]T, where ∆r describes a small
rotation with three parameters.

• We treat the expectation of the observations y = E(l) as unknowns. This is a
consequence of the previous point and in contrast to classical setups, where the
optimization function has the residuals as unknown. In the linearized model the cor-
rections ∆y and ∆x to the expectation of the observations E(l) and the parameters
x are unknown, which allows us to update them in the original, non-linear model
taking their algebraic properties, e.g., length or orthogonality, into account.

7.3 The Gauss�Helmert model for estimating parame-

ters

We now describe the set-up of the estimation procedure with a Gauss�Helmert model as
functional model, derive the optimization task, provide a solution for the case where the
model is linear, �nally provide the solution to the non-linear model using a linearized
model within an iterative scheme.

7.3.1 The mathematical model

We start from N given observations, collected in the N -vector l. We assume, they are a
sample of a normal distribution, speci�ed by the unknown expectation vector and partially
known dispersion matrix. The stochastical model for the observation process therefore is
given by stochastical model

l ∼ N (E(l),D(l)) , (7.2)

The dispersion matrix of the observations variance factor σ2
0
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D(l) = σ2
0 Σll . (7.3)

is speci�ed by an approximate covariance matrix Σll which di�ers from the true covariance
matrix by an unknown variance factor σ2

0 . The functional model of the Gauss�Helmert as-
sumes the U unknown parameters x and the N unknown mean values E(l) are constrained
by the following G-dimensional implicit function12 functional model

g
G×1

( x
U×1

,E(l)
N×1

) = 0 . (7.4)

Observe, that (7.2) can be interpreted as the likelihood function of the unknown parame-
ters x likelihood function

L(x) := L(x, g) = p(l | x, g) = M (E(l | x, g),D(l | x, g)) , (7.5)

for given observations l and functions g, where the distribution M is characterized by its
�rst and second moment. In order to be able to determine the U parameters x we need
to require there are at least as many constraints as unknowns:

G ≥ U , (7.6)

or that the number of redundant constraints, i.e., the redundancy redundancy

R = G− U ≥ 0 . (7.7)

is non-negative. Similarly, in order to have a guarantee that the implicit function (7.4) of
[xT,E(lT)] ∈ IRU+N is not empty, the number G of constraints should not exceed U +N ,
hence

N ≥ G− U (7.8)

Therefore we have the following relation

N ≥ R ≥ 0 (7.9)

as a necessary condition for the model setup.

7.3.2 The task

The goal is to �nd the maximum-likelihood estimates px and py for the unknown parameters unknown

parameters x
and unknown mean

observations y

x and the unknown expectation of the observations, short, the mean observations y = E(l)
such that the weighted sum of the residuals3

pv = py − l , (7.10)

namely
Ω = vTΣ−1

ll v , (7.11)

becomes minimum and the estimates ful�l the constraints

g(px, py) = 0 . (7.12)

Observe,

• the optimization function (7.11) does not depend on the variance factor σ2
0 .

1The Gauss�Markov model E(l) = f(x) therefore can be interpreted as a special case of the Gauss�
Helmert model, setting g(x,E(l)) = −E(l) + f(x)

2The de�nition of the implicit function is di�erent from Förstner and Wrobel (2016, Eq. (4.426)),
where the two arguments of the implicit function g are exchanged

3We us the variable y for the mean observation, in order to avoid to de�ne approximate values for the
�tted observations y within the iteration loop, since the intermediate values in an iteration scheme have
no statistical meaning.
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• In order to simplify the notation, and avoid statistical terms within the optimization
procedure as far as possible, we will also write the optimization problem as follows:4

For given observations l, constraints g and weight matrix W ll = Σ−1
ll �nd values for

x and y that

minimize (y − l)TW ll(y − l) (7.13)

subject to g(x,y) = 0 , (7.14)

where y stands for the unknown mean observation E(l).

Remark: We may assume the observations appear in I statistically independent groups
{li,Σlili}, i = 1, ..., I, and if the dimension of these groups is the same, say d, we have N = dI.
Furthermore, we often face the situation, that the constraints only refer to one group of observa-
tions. Then the functional model (7.12) can be written as

gi(x,yi) = 0 , i = 1, ..., I . (7.15)

Hence, if the number of constraints per group is constant, say c, then the number of constraints

is G = cI. As an example, this situation holds for the model of a 3D similarity for two sets of

3D points, where we have groups of d = 6 observations, namely the 3D coordinates in the two

systems, and c = 3 constraints per group relating these coordinates via a similarity transformation

with their parameters x. �
We �rst provide a solution for the linear Gauss�Helmert model. We specialize it for

independent and identically distributed observations and derive the solution for the two
basic models, namely the Gauss�Markov model and the model with constraints between
observations only. We also show, that the Gauss�Helmert model can be solved by chosing
adequate substitute observations leading to a Gauss�Markov model. Since in case the
model is non-linear the coe�cient matrices need to be updated during the iteration process,
why this model is called a quasi Gauss�Markov model. In the next section we then handle
the non-linear case. Finally, we provide a derivation via an equivalent Gauss�Markov
model.

7.4 The solutions for linear models

7.4.1 The solution for the basic linear Gauss�Helmert model

We start with the linear Gauss�Helmert model with covariance matrix D(l) = Σll = I .
We handle it as an algebraic, not a statistical optimization problem.

The original optimization problem reads as: for given observations l ∈ IRN , a regular
N × N covariance matrix Σll = IN , full rank coe�cient matrices. A ∈ IRG×U and B ∈
IRG×N and a constant vector b ∈ IRG

GHM: minimize (y − l)T(y − l)
subject to Ax+ BTy + b = 0 .

(7.16)

w.r.t. the unknown parameters x and the mean observations y.
Hence, here we chose the constraint function

g(x,y) = Ax+ BTy + b (7.17)

which is linear in the unknown parameters. The coe�cient matrices often are called design
matrices, since they specify the design of the observation process. They are assumed to
be given and �xed.

Furthermore, for a compact representation of the solution we use the substituted ob-
servations n(l) together with their covariance matrix

n(l) = BTl+ b and D(n) = Σnn = BTB . (7.18)

4This in the �avour of the problems discussed in Boyd and Vandenberghe (2004).
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We obtain the estimated parameters and the �tted observations from

px = −(ATΣ−1
nnA)−1 ATΣ−1

nn n(l)py = l− BΣ−1
nn g(px, l) . (7.19)

Remark: Generally, the parameters are estimated based on the normal equations

(ATΣ−1
nnA)px+ A

TΣ−1
nn n(l) = 0 (7.20)

which can be solved in any numerical manner, especially if we want ot exploit the sparsity of A,

Σll, or Σnn. �

Proof: Using Lagrangian multipliers we need to �nd the minimum of

Φ(x,y,λ) =
1

2
(y − l)T(y − l) + λT(Ax+ BTy + b) . (7.21)

Necessary conditions are

0 =
∂Φ

∂xT
= ATλ (7.22)

0 =
∂Φ

∂yT
= y − l+ Bλ (7.23)

0 =
∂Φ

∂λT
= Ax+ BTy + b . (7.24)

Multiplying (7.23) with BT from the left leads to

y = l− Bλ . (7.25)

Substituting this expression for y in (7.24) yields

0 = Ax+ BT(l− Bλ) + b , (7.26)

which allows to solve for λ

λ = (BTB)−1(Ax+ BTl+ b) . (7.27)

From (7.22) and (7.27) we obtain the normal equations for the estimates of the unknown
parameters5 x

A(BTB)−1Apx = −A(BTB)−1(BTl+ b) . (7.28)

From (7.25) and (7.27) we �nally obtain estimates py for the mean observations6 y,

py = l− B(BTB)−1(Apx+ BTl+ b) , (7.29)

as a function of the estimated parameters px and the observations l.

7.4.2 The Gauss�Helmert model for general covariance matrix

The Gauss�Helmert model with general covariance matrix reads as: for given observations
l, regular covariance matrix Σll = W−1

ll , and coe�cient matrices A and B

GHM(Σ): minimize (y − l)TΣ−1
ll (y − l)

subject to Ax+ BTy + b = 0 .
(7.30)

5Observe, for given substitute observations n = B
Tl + b, this is the solution for the Gauss�Markov

model minimizing (Ax+ n)Σ−1
nn(Ax+ n) w.r.t. the parameters x

6Observe, for �xed px, this is the solution of the problem with constraints for observations l only,
minimizing |Apx+ B

Tl+ b)|2 w.r.t. the observations l, leading to �tted observations pl = py.
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w.r.t. the unknown parameters x and the mean observations y. For a compact repre-
sentation of the solution we use the substituted observations with their � now di�erent �
covariance matrix

n = Bl+ b and D(n) = Σnn = BTΣllB . (7.31)

We obtain the estimated parameters and the �tted observations from

px = −(ATΣ−1
nnA)−1 ATΣ−1

nn n(l)py = l− ΣllBΣ−1
nn g(px, l) . (7.32)

Proof: We transfer this model to an unweighted Gauss�Helmert model. Especially,
we eliminate the weights of the observations. For eliminating the weights, we use the
substitutions

Bg = Σ
1/2
ll B , lg = Σ

−1/2
ll l , and yg = Σ

−1/2
ll y . (7.33)

Now, we need to solve the following unweighted Gauss�Helmert model: for given observa-
tions lg and coe�cient matrices A and Bg,

GHM(w): minimize (yg − lg)T(yg − lg)
subject to Ax+ BT

gyg = 0 ,
(7.34)

w.r.t. the unknown parameters x and the mean observations yg.
We thus obtain the normal equation system

A(BT
gBg)

−1Apx = −A(BT
gBg)

−1(BT
g lg + b) . (7.35)

or explicitly
AT(BTΣllB)−1A px = −AT(BTΣllB)−1BTl (7.36)

The �tted observations we obtain frompyg = lg − Bg(BT
gBg)

−1(Apx+ BT
g lg + b)) . (7.37)

or �nally py = l− ΣllB(BTΣllB)−1(Apx+ BTl+ b) . (7.38)

7.4.3 Gauss�Markov model

The Gauss�Markov results from specializing the design matrix B in the Gauss�Helmert
model to

B = −I , (7.39)

leading to the constraint function

g(x,y) = Ax− y + b (7.40)

and substitute observations and their covariance matrix

n(l) = −l+ b with D(n) = Σnn = Σll . (7.41)

The Gauss�Markov model with covariance matrix Σll = W−1
ll leads to the following general

least squares optimization problem, for given observations l, weight matrix W ll = Σ−1
ll ,

and coe�cient matrix A

GMM(Σ): minimize (y − l)TW ll(y − l)
subject to y = Ax+ b .

(7.42)

w.r.t. the unknown parameters x and mean observations y. It yields the optimal param-
eters px = −(ATW llA)−1ATW ll n(l)py = l− g(px, l) (7.43)

or explicitly in the classical formpx = (ATW llA)−1ATW ll(l− b)py = Apx+ b .
(7.44)
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7.4.4 Model with constraints between the observations only

The model with constraints between the observations only results from specializing the
design matrix A in the Gauss�Helmert model to:

A = 0 , (7.45)

leading to the constraint function

g(y) = BTy + b , (7.46)

not depending on unknown parameters x, and substitute observations and their covariance
matrix

n(l) = BTl+ b with D(n) = Σnn = BTΣllB
T . (7.47)

The model with constraints between the given observations l having covariance matrix Σll

leads to the following least squares problem

CONSTR(Σ): minimize (y − l)TΣ−1
ll (y − l)

subject to BTy + b = 0 .
(7.48)

w.r.t. the mean observations y. It yields the optimal estimates for the �tted observations

py = l− ΣllB(BTΣllB
T)−1 (BTl+ b) . (7.49)

7.4.5 The quasi Gauss�Markov model

As already indicated in the footnotes for (7.28) and (7.29) we can perform the estimation
in the Gauss�Helmert model in two steps:

1. First we perform a Gauss�Markov model using the substitute observations

n = BT + b (7.50)

hence
n = Ax with D(n) = BTΣllB , (7.51)

Using (7.43), this leads to the optimal estimates for the parameters x using the
normal equations px = (ATW nnA)−1 ATW nn n . (7.52)

2. Now, as we have the optimal estimates px, we can treat them as �xed values. With
the constant vector

c(px) = Apx+ b , (7.53)

thus
g(l) = BTl+ c(px) , (7.54)

we can �nd the estimates for the �tted observations from the model for constraints
between the observations only

BTl+ c(px) = 0 and D(l) = Σll . (7.55)

With (7.49), this leads to the estimates

py = l− ΣllB(BTΣllB)−1 g(l) (7.56)

The Gauss�Markov model (7.51) is called the quasi Gauss�Markov model in the context
of solving the parameters in the Gauss�Helmert model. In case the constraints are non-
linear, the coe�cient matrices are not �xed but need to be updated during the iteration
process, which motivates the pre�x quasi.
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7.4.6 Results using pseudo inverses

The results can be written compactly using pseudo inverses. This is motivated from the
least-squares solution of the simple Gauss�Markov model relating the mean observations
to the unknown parameters via

y = Ax (7.57)

and minimizing |y− l|2. This leads to the classical solution px = (ATA)−1AT l, which with
the pseudo inverse

A+ = (ATA)−1AT (7.58)

can be written as px = A+l (7.59)

This is an intuitive description of the inversion of (7.57), keeping in mind, that the inversion
is not unique, since A is not regular, and regularization is enforced by the least squares
principle.

Similarly, in case we minimize a weighted sum of squares (y − l)TW (y − l) w.r.t. the
parameters x, with the weighted pseudo inverse

A+
W

= (ATWA)−1ATW (7.60)

we obtain the solution px = A+
W
l . (7.61)

We �rst de�ne the properties of pseudo inverses and then provide the solutions of the
di�erent estimation problems.

7.4.6.1 Pseudo inverse and weighted pseudo inverse

For the regular M ×N matrix A, with M ≥ N and rk(A) = N we use the pseudo inverse
A+:

A+ := (ATA)−1AT (7.62)

It ful�ls further the four relations:

AA+A = A A+AA+ = A+ (AA+)T = AA+ A+A = I . (7.63)

Similarly, with the symmetric weight matrix U we use the weighted pseudo inverse (see
Pepi¢ (2010))

A+
U

:= (ATUA)−1ATU (7.64)

which ful�ls the four relations

AA+
U
A = A A+

U
AA+

U
= A+

U
(UAA+

U
)T = UAA+ A+

U
A = I . (7.65)

7.4.6.2 Solutions with pseudo inverses

We explicitly use the following inverses:

A+ = (ATA)−1 AT (7.66)

A+
W ll

= (ATW llA)−1 ATW ll (7.67)

A+
Wnn

= (ATW nnA)−1 ATW nn (7.68)

B+ = (BTB)−1 BT (7.69)

B+
Σll

= (BTΣllB)−1 BTΣll (7.70)

Then we obtain the following solutions:
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• Gauss�Markov model (B = −I ). Starting from the model

y − b = A x (7.71)

we obtain

px = −A+
W ll

n(l) and py = l+ g(px, l) (7.72)

= A+
W ll

(l− b) = A px+ b . (7.73)

• Model with constraints between the observations only (A = 0). Starting from the
model

BT(y − l) + g(l) = 0 (7.74)

we arrive at the solution py − l = −B+T
Σll
g(l), or

py = l− B+T
Σll
g(l) (7.75)

• Gauss�Helmert model. Starting from the model

Ax+ BTy + blooomooon
n(y)

= BT(y − l) + g(x, l) = 0 (7.76)

when �rst using n(l) as observations and then �xing the estimate for x we arrive at

px = −A+
Wnn

n(l) and py = l− B+T
Σll
g(px, l) (7.77)

taking the covariance matrix Σnn of n(l) into account.

The solutions are collected in the following Table, starting with the Gauss�Helmert model
with general covariance matrix and then showing the di�erent specializations.

Table 7.1: Statistically optimal solutions in the linear model (A,B,D(l)) with its special-
izations: g(x,y) = Ax+B

Ty+b = 0 relating the mean y = E(l) of the observations l to the
unknown parameters x assuming a general covariance matrix and a unit matrix D(l) = Σll
and D(l) = I , respectively. We use the substitute observations n(l) = B

Tl + b with their
covariance matrix Σnn.
Rows 1 and 2: Gauss�Helmert model.
Rows 3 and 4: Gauss�Markov: n(l) = −l+ b.
Rows 5 and 6: Model with constraints between the observations: g(y) = B

Ty + b.

model(A,B,D(l)) task solution

1 GHM(A,B,Σll) min. (y − l)TΣ−1
ll (y − l) px = − A+

Wnn
n(l)

s.t. Ax+ BTy = c py = l− B+T
Σll

g(px, l)
2 GHM(A,B, I ) min. (y − l)T(y − l) px = − A+

Wnn
n(l)

s.t. Ax+ BTy = c py = l− B+T g(px, l)
3 GMM(A,−I ,Σll) min. (y − l)TΣ−1

ll (y − l) px = − A+
W ll

n(l)
s.t. Ax− y = c py = l− g(px, l) 1)

4 GMM(A,−I , I ) min. (y − l)T(y − l) px = − A+ n(l)
s.t. Ax− y = c py = l− g(px, l) 1)

5 CONSTR(0 ,B,Σll) min. (y − l)TΣ−1
ll (y − l)

s.t. BTy = c py = l− B+T
Σll

g(l)

6 CONSTR(0 ,B, I ) min. (y − l)T(y − l)
s.t. BTy = c py = l− B+T g(l)

1) This is equivalent to py = Apx+ b
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This closes the section on the estimation in the linear Gauss�Helmert model. We did
not construct the solutions, but just proved they are correct. The generalization to non-
linear constraints will also use the reduction to a Gauss�Markov model, but derive the
iterative solution explicitly. Moreover, coe�cient matrices A and B then depend on the
current estimates of the parameters and the observations thus need to be updated in each
iteration.

7.5 The non-linear Gauss�Helmert model

The functional model generally is non-linear. We assume we have approximate values xa

and ya for the parameters x and the mean observations y and updates

x := ux(xa,∆x)) e.g., xa := xa + ∆x . (7.78)

and
y := uy(ya,∆y) e.g., ya := ya + ∆y . (7.79)

These relations hold for small corrections ∆x and ∆y. Given values for x and its approx-
imations xa we assume we can determine the corrections from

∆x = u−1
x (x,xa) e.g., ∆x = x− xa (7.80)

Similarly, we assume there exist inverse functions for the mean observations

∆y = u−1
y (y,ya) e.g., ∆y = y − ya (7.81)

Hence we have the update function with m ≥ n, for small ∆x, especially for m = n

ux : IRn 7→ IRm ∆x 7→ x = ux(∆x;xa) especially x = ∆x+ xa (7.82)

u−1
x : IRm 7→ IRn x 7→ ∆x = u−1

x (x;xa) especially ∆x = x− xa , (7.83)

and similarly, for uy.
Example: Non-linear update and its inversion for 3D rotations. Let the

unknown parameters be a 3× 3 rotation matrix R. We actually estimate a small 3-vector
∆r of small rotation angles. The approximate rotation matrix Ra the can be corrected
using

R = ux(Ra,∆r) = R(∆r)Ra . (7.84)

where R(∆r) is a rotation matrix depending on the 3-vector ∆r, e.g., using the exponential
or the Cayley form

R(∆r) = exp(S(∆r)) or R(∆r) = (I + S(∆r/2))(I − S(∆r/2))−1 (7.85)

with the skew symmetric matrix S(a) inducing the cross product a× b = S(a)b. In case
we have given R and some approximation Ra, we may determine the correction vector ∆r
from

S(∆r) = log(RTRa) ≈ RTRa − I , (7.86)

thus taking the o� diagonal terms of the product RTRa of the two rotation matrices as
the sought 3-vector. This can compactly be written as

∆r = u−1
x (R,Ra) = s(RTRa) . (7.87)

where the function

s(A) =
1

2

 A32 −A23

A13 −A31

A21 −A21

 (7.88)

extracts the skew vector of the 3× 3 rotation matrix A. �
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Similarly, we have the updates and their inversion starting from l, �rst for the approx-
imations of the mean observations

ya = uy(l,va) and va = u−1
y (ya, l) = −u−1

y (l,ya) . (7.89)

which for small residuals can be de�ned in either manner. Thus we have for the mean
observations

y = uy(l,v) and v = u−1
y (y, l) = −u−1

y (l,y) . (7.90)

For small values we have
v = va + ∆y , (7.91)

see Fig. 7.1. Since the observations l and the residuals v may have a di�erent structure,
e.g., if the observations are rotation matrices and the residuals are rotation vectors, the
covariance matrix Σll refers to the residuals of the observations

Covariance matrix for rotation matrices. In the case of an observed rotation
matrix R, we represent the uncertain rotation as

R = R(r) E(R) with D(r) = Σrr (7.92)

If R is observed, the we refer to the 3× 3 matrix Σrr as the covariance matrix Σll of the
observed rotation. �

We are now prepared to derive a linear substitute problem used for iteratively deter-
mining the unknowns y and x.

Figure 7.1: Update of the unknowns and the mean observations in the Gauss�Helmert
model. The corrections ∆x = u−1

x (x,xa) to the parameters and the corrections ∆y =
u−1
y (y,ya) = v − va to the mean observations and residuals are meant to converge to

zero. The �gure assumes the dimensions of the observations/parameters (l,y,ya) and the
dimensions of their residuals/corrections (v,va,ya) are the same

1. We de�ne the corrections to the parameters and the mean observations corrections to mean

observations and

parameters∆x = u−1
x (x,xa) = xa − x and ∆y = u−1

y (y,ya) = v − va , (7.93)

in order to iteratively improve the approximations xa and ya such that after con-
vergence ∆x = 0 and ∆y = 0. Observe, that the approximate residuals va = ya− l
also are to be corrected by ∆y.

2. The optimization function then reads as7

Ω = (va + ∆y)T Σ−1
ll (va + ∆y) . (7.94)

where the covariance matrix Σll refers to the corrections v of the observations.
Remark: Observe, the optimization function (7.94) of this non-linear model results from

the one (7.30) of the linear model using y − l = ya + ∆y − l = va + ∆y. �
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3. Linearization of the nonlinear implicit function (7.12) leads to the constraints linearized

constraints

g(x,y) = g(ux(xa,∆x), uy(ya,∆y)) = g(xa,ya) + A∆x+ BT∆y = 0 (7.95)

with the Jacobians

A
G×U

=
∂g

∂∆x

∣∣∣∣
x=xa,y=ya

and BT

G×N
=

∂g

∂∆y

∣∣∣∣
x=xa,y=ya

, (7.96)

to be evaluated at the approximations of the mean observations and of the parame-
ters.
Remark: Also the structure of the constraints of the linear Gauss�Helmert model is pre-

served, when replacing the unknowns x and y by their corrections ∆x and ∆y and the

constant b by g(xa,ya). �

Therefore the linear substitute problem for determining the corrections ∆x and ∆y is: linear substitute

problem

minimize (va + ∆y)T Σ−1
ll (va + ∆y) (7.97)

subject to g(xa,ya) + A∆x+ BT∆y = 0 , (7.98)

for given approximate values ya and thus va = u−1
y (ya, l), function g, Jacobians A and

B, and covariance matrix Σll.

We �rst will provide the algorithm and then its derivation.

7.5.1 The algorithm for estimating the parameters

We start from the observations {l,Σll}, the implicit functions g(x,y) = 0, and the approx-
imate values xa for the unknowns and ya for the mean observations, which are initiated
with ya := l. We obtain the following algorithm for an iterative solution:

1. Iterate until convergence

(a) Determine the Jacobians A and B (7.96) at the current approximate values
(xa,ya). Jacobians at

current

approximations
(b) Determine the contradictions cg of the negative constraints at the appproximate

values xa of the unknown parameters together with their weight matrix 8 9

contradictions of

constraints given

the parameters

cg = −g(xa, l) and W gg = (BTΣllB)−1 . (7.99)

(c) Solve the normal equation system for the corrections ∆x of the parameters
normal equation

systemN∆x = m with N = ATW ggA and m = ATW gg cg . (7.100)

(d) Update the approximate parameters

xa := ux(xa,∆x) e.g., xa := xa + ∆x . (7.101)

hence
− g(xa, l) := cg − A∆x (7.102)

(e) Determine the corrections for the mean observations

∆y = ΣllBW gg(cg − A∆x)− va . (7.103)

(f) Update the approximate mean observations update of

approximate mean

observationsya := uy(ya,∆y) e.g., ya := ya + ∆y . (7.104)
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2. Set the �nal estimates of the unknown parameters and of the mean observations, �nal estimates

sometimes called the �tted observation pl := py
px := xa and py = ya . (7.105)

3. Determine the covariance matrix of the estimated parameters covariance matrix

of the estimated

parametersΣpxpx = N−1 . (7.106)

4. If we only know an approximate covariance matrix Σa
ll and we assume the covariance

matrix Σll di�ers from the approximation by an unknown variance factor σ2
0

Σll = σ2
0Σa

ll with W ll = Σll , (7.107)

then we can perform the estimation with Σa
ll, instead of using Σll, which has no

e�ect onto the estimates. But then we can �nd an estimate

pσ2
0 =

cT
l W

a
ll cl

G− U
or pσ2

0 =
cT
gW

a
cgcgcg

G− U
. (7.108)

for the estimated variance factor. Then we obtain an estimate for the covariance estimated variance

factormatrix of the estimated parameters

pΣpxpx = pσ2
0Σa
pxpx with Σa

pxpx = (AT(BTΣa
llB)−1A)−1 . (7.109)

the attribute estimated only referring to use of the estimated variance factor.

Remark: If the observational noise is small and an approximate solution is acceptable, the steps

1.(e�f) can be omitted. Then the Jacobians A and B are to be determined at (xa, l) instead of

at (xa,ya). �

The complete procedure is given in the algorithm below. The green parts refer to the
case, where the degrees of freedom of the parameters and observations is less than the
number of elements of their representation.

7.5.2 Derivation of the procedure

We now derive the procedure.

7.5.2.1 Estimating the parameters with a quasi Gauss�Markov model

We start from the constraint (7.95) rewritten as

− g(xa,ya)− BT∆y = A∆x . (7.110)

In order to eliminate the dependeny of ∆y, we introduce the contradiction of the con-
straints, i.e., the value

cg = −g(xa, l) (7.111)

choosing the negative sign for making the following equations more intuitive. With
g(xa,ya) = g(xa, l) + BTva and v = va + ∆y we have, up to �rst order, g(xa,ya) +
BT∆y = g(xa, l) + BTv and therefore we can rewrite (7.110) as

cg − BTv = A∆x . (7.112)

7Observe, we do not have the estimated residuals v in the optimization function, but their corrections
v − va = ∆y (7.93), in order to be able to handle observations, such as directions or rotations, where a
non-linear update of the observations is more appropriate, replacing (7.93), see e.g., (7.84).

8Again we do not indicate, that cg depends on approximate values thus omit a superscript a.
9If we have the special linear Gauss�Markov model g(x,y) = Ax − y = 0, thus B = −I , and use the

approximate values xa = 0, then we have cg = −g(xa, l) = l.
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Algorithm 2: Estimation in the Gauss�Helmert model.
[px,Σpxpx, pσ2

0 , R] = GaussHelmertModell_D(l,Σll, cg, ux, uy ,x
a,σapx, Tθ, maxiter)

Input: observed values {l,Σll}, number N ,
constraint function [cg,A,B] = cg(l,y

a,xa), number G,
update functions ux and uy for the parameters and mean observations.
approximate values xa, possibly σapθu ,
parameters Tθ, maxiter for controlling convergence.
Output: estimated parameters {px,Σpxpx}, variance factor pσ2

0 , redundancy R.

1 Redundancy R = G− U ;
2 if R < 0 then stop, not enough constraints;
3 Initiate: iteration ν = 0, approximate values ya := l, stopping variable: s = 0;
4 repeat

5 Constraints and Jacobians : [cg,A,B] = cg(l,y
a,xa), see (7.99), (7.96);

6 Weight matrix of constraints: W gg = (BTΣllB)−1;
7 Build normal equation system: [N,m], see (7.100);
8 if N is singular then stop: normal equation matrix is singular;

9 Updates of parameter vector: ∆x, see (7.78), xa := ux(xa,∆x) ;

10 Corrections for �tted observations: ∆y, see (7.103);

11 Update �tted observations: ya = uy(ya,∆y) , see (7.79);

12 Set iteration: ν := ν + 1;

13 if maxu(|x∆xu|/σapxu) < Tx or ν = maxiter then s = 2;
14 until s ≡ 2;
15 Estimated parameters px := pxa and covariance matrix: Σpxpx, see (7.106);
16 if R > 0 then variance factor pσ2

0 = cT
gW gg cg/R;

17 else pσ2
0 = 1;

Now, we de�ne the substitution
vg = −BTv . (7.113)

This is that part of the residuals v of the observations l, which is relevant for the con-
straints. Its uncertainty results from (7.112), since ∆x is assumed to be �xed in this
step,

D(cg) = D(−g(xa, l)) = Σgg = BTΣllB . (7.114)

We thus arrive at a representation of the functional model which has the algebraic structure
of a Gauss-Markov model with cg as observations and ∆x as unknowns quasi

Gauss-Markov

model representing

the Gauss�Helmert

model

cg + vg = A∆x with D(cg) = Σgg . (7.115)

Starting from here we solve the optimization problem for determining the corrections ∆x

minimize vg Σ−1
cgcg vg (7.116)

subject to − (cg + vg) + A∆x = 0 , (7.117)

for given the contradictions cg of the constraints, the Jacobian A, and the covariance
matrix Σcgcg . As we know from the estimation with the Gauss�Markov model, we obtain
the normal equation system

N∆x = m with N = AT(BTΣllB)−1A and m = AT(BTΣllB)−1 cg . (7.118)

Hence the updated parameters are

xa := ux(xa,∆x) . (7.119)
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We, however, need to be aware of the following: both, the coe�cient matrix A and �
via the Jacobian B � the covariance matrix Σgg in (7.114) generally depend on the current
values xa and ya, since the Jacobians have to be determined at these values, see (7.96).
So, we need to determine updates ∆y for the mean observations y within the iterative
scheme.

Since its Jacobian and covariance matrix depend on the unknown parameters we call
thus functional the quasi Gauss�Markov model replacing the implicit constraints in the
Gauss�Helmert model.10

7.5.2.2 Update of approximate �tted observations

From (7.115) and (7.113) we have the residuals vg at some point within the iteration
scheme

vg = −cg + A∆x = −BTv , (7.120)

which result after �nding the locally best corrections ∆x. If we could determine the
residuals v of the original observations from the residuals vg, i.e., invert the relation
vg = −BTv, we could derive the corrections

∆y = −va + v . (7.121)

We could use them to determine updates for the mean observations y. We obviously
cannot determine the residuals v of the original observations by inversion of (7.113), since
the matrix B in generally does not have full rank.

Therefore we determine those residuals v which ful�l the constraint (7.120) and mini-
mize Ω = vTΣ−1

ll v. With the Lagrangian parameter vector λ we thus need to

CONSTR(Σ): minimize vTΣ−1
ll v

subject to BTv + vg = 0 .
(7.122)

w.r.t. the residuals v. Setting the partials of

Φ(v,λ) =
1

2
vTΣ−1

ll v + λT(BTv + vg) (7.123)

to 0 yields the two necessary equations for v

∂Φ

∂vT
= Σ−1

ll v + Bλ = 0 and
∂Φ

∂λT
= BTv + vg = 0 . (7.124)

From the �rst equation we obtain
v = −ΣllBλ (7.125)

which from the second equation leads to

pvg − BTΣllBλ = 0 (7.126)

Therefore we have
λ = (BTΣllB)−1vg , (7.127)

which �nally yields pv = −ΣllB(BTΣllB)−1pvg (7.128)

inverting the substitution in (7.113) in an intuitive manner. Hence, from (7.121) and
(7.90) we obtain the corrections

∆y = −u−1
y (ya, l)− ΣllB(BTΣllB)−1 g(xa, l) . (7.129)

10In the German geodetic literature on adjustment theory (equivalent to the estimation theory) the
functional model (7.115) is called 'quasi vermittelnde Ausgleichung', derived from the German 'vermit-

telnde Ausgleichung' representing the Gauss�Markov model. This motivates the English naming of this
functional model, which only occurs as substitute for the linearized Gauss�Helmert model
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If the residuals/corrections and the parameters/observations have the same dimension,
e.g., for classical point coordinates, this simpli�es to

∆y = −ya + l− ΣllB(BTΣllB)−1 g(xa, l)) . (7.130)

The update for the estimates of the mean observations then read as

ya := uy(ya,∆y) especially pya := pya + ∆y . (7.131)

If the observations and the constraints, l and g are grouped as l = [li] and g = [gi],
such that each group gi only refers to the corresponding group li and the observational
groups are mutually independent, i.e., for i /= j we have Cov(li, lj) = 0, then with vai the
updates can be done group wise: correction of

estimated

observations∆yi = u−1
y (li,y

a
i )− ΣliliBi(B

T
i ΣliliBi)

−1 g(px, li) , (7.132)

with the individual updates pyai := uy(pyai ,∆yi) . (7.133)

If the observational noise is small, the Jacobian B can be determined at the observations
l instead of at the current value y of the mean observations. Hence the update step in (7.79)
then would be omitted. The evaluation still can be based on the estimated variance factor,
which can be based on cg alone, and the covariance matrix of the estimated parameters.

7.5.2.3 Final estimates and evaluation

The �nal estimates are derived from the approximate values in the last iteration, assuming
convergence is achieved. Hence we have the �nal estimates

px := xa , py := ya , and pv = va . (7.134)

The estimated variance factor uses the value of the optimization function at the estimates
and can be written in di�erent ways estimated variance

factorpσ2
0 =

Ω(px, py)

G− U
=
pvT
W llpv

G− U
=
cT
gW ggcg

G− U
(7.135)

The last relation can be derived at the point of convergence where ∆x = 0, ∆y = 0,
and g(x,y) = 0, using cg = BTv. Hence, the optimization can be based on the weighted
sums of the squares of the estimated residuals v or the contradiction cg of the constraints.

Finally, the theoretical covariance matrix of the estimated parameters can be derived Cramer-Rao bound,

covariance matrix

of estimated

parameters

from (7.118) by variance propagation, leading to the Cramer-Rao bound for the uncertainty

Σpxpx = (AT(BTΣllB)−1A)−1 . (7.136)
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8 Variance Component Estimation with

Observational Groups

Variance component estimation aims at statistically optimal �nding factors for correcting
additive components of the covariance matrices of observations. This note provides an
e�cient way to estimate these factors if the observations can be partitioned into mutually
uncorrelated groups, which however show correlations within the groups. This is essential
for handling coordinates, e.g. of image or GPS coordinates

8.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.3 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3.1 The iteration process . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3.2 The update factors f2

j . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.4 Simpli�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.4.1 The �rst variance component . . . . . . . . . . . . . . . . . . . . . . 160
8.4.2 The second variance component . . . . . . . . . . . . . . . . . . . . . 160

8.5 Approximating the redundancy contributions ri for image points within
bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Remark: We change notation in order to highlight the meaning of the individual variables:

Variance components are variance factors, thus obtain an index 0. The factors within the iteration

process are renamed to f2
j , since they do not have any meaning as variance factors. �

8.1 Preface

This note (2023) provides explicit equations for a less specialized situation of variance
component estimation than described in Förstner and Wrobel (2016, Sect. 4.2.4) for
statistically independent observations. It handles the case were we have statistically in-
dependent groups of observations but allow for full correlations within a group. This
situation occurs if coordinates of 2D or 3D points are observed, say in images or by GPS.

8.2 Summary

We derive simple equations for variance component estimation with I observational groups
yi having correlated individual observations for the case of the model

D(yi) = Σyiyi := (σ2
01 + σ2

02s
2
i )Σ0

ii with i = 1, ..., I . (8.1)

The assumption is, that the covariance matrix of the keypoint coordinates mainly
depend (1) on the covariance matrix for the i-th keypoint

Σ0
ii =

σ2
n

Ni

(
Gσi(x, y) ∗ (∇gi(x, y)∇Tgi(x, y)

)loooooooooooooooooooooomoooooooooooooooooooooon
T ii

−1 (8.2)
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locally derived from the image information gi(x, y) around the keypoint by smoothing the
squared gradient and (2) the scale si provided by the Lowe detector. The intensity-based
prediction of the covariance matrix Σ0

ii mainly depends on the scaled inverse structure
tensor T ii derived from a Gaussian window Gσ(x, y) with radius σ, the image noise vari-
ance σ2

n and the number Ni = 12σ2
i + 1 of the relevant pixels in the window, see Förstner

et al. (2009, p. 5). The two variance factors σ2
01 and σ2

02 control the constant and scale
dependent e�ect.

8.3 Basics

8.3.1 The iteration process

All variance factors are close to 1 and have unit [1]. They are estimated in an iterative
scheme, where in each iteration the variance factors are multiplicatively corrected until
convergence:

σ
2,(ν+1)
0j = f2

j
(ν)

σ2
0j

(ν)
, with j = 1, ..., J (8.3)

After convergence, i.e., if the factors f2
j

(ν) converge to 1, say in the µ-th iteration, we
obtain the �nal estimates xσ2

0j := σ2
0j

(µ)
. (8.4)

8.3.2 The update factors f 2
j

We refer to Förstner and Wrobel (2016, Sect. 4.2.4 ) and start from (4.97) for the factors1

f2
j =

pvT
W yyΣa

jW yypv
tr(W yyΣa

jW yyΣpvpv)
with W yy = Σ−1

yy (8.5)

We have omitted the iteration index for simplicity.
In our case we have two variance components σ2

0j , which are used in the following
model

Σyy =
2̧

j=1

Σj =
2̧

j=1

σ2
0jΣ

a
j (8.6)

with the block diagonal matrices

Σa
1 = Diag({Σa

1,ii}) = Diag({Σ0
ii}) and Σa

2 = Diag({Σa
2,ii}) = Diag({s2

iΣ0
ii}) , (8.7)

replacing (4.93). Observe, we use the indices i = 1, ..., I for the observational groups and
replaced the unit matrix by the block diagonal matrix of the Σ0

ii.

8.4 Simpli�cation

We �rst determine the weight matrix from the previous iteration

W = Diag({W yiyi}) (8.8)

with
W yiyi = wiW

0
ii, , wi =

1

σ2
01 + σ2

02s
2
i

and W 0
ii = (Σ0

ii)
−1 . (8.9)

Thus, in the following derivation the variance components σ2
01 and σ2

02 are those from the
previous iteration and taken as �xed values.

The variance components (σ2
01)(0) and (σ2

02)(0) may be chosen to be 1 at the beginning.

1denoted with fi in order to clarify they are not the variance components and no estimates, just
intermediate values within the iteration process
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8.4.1 The �rst variance component

We obtain the (correcting) factor for the �rst variance component

f2
1 =

pvT
W yyΣa

1W yypv
tr(W yyΣa

1W yyΣpvpv)
(8.10)

=
pvTDiag({W yiyiΣ

a
iiW yiyi})pv

tr (Diag({W yiyiΣ
a
iiW yiyi})Σpvpv)

(8.11)

Since the covariance and the weight matrix of the observations are block diagonal, and the
individual covariance matrices have the common factor Σ0

ii, the numerator can directly be
written as a sum:

pvTDiag({W yiyiΣ
a
1,iiW yiyi})pv =

I̧

i=1

pvT
iW yiyiΣ

a
iiW yiyivi (8.12)

=
I̧

i=1

σ2
01 w

2
i pvT

iW
0
iipvi (8.13)

The denominator needs a bit care, since the covariance matrix Σpvpv is a full matrix. How-
ever, the trace only requires the diagonal blocks, hence we have

tr (Diag({W yiyiΣ
a
iiW yiyi})Σpvpv) =

I̧

i=1

tr(W yiyiΣ
a
iiW yiyiΣpvipvi) (8.14)

=
I̧

i=1

σ2
01 wi tr(W yiyiΣpvipvi) (8.15)

With the redundancy matrix

R = ΣpvpvW yy = [Ri,i′ ] with trR =
I̧

i=1

trRii = N − U (8.16)

we have the redundancy contribution of each observational group

ri := trRii with
I̧

i=1

ri = R . (8.17)

This is useful, since we might be able to approximate the local redundancy contributions.
Thus the factor for the �rst variance component is given by

f2
1 =

°I
i=1 σ

2
01 w

2
i pvT

iW
0
iipvi°I

i=1 σ
2
01 wi ri

(8.18)

8.4.2 The second variance component

We similarly obtain the factor for the second component

f2
2 =

pvT
W yyΣa

2W yypv
tr(W yyΣa

2W yyΣpvpv)
(8.19)

=
pvTDiag({W yiyi s

2
iΣa

ii W yiyi})pv
tr (Diag({W yiyi s

2
iΣa

ii W yiyi})Σpvpv)
(8.20)

Following similar arguments, we just need to weight the numerator and the denominator
with a factor s2

i and obtain

f2
2 =

°I
i=1 s

2
i σ

2
01 w

2
i pvT

iW
0
iipvi°I

i=1 s
2
i σ

2
01 wi ri

(8.21)
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Remark: As a check we determine the sum of the two denominators:

I̧

i=1

f2
1 wi ri +

I̧

i=1

s2
i f

2
2 wi ri =

I̧

i=1

(f2
1 + s2

i f
2
2 ) wi ri =

I̧

i=1

ri = R , (8.22)

which demonstrates that the redundancy R is distributed on the points and their two
uncertainty components.

8.5 Approximating the redundancy contributions ri for
image points within bundle adjustment

If a scene point is observed from K images, then � assuming the poses are �xed � the
triangulation uses N = 2K observed image coordinates for the U = 3 scene coordinates,
hence the redundancy of the triangulation is

R = 2K − 3 . (8.23)

Hence the redundancy number rn for each coordinate on an average is R/(2K). Therefore,
the redundancy contribution of the points with two coordinates on an average is double
this value, hence

ri =
R

K
=

2K − 3

K
, (8.24)

which we may use as an approximation for trRii during variance component estimation.
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9 Pre-calibration and in-situ Self-calibration

with Correlated Observations

Deformation analysis based on point clouds taken at di�erent times may require to take
into account both pre-calibration and in situ self-calibration of the used instruments.
We analyse the mutual e�ect of pre-calibration and in-situ self-calibration w.r.t. (1) the
necessity to exploit the full covariance structure of the point cloud induced by the pre-
alibration and (2) the possibility of increasing the computational e�ciency during the
self-calibration.
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9.1 Preface

The note (2023) addresses the question how a priori pre-calibration result may in�uence
a possible in-situ self-calibration, both concerning the achievable accuracy as well as the
numerical e�ort. The result uses a lemma by Rao (1967, Lemma 5a) which states under
which conditions the result of an estimation is invariant to a change in the assumed
structure of the covariance matrix of the observations.

9.2 Summary

We analyse the computational and statistical e�ciency of self-calibration when recon-
structing a surface from point cloud taken with a laser scanner where we know the cali-
bration result. We discuss fusing the prior calibration information with the one from the
in-situ measurements and the e�ect of the uncertainty of the prior calibration (ca,Σcaca)
onto the covariance matrix D(θ) of the unknown parameters θ.
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We address four cases, A to D, di�ering by their stochastical and their functional
models:

• The a priori calibration result is not available (or used, cases (A,C)) or is integrated
into the self-calibration with a priori information in a Bayesian manner (cases (B,D)
). Hence, we have the two (linearized) functional models for estimating the parame-
ters y of the object's form and the calibration parameters c

(A,C) : E
(
y
)

= [B ,C ]

[
y
c

]
, or (B,D) : E

([
y

ca

])
=

[
B C

0 I

] [
y
c

]
. (9.1)

• The covariance matrix of the observations is assumed to be (a) block diagonal,
assuming the points are mutually uncorrelated or to be (b) fully populated due to
the joint e�ect of the uncertainty Σcaca of the a priori calibration parameters ca
onto the observations Caca. So we either use

(A) : D(y) = Σll,p =: Σ0 , or (C) : D(y) = Σ0 + CaΣcacaC
T
a =: Σ . (9.2)

(B) : D

([
y

ca

])
=

[
Σ0 0

0 Σcaca

]
or (D) : D

([
y

ca

])
=

[
Σ0 0

0 0

]
+

[
Ca

I

]
Σcaca [CT

a , I ] .

The four cases are analysed w.r.t. their estimates and covariance matrices, see Tab. 9.1.

D(y) = Σ0 D(y) = Σ

SC pθ | A ≡ pθ | C
D(pθ | A) = D(pθ | C) =[

BTW 0B BTW 0C

CTW 0B CTW 0C

]−1

D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ]

BSC D(pθ | B) = D(pθ | D) =[
BTW 0B BTW 0C

CTW 0B CTW 0C +W caca

]−1

D:
[

(BTW 0B)−1 0

0 Σcaca

]
Table 9.1: Estimates and covariance matrices of the estimated parameters when using the
four models for self-calibration and assuming C = Ca. SC: self-calibration without prior,
BSC: Bayesian self-calibration

The main result of this note is the following: If the matrix C ≡ Ca is common to the
stochastical model in (9.2) and the functional models in (9.1), then, following Rao (1967,
Lemma 5a), the estimates of model A and C coincide, allowing to use model A for an
e�cient estimation of the parameters and their covariance matrix. Moreover, using Rao's
lemma decorrelates and simpli�es the solution for model D.

Especially, we have the following relations between the estimates in the model A and
in the models B and C

D(pθ | B) ≤ D(pθ | A) ≤ D(pθ | C) , (9.3)

D(py | D) ≤ D(py | B) ≤ D(py | A) = D(py | C) . (9.4)

An individual sensitivity analysis allows to determine the expected loss in quality, accuracy
and reliability in Baarda's sense, without requiring actual observations.
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9.3 Introduction

9.3.1 Motivation

Taking point clouds as observations for the estimation of object forms, for deformation
analysis, or for calibration needs to take the stochastical properties of the coordinates of
the points into account as far as necessary. The quality of the assumed stochastical model
needs to be acceptable, not necessarily optimal, for the envisaged application.

Especially for deformation analysis, where the deformations are in the order of the
measuring precision, a realistic stochastical model, taking all known dependencies into
account, may be required.

Unfortunately, the points in a point cloud may be correlated due to the uncertainty
of the instrumental calibration. This generally leads to a large fully populated covariance
matrix Σyy of the N observations, collected in the vector y. As a consequence any estima-
tion minimizing the weighed squares of the residuals is confronted with using the inverse
W yy = Σyy, which often is called information matrix or precision matrix.

This note shows under which conditions it is possible to work with uncorrelated points,
thus with a block matrix containing the 3×3 covariance matrices Σyiyi of the I individual
points, instead of a fully populated covariance matrix, without losing accuracy.

9.3.2 Rao's lemma

The idea is to exploit the Lemma 5a in Rao (1967) which states under which conditions the
estimation with a covariance matrix containing certain additive variance components does
not change the parameters. Especially, it starts from the given the linear Gauss-Markov
model,

y + v = Xθ with Σ0 = D(y) , (9.5)

and the estimated parameters

pθ0 = (XTΣ−1
0 X )−1XTΣ−1

0 y , (9.6)

Then, when using the modi�ed covariance matrix

Σ = XΓXT + Σ0ZΘZTΣ0 + Σ0 with ZTX = 0 , (9.7)

with arbitrary matrices Γ and Θ (which we will not need in the following) the estimatepθ0 from (9.6) is identical to the estimate,

pθ = (XTΣ−1X )−1XTΣ−1y , (9.8)

when using the full covariance matrix.
Fig. 9.1 shows the principle of least squares estimation with a unit matrix and an

arbitrary covariance matrix for the observations in the simple model y ∼ N (xθ,Σ). Fig.
9.2 visualizes the idea of Rao's lemma.

As can be seen by variance propagation its covariance matrix is

Σpθpθ = (XTΣ−1X )−1 , (9.9)

hence, not (XTΣ−1
0 X )−1, thus in principal needs to take the full covariance matrix Σ into

account.1

Observe, the two �rst components in the covariance matrix (9.7) have the structure of
a weighted block dyadic product XSXT, similar to the 1D case sxxT.

1The result has as special case the mean of N values yn in case the observations have the same variance
σ2 and are mutually correlated with the same correlation coe�cient ρ ∈ [−1/(N−1),+1]. Then the normal
arithmetic mean pµ =

°
n ln/N is the optimal estimator, but its variance is σ2

pµ = (1+ρ(N−1)) ·σ2/N , but

not σ2/N . This can be shown using A = 1N , thus a vector of N ones, and Σ = σ2[(1− ρ)IN + ρ1N1T
N ].
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Figure 9.1: Least squares estimation. Model y ∼ N (xθ,Σ). If Σ = I 2, indicated by the

blue circular standard ellipse, the optimal point lies on the footpoint py | I 2 = xpθ | I 2 of y
onto the line E(y) = xθ. If the covariance matrix Σ is a general matrix, represented by the

red standard ellipse, then the optimal point py | Σ = xpθ | Σ is the intersection of the (blue)
line E(y) = xθ passing through O and the (red) line, de�ned by the direction from y to that
point of the ellipse, where the tangent (yellow) is parallel to x

Figure 9.2: Visualization of Rao's lemma: Least squares estimation with modi�ed covari-
ance matrix. Model y ∼ N (xθ,Σ). If Σ = σ2

I + γxxT or if Σ = σ2
I + θzzT, with z ⊥ x,

hence generally, if Σ = σ2
I + γxxT + θzzT, the semi-axes of the standard ellipse are parallel

or orthogonal to x. Then, the least squares estimate for the generalized covariance matrix
is the same as for Σ = I 2. However, the covariance matrix of the estimate depends on the
modi�cation, namely the factors σ2 and γ.

165



Remark: It is well known2, that changing the covariance matrix of the observations leads to

an e�ect onto the estimated parameter, which is in the range of their standard deviations, unless

the change of the covariance matrix or the weight matrix is very large. It mainly in�uences their

covariance matrix. The result of Rao's Lemma addresses the extreme case, where the e�ect onto

the parameters is zero, which requires that the change of the covariance matrix has a special

structure. The e�ect of model errors has been discussed in the context of self-calibration in

Förstner (1982). �

9.3.3 Goal and result

The idea is to choose the matrices X , Σ0, Γ, and Θ in (9.7), such, that the estimation of
the parameters for the object and the calibration

1. can be performed within self-calibration with a block diagonal matrix for the ob-
served points, which increases computational e�ciency

2. can use the parameters of a priori calibration for an in-situ self-calibration possibly
improving these parameters, and

3. e�ciently derive the uncertainty of the estimated parameters.

Computational e�ciency also can be achieved, in case only a part of the calibration param-
eters is included in the self-calibration. The increase in e�ciency refers to the estimation
of the parameters, as well as to determination of their covariance matrix.

9.4 The setup

We now discuss the used stochastical model of the observations and then four mathematical
models for the self-calibration

9.4.1 The covariance matrix of the observations

We assume two sources of measurement deviations, (1) caused by the object properties,
yielding Σyy,p, and (2) caused by the prior calibration, yielding Σyy,c. Hence, we assume
the complete uncertainty is described by

Σyy = Σyy,p + Σyy,c . (9.10)

1. The covariance matrix Σyy,p is assumed to be block diagonal

Σyy,p = Diag({Σyiyi,p}) . (9.11)

and has full rank. The individual 3 × 3 covariance matrices Σyiyi,p are assumed to
re�ect those parts of the directional and distance uncertainties, which are indepen-
dent for each point, including those parts which depend on the surface point, e.g.,
its material and the impact angle.

2. The covariance matrix Σyy,c is assumed to contain all uncertainties of the a priori
calibration which e�ect all points of a scan simultaneously. We do not assume
other types of correlations, e.g., caused by the atmosphere. Using the primary error
concept the e�ect of the C calibration parameters3 c onto the observations is assumed
to be describable by

yc = Caca . (9.12)

2See Koch (1999), where eq. (3.108) shows the e�ect of using a slightly changed weight matrixW+∆W

instead ofW , and with (3.32) reads as pθ | (W +∆W ) ≈ pθ |W − (XT
WX )−1X

T∆W pe, with the estimated

residuals pe = y − X pθ.
3We assume a perfectly constructed instrument would lead to c = 0.
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Assuming a linear model appears to be reasonable as the e�ects are small. The
estimated parameters ca := pca of the a priori calibration will be uncertain4

ca ∼ N (µca ,Σcaca) . (9.13)

This leads to the uncertain e�ects of the calibration onto the observations

y
c
∼ N (µyc ,Σyy,ca) with µyc = Caµca and Σyy,ca = CaΣcacaC

T
a . (9.14)

The covariance matrix has a low rank C = rk(Ca), but generally is fully populated.

Hence, also the covariance matrix Σyy will be fully populated since it has the structure

Σyy = Σyy,p + CaΣcacaC
T
a , (9.15)

where the �rst part is sparse, namely block-diagonal, and the second part has the structure
of a block dyadic product.

On notation: In the following we denote the inverses of covariance matrices as weight/precision/-
or information matrices:

W = Σ−1 , W 0 = Σ−1
0 , W yy,p = Σ−1

yy,p , and W c0c0 = Σ−1
c0c0 . (9.16)

We now discuss four cases for the self-calibration, which simultaneously determines the
parameters of the object and calibration parameters. We assume two alternatives for the
functional model of the self-calibration and two alternatives for the stochastical model for
the observations. Hence, we arrive at the following models

A. Uncorrelated points for self-calibration

B. Uncorrelated points for self-calibration with fusion of the prior calibration

C. Correlated points for self-calibration

D. Correlated points for self-calibration with fusion of the prior calibration

1. The a priori calibration result (A,C) is not available or used or (B,D) is fusing the self-
calibration with a priori information. Hence, we have the two (linearized) functional
models for estimating the parameters y of the object's form and the calibration
parameters c

(A,C) : E
(
y
)

= [B ,C ]

[
y
c

]
, or (B,D) : E

([
y
ca

])
=

[
B C

0 I

] [
y
c

]
.

(9.17)
We call models (A,C) self-calibration and models (B,D) self-calibration with fusion
in the following.
Depending on the context, the self-calibration may refer to only a subset of param-
eters used in the prior calibration, e.g., only those which are to be expected to be
determinable within the self-calibration. Similarly, self-calibration with fusion (2)
may only refer to those parameters which are expected to change over time. Hence,
the models may have the same coe�cient matrix B but di�erent coe�cient matrices
C .

2. The covariance matrix of the observations is assumed to be block diagonal, assuming
the points are mutually uncorrelated or to be fully populated due to the joint e�ect of
the uncertainty Σcaca of the a priori calibration parameters ca onto the observations
Caca.

4Random variables are underscored.
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Since the observation vectors in models (A,C) are di�erent from thos in models (B,D)
we need to consider them separately.
In case of models (A,C) we either use

D(y | A) = Σyy,p =: Σ0 , (9.18)

or
D(y | C) = Σyy,p + Σyy,c = Σyy,p + CaΣcacaC

T
a =: Σ . (9.19)

Stochastical model (A) is a special case of model (C), so, when used, leads to sub-
optimal estimates, if the observations actually are correlated.
In case of models B the a priori information (ca,Σcaca used in the self-calibration
with fusion we reasonably may assume the prior information is independent of the
observed points, hence we have

D

([
y
ca

]
| B
)

=

[
Σyy,p 0

0 Σcaca

]
. (9.20)

In case D we assume the observed coordinates are mutually correlated due to the
common calibration uncertainty. But, then also the calibration parameters ca will
be correlated with the observed points, since we have[

y
ca

]
=

[
y
g

+ Caca
ca

]
=

[
I Ca
0 I

] [
θ
c

]
. (9.21)

Hence we obtain the joint covariance matrix

D

([
y
ca

]
| D
)

=

[
I C

0 I

] [
Σyy,p

Σcaca

] [
I 0

CT I

]
(9.22)

=

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
(9.23)

=

[
Σyy,p 0

0 0

]
+

[
Ca
I

]
Σcaca [CT

a , I ] (9.24)

There is a profound di�erence when fusing the uncorrelated and the correlated ob-
servations in models B and D.
We �rst look at the models A and C. As can be seen from (9.18) and (9.19), the
uncertainty does not decrease when taking the correlations into account:

D(y | C)−D(y | A) = Σ− Σ0 = CaΣcacaC
T
a ≥ 0 (9.25)

Hence, the uncertainty in model C generally is higher than in model A. Hence, we
can expect, the results using model B are worse (not better) than those with model
A. Since the two groups of observations is not independent the model does represent
a Bayesian estimation of the parameters.
This contrasts to the relation between the uncertainties in models B and D. Here we
have

D(y | D)−D(y | B) =

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
−
[

Σyy,p 0

0 Σcaca

]
=

[
CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a 0

]
Q 0 . (9.26)

Hence, the accuracy di�erence is inde�nite. This indicates, that model D will not
generally lead to better results than model B. Also, since the two groups of observa-
tions is not independent the model does not represent a Bayesian estimation of the
parameters.

We now discuss the four di�erent models in more detail.
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9.4.2 A: Self-calibration with independent points

The most simple model, case A, is in-situ self-calibration without having access (or using)
to the result of a prior calibration. It reads as

E(y | A) = Xθ D(y | A) = Σ0 with X = [B,C ] , θ =

[
y
c

]
(9.27)

where

• the Y parameters y are used to describe the object, e.g., using splines, and

• the C parameters c are calibration parameters within the self-calibrating estimation.
They generally need not be the same as in a pre-calibration.

• Since we do not use or have access to a prior calibration, we need to assume the
covariance matrix of the observations is block diagonal.

The uncertainty of the estimated parameters results from the normal equations

N0
pθ = n0 (9.28)

with

N0 =

[
N11,0 N12,0

N21,0 N22,0

]
=

[
BTW 0B BTW 0C

CTW 0B CTW 0C

]
(9.29)

and

n0 =

[
n1,0

n2,0

]
=

[
BTW 0y

CTW 0y

]
. (9.30)

The index 0 stands using the block-diagonal matrix Σ0. In case model A holds we have
the covariance matrix

D(pθ | A) = N−1
0 . (9.31)

This model is useful, since the normal equation system can be setup point by point,
and it will generally be sparse, since each point only in�uences the coordinates of the
neighbouring knots/control points of a spline surface. The sparsity of N0 has two positive
numerical e�ects:

(i) The solution of the normal equation system can exploit the sparsity, and therefore
can be performed numerically e�cient.

(ii) Though the covariance matrix Σpθpθ,0 = N−1
0 will be generally full, one may e�ciently

determine those elements of the covariance matrix, where the normal equation ma-
trix is non-zero, without needing to determine the other elements of the covariance
matrix, see Takahashi et al. (1973, cf Matlab-code sparseinv.m) and Vanhatalo
and Vehtari (2008).

This model certainly is too simpli�ed, since neither possible correlations between the
observations nor some, possibly available, a priori information is taken into account.

9.4.3 B: Self-calibration with fusion using independent points

In model B, we now want to fuse some a priori results (ca,Σcaca) within the self-calibration
from (9.27). As we discussed above, this corresponds to a Bayesian estimation of the pa-
rameter vector, with prior on the calibration parameters. This then just leads to additional
observations ca ∼M (ca,Σcaca) and thus the model

E

([
y
ca

]
| B
)

=

[
B C

0 I c

] [
y
c

]
(9.32)
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with the extended covariance matrix of the joint observation vector (yp, ca)

D

([
y
ca

]
| B
)

=

[
Σ0 0

0 Σcaca

]
. (9.33)

The normal equation system reads as

M0
pθ = m0 (9.34)

with

M0 = N0 +

[
0

IC

]
W caca [0 , IC ] =

[
BTW 0B BTW 0C

CTW 0B CTW 0C +W caca

]
(9.35)

and similarly

m0 = n0 +

[
0

W cacaca

]
. (9.36)

Also here, the normal equation matrix will be sparse, allowing to increase numerical ef-
�ciency, both during the solution as well as for determining the covariance matrix of the
parameters. This is the main motivation for using this model.

Remark: 1. Though this model formally is correct, in the context of in-situ self-calibration

it contains a contradiction: The prior calibration result (cs,Σcaca is used explicitely, but the

observed points are assumed to be uncorrelated, though they are assume to be measured by the

same instrument, thus should be treated as mutually dependent. �

Remark: 2. In case parameters c are partitioned, namely ca2 of ca, e.g., if

ca =

[
ca1
ca2

]
and yc = [C1 ,C2]

[
ca1
ca2

]
= C1ca1 + C2ca2 (9.37)

where the parameters ca1 are just �xed values, used for correcting the observations, then we can
rewrite the model as

(y
p

+ C1ca1 + C2ca2) + v = By + Cc , (9.38)

Now, since the e�ect of the parameters ca2 onto the observations is the same as those of c, the
coe�cient matrices C and C2 coincide, why we obtain the model

(y
p

+ C1ca1) + v = By + C(c− ca2) , (9.39)

Hence if we only are able to estimate the di�erence ∆c = c−ca2, i.e., for given ca2 the corrections
∆c. �

Though this model takes into account the result of a prior calibration it still assumes a
too simplistic covariance matrix Σ0 for the observations, thus is statistically suboptimal,
in case correlations between the points exist.

9.4.4 C: Self-calibration exploiting a priori calibration

9.4.4.1 The model

In model C, we instead of fusing the result of the a priori calibration with the current
measurements, we correct take into account that the observations due to the uncertainty
of the a priori calibration are correlated. Hence, we have the same functional model as in
case A,

E(y | C) = E(y
p

+ Caca | C) = Xθ with X = [B,C ] , θ =

[
y
c

]
, (9.40)

but now assume the covariance matrix of the observations is

D(y | C) = Σyy,p + CaΣcacaC
T
a =: Σ . (9.41)
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Observe, we generally do not enforce, the self-calibration determines/corrects the same
parameters as the a priori calibration, which is reasonable, in case we only want to improve
the results of some calibration parameters.

Though the design matrix B is sparse, the resulting normal equation system will not be
sparse. Thus � without further constraints � no numerically e�cient solution is possible.

9.4.4.2 Exploiting Rao's result

This changes, if we assume the two matrices C and Ca coincide. Then Rao's lemma can
be applied.

If we refer to (9.7), then, when assuming

C ≡ Ca , Σ0 = Σyy,p , Γ =

[
0 0

0 Σcaca

]
and Θ = 0 , (9.42)

we obtain Σ := Σyy of (9.15), and therefore can conclude: under the mentioned conditions,
using the block-diagonal matrix Σyy,p during estimation leads to the same estimates as
when using the full covariance matrix Σyy.

Explicitly, the estimated parameters following from the model

y + v = [B,C ]

[
y
c

]
, and Σ := Σyy,p + CΣcacaC

T . (9.43)

are identical to those following from model A

y + v = [B,C ]

[
y
c

]
, and Σ0 := Σyy,p . (9.44)

independent on whether we correct the observations for their calibration errors Cca, as
discussed above, thus pθ | C = pθ | A (9.45)

The covariance matrix of the estimates now results frompθ = (XTW 0X )−1XTW 0 y (9.46)

We obtain the uncertainty of the parameters by variance propagation as

D(pθ | C) = (XTW 0X )−1XTW 0(Σ0 + CΣcacaC
T)W 0X (XTW 0X )−1 (9.47)

= (XTW 0X )−1 + (XTW 0X )−1XTW 0CΣcacaC
TW 0X (XTW 0X )−1(9.48)

But since

(XTW 0X )−1[XTW 0B , X
TW 0C ] =

[[
IY
0

] [
0

IC

]]
(9.49)

we arrive at

D(pθ | C) = (XTW 0X )−1 +

[
0

IC

]
Σcaca [0 , IC ] (9.50)

or

D(pθ | C) = D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ] (9.51)

or explicitely

D(pθ | C) =

[
Σpypy,0 Σpypc,0
Σpcpy,0 Σpcpc,0 + Σcaca

]
(9.52)

Hence, using model C allows arrive at computational e�cient estimation of the parameters,
as well determination of their covariance matrix.

This observation gives some insight into the ability of this model to compensate for
information of some prior calibration, which allows to exploit Rao's result to increase
computational e�ciency for determining the parameters.

However, this observation also indicates that the prior information is not fully inte-
grated.
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9.4.5 D: Self-calibration with fusion using correlated points

Model D now integrates the prior calibration and the in-situ measurements in a Bayesian
self-calibration. The model now is

E

([
y
ca

]
| D
)

=

[
B C

0 I

]
looooomooooon

X

[
y
c

]
(9.53)

We now have to take into account that the observations y and the prior values ca are
correlated and use the joint covariance matrix from (9.22):

D

([
y
ca

]
| D
)

=

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
(9.54)

=

[
Σyy,p 0

0 0

]
+

[
Ca
I

]
Σcaca [CT

a , I ] . (9.55)

This model appears to enables the invocation of to Rao's Lemma if C = Ca, since the
second column of X is common to the functional and the stochastical model.

The model then leads to the same estimated parameters as when using the covariance
matrix

D

([
y
ca

])
=

[
Σyy,p 0

0 0

]
, (9.56)

However, this implies, that the parameters ca from the prior calibration have variance
zero, thus are taken as �xed values, just correcting the observations y−Cca in a non-self-
calibrating model

y − Cca = By with D(y) = Σ0 . (9.57)

Again, using the actual (fully populated) covariance matrix of the joint observation vector
into consideration, we obtain the covariance matrix of the estimates by variance propaga-
tion from[ pypc

]
=

[
(BTW 0B)−1BTW 0 0

0 IC

] [
y − Cca
ca

]
(9.58)

=

[
(BTW 0B)−1BTW 0 −(BTW 0B)−1BTW 0C

0 IC

] [
y
ca

]
. (9.59)

Using
N11 = BTW 0B and N12 = BTW 0C (9.60)

neglecting the index zero, this reads as[ pypc
]

=

[
N−1

11 B
TW 0 −N−1

11 N12

0 IC

] [
y
ca

]
(9.61)

and we obtain

D(pθ | D) =

[
N−1

11 B
TW 0 −N−1

11 N12

0 IC

] [
Σ0 0

0 0

] [
W 0BN

−1
11 0

−N21N
−1
11 IC

]
(9.62)

+

[
N−1

11 B
TW 0 −N−1

11 N12

0 IC

] [
C

I

]
Σcaca [CT , I ]

[
W 0BN

−1
11 0

−N21N
−1
11 IC

]
=

[
(BTW 0B)−1 0

0 0

]
+

[
0

IC

]
Σcaca [0 , IC ] (9.63)

=

[
(BTW 0B)−1 0

0 Σcaca

]
. (9.64)

This is a stunning result: The fusion of the prior information (ca,Σcaca) from the cali-
bration does neither improve the calibration parameters, the correlations assumed for the
joint observation vector (y, ce) (1) have no e�ect onto the calibration parameters, (2) are
not needed to determine the object parameters y, and (3) decorrelate the estimation of
the parameter for object and calibration.
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9.5 Synopsis

The following Table 9.2 collects the results, especially the covariance matrices

D(pθ | k) , k = A,B,C,D . (9.65)

for the four cases.

D(y) = Σ0 D(y) = Σ

SC pθ | A ≡ pθ | C
D(pθ | A) = D(pθ | C) =[

BTW 0B BTW 0C

CTW 0B CTW 0C

]−1

D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ]

(9.29) (9.35)
BSC D(pθ | B) = D(pθ | D) =[

BTW 0B BTW 0C

CTW 0B CTW 0C +W caca

]−1

D:
[

(BTW 0B)−1 0

0 Σcaca

]
(9.51) (9.64)

Table 9.2: The covariance matrices of the estimated parameters when using the four models
for self-calibration, SC: self-calibration without prior, BSC: Bayesian self-calibration

First, the estimated parameters for model A and C are the same, see (9.45):

pθ | C = pθ | A . (9.66)

Second, we compare the accuracy achievable in the di�erent models:

1. the in�uence of changing the covariance matrix onto the accuracy can be determined
for models A and C. Since the uncertainty of the observations in model A are assumed
to be not larger than that in model C, hence because Σ−Σ0 ≥ 0 the uncertainty of
the parameters in model C generally is larger than that of models A:

D(pθ | C) ≥ D(pθ | A) . (9.67)

However, the accuracy of the object parameters for models A and C is the same:

D(py | C) = D(py | A) . (9.68)

2. the in�uence of the fusion of prior and in-situ self-calibration can be determined for
models A and B. Since the model B includes additional, independent information
compared to model A, the uncertainty generally increased by the fusion process:

D(pθ | A) ≥ D(pθ | B) . (9.69)

Observe, this holds for both, the parameters y of the object as well as the calibration
parameters c, which easily can be seen using the Schur complements of the two
diagonal block matrices of the covariance matrices.

3. the accuracy of the estimated parameters in model D cannot be compared to the
others in general, since it is not a generalization of one of them. However, the
accuracy of the estimated object parameters can be compared. We especially have

D(py | D) ≤ D(py | B) ≤ D(py | A) = D(py | C) , (9.70)

again using the Schur complements of the corresponding covariance matrices.
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9.6 Concluding remarks

Generally, these result only are valid, if Rao's lemma can be applied, i.e., if the calibration
parameters c determined in the self-calibration are the same which cause the correlations
between the points, formally if the coe�cient matrix C in the functional model is the same
as the one Ca used in the stochastical model, hence if Ca = C . This may, be enforced by
assuming the calibration parameters not corrected in the self-calibration have zero e�ect
onto the observed points, e.g., of one assumes the these parameters, which are determined
in the prior calibration, have small enough variance, to assume it to be zero.

9.7 Appendix: Covariance matrix for given design ma-

trix, observations, estimate and covariance matrix

of parameters

On can show, that there is a set of covariance matrices Σyy if the following is given:

1. the linear model E(y) = Xθ,

2. the value of the estimate and its covariance matrix {(pθ,Σpθpθ) = (θ,V )} of the pa-
rameters, and

3. a vector y of observations,

such that the estimated parameters and their covariance matrix follow from a weighted
least squares estimation.

9.7.1 Example: The mean of two values yi, i = 1, 2

Given are two observations y = [yi] and an estimate θ = pθ for the mean with variance
v = σ2

pθ . The covariance matrix of the observations is to be chosen adequately.

9.7.1.1 A special solution

We have the following model

E(y) = Xθ with X =

[
1
1

]
= 12 (9.71)

and need to choose, say in the form, containing the correlation coe�cient ρ ∈ [−1,+1]

D(y) = σ2

[
1 ρk
ρk k2

]
with σy1 = σ and σy2 = kσ , (9.72)

such that the two constraints

θ = pθ = (XTΣ−1
yy X )−1 XTΣ−1

yy y , (9.73)

v = σ2
pθ = (XTΣ−1

yy X )−1 . (9.74)

This are two constraints for the three not yet speci�ed parameters σ, k, and ρ.
Explicitely, we obtain

W yy =
1

k2σ2(1− ρ2)

[
k2 −ρk
−ρk 1

]
(9.75)

and

pθ =
l2 + k2 l1 − k l1 ρ− k l2ρ

k2 − 2ρk + 1
=
k(k − ρ)l1 − (kρ− 1)l2

k2 − 2ρk + 1
(9.76)

pσ2
pθ =

k2(1− ρ2)

k2 − 2ρk + 1
σ2 (9.77)
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From the two constraints pθ = θ and pσ2
pθ = v (9.78)

we obtain the two parameters σ2 and ρ as a function of k and the given observations:

σ2 =
v (l1 − l2) (l1 + l2 − 2x)

k2 l1
2 − 2 k2 l1 x+ k2 x2 − l22 + 2 l2 x− x2

(9.79)

=
v (l1 − l2) (l1 + l2 − 2x)

((l2 − x) + kl1 − kx)(−(l2 − x) + kl1 − kx)
(9.80)

ρ =
l2 − x+ k2 l1 − k2 x

k (l1 + l2 − 2x)
(9.81)

=
(l2 − k2l1) + (1− k2)x

k (l1 + l2 − 2x)
(9.82)

For the special case
l1 = 1 , l2 = 0 , x = −1 (9.83)

we obtain

σ2 =
3

4k2 − 1
v and ρ =

2k2 + 1

3k
for k ∈ (0.5, 1) (9.84)

9.7.1.2 A generalizable solution

We use the following Fig. 9.3, assuming x = X = 12, and we observe the following:

Figure 9.3: The generalized mean

1. The observed point y is slantly projected to xpθ|Σ on the line xθ.

2. The length of radius of the standard ellipse parallel to the line leads to the standard
interval of the estimated point xpθ, in the �gure half of length of the yellow tangent
segment.

3. The length of the conjugate diameter is irrelevant for both, the position and the
standard deviation of the estimate.

Hence we can specify the set of covariance matrices by mapping the reference covariance
matrix Σ0 = I 2 to Σ by applying the mapping the two unit vectors ei, i = 1, 2 to the tow
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conjugate diameters di, i = 1, 2 of the standard ellipse of Σ. The two conjugate diameters
are

d1 =
x

|x|
σ and d2(f) =

xθ − y
|xθ − y|

f for some arbitrary standard deviationf > 0 .

(9.85)
Hence we obtain the set of covariance matrices, parametrized by f from

Σ(f) = [d1 d2(f)]

[
dT

1

dT
2 (f)

]
= d1d

T
1 + d2(f)dT

2 (f) (9.86)

=
xxT

xTx
σ2 +

(xθ − y)(xθ − y)T

(xθ − y)T(xθ − y)
f2 (9.87)

=
xxT

xTx
σ2 +

rrT

rTr
f2 with r = xθ − y (9.88)
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10 The Mean of Correlated Observations

For uncorrelated observations the accuracy of the mean increases with the number of
observations. In case they are correlated, there is an upper limit for the accuracy. The note
analyses the situation for constant correlation and for exponentially decaying correlation,
autoregressive noise.

10.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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10.3.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.3.3 Alternative derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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10.3.5 Using a more general covariance matrix . . . . . . . . . . . . . . . . 180

10.4 Random autoregressive noise . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.4.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.5 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.1 Preface

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the e�ect of correlations onto the accuracy of the estimated
mean. The Note 11 generalizes the results.

10.2 Goal

We derive the precision of the correlated mean, by generatively model the observed values
as a mean value which additively is distorted by a random e�ect with zero mean. We
discuss two cases:

1. The noise in the measurements y
i
consists of a uncorrelated part di and a correlated

part b, where the correlated part b is describable as a noisy bias. Namely, we have:

y
i

= µ+ b+ di , i = 1, ..., N with di ∼M (0, σ2
d) and b ∼M (0, σ2

b ) (10.1)

We obtain the following result:

(a) The estimated mean is independent of the bias

pµ =
1

N

¸
n

yn . (10.2)

(b) The variance of the estimated mean cannot become smaller than the variance
of the bias

σ2
pµ =

σ2
d

N
+ σ2

b . (10.3)
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2. The noise is an autoregressive process of �rst order AR(1), namely

y
i

= µ+ bi , n = 1, ..., N (10.4)

and the AR(1)-process with parameter a

bi = abi−1 + ei with n > 1 (10.5)

starting with

ei ∼M (0, σ2
e) and e1 = M

(
0,

σ2
e

1− a2

)
(10.6)

The variance of the estimated mean is

σ2
pµ =

1 + a

1 + (1− 2/N)a

σ2
e

N
with |a| < 1 . (10.7)

10.3 Random constant bias

10.3.1 The model

We can write the generative model as

y = 1µ+ 1b+ n (10.8)

leading to the covariance matrix

Σyy = σ2
dIN + 11Tσ2

b . (10.9)

Thus, the observed values have the variance and covariance

σ2
yi = σ2

d + σ2
b and σyiyj = σ2

b for i /= j (10.10)

hence have correlation coe�cient

ρij =
σ2
b

δijσ2
d + σ2

b

> 0 for i /= j . (10.11)

Therefore, with the common correlation coe�cient

ρ =
σ2
b

σ2
d + σ2

b

for i /= j , (10.12)

the covariance matrix explicitly reads

Σyy = (σ2
d + σ2

b )



1 . . . ρ . . . ρ
...

. . .
...

. . .
...

ρ . . . 1 . . . ρ
...

. . .
...

. . .
...

ρ . . . ρ . . . 1

 . (10.13)

10.3.2 The solution

The Gauss-Markov model reads

y + v = 1µ with Σll = σ2
dIN + σ2

b11T (10.14)

The weight matrix of the observations has the structure

W ll = aIN + b11T . (10.15)
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Therefore, we can determine a and b from

(σ2
dI + σ2

b11T)(aI + b11T) = aσ2
dloomoon

=1

I + (aσ2
b + bσ2

d + bNσ2
b )loooooooooooomoooooooooooon

!=0

11T . (10.16)

We obtain

a =
1

σ2
d

and b = − aσ2
b

σ2
d +Nσ2

b

= − σ2
b

σ2
d(σ2

d +Nσ2
b )

(10.17)

Therefore the weight matrix is

W yy =
1

σ2
d

IN −
σ2
b

σ2
d(σ2

d +Nσ2
b )

11T =
1

σ2
d

(
I − σ2

b

σ2
d +Nσ2

b

11T

)
(10.18)

The normal equation system is
Npθ = n (10.19)

with

N = 1TW ll1 =
N

σ2
d

− N2σ2
b

σ2
d(σ2

d +Nσ2)
=
N

σ2
d

(
1− Nσ2

b

σ2
d +Nσ2

b

)
(10.20)

and

n = 1TW ll y =
1

σ2
d

(
1T − Nσ2

b

σ2
d +Nσ2

b

1T

)
y =

1

σ2
d

(
1− Nσ2

b

σ2
d +Nσ2

)¸
n

yn . (10.21)

The solution for the mean is pµ =
1

N

¸
n

yn . (10.22)

Hence we have the result: The correlated arithmetic mean is independent on the

correlation coe�cient.

The variance of the estimated mean is

σ2
pµ =

σ2
d

N

σ2
d +Nσ2

b

σ2
d

=
σ2
d

N
+ σ2

b (10.23)

Hence we have the result: The variance of the estimated mean of correlated obser-
vations diminishes with increasing N but cannot be smaller than the variance

of the bias. Hence, in case the variance of the bias is much larger than the variance of
the noise, the variance of the mean is close to the variance of the bias.

10.3.3 Alternative derivation

We assume the model[
y
b0

]
+

[
v
vb0

]
=

[
1 1
0 1

] [
µ
b

]
with D

([
y
b0

])
=

[
σ2
dI 0

0T σ2
b

]
(10.24)

with b0 = 0, since we assumed b ∼M (0, σ2
b ). The normal equation matrix

N =

[
1T 0
1T 1

] [
wdI 0
0T wb

] [
1 1
0 1

]
=

[
wdN wdN
wdN wdN + wb

]
(10.25)

with its inverse

N−1 =
1

Nwdwb

[
wdN + wb −wdN
−wdN wdN

]
(10.26)

Hence the variances of the estimate pµ is

σ2
pµ =

σ2
d

N
+ σ2 , (10.27)
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as above.
We also can directly determine the variance of pµ using the Schur-complement of N in

(10.25):

σ2
pµ =

(
wdN −

w2
dN

2

wdN + wb

)−1

(10.28)

=

(
w2
dN

2 + wdwbN − w2
dN

2

wdN + wb

)−1

=
σ2
d

N
+ σ2

b . (10.29)

10.3.4 Covariance of arithmetic mean with correlated observa-
tions

The simple arithmetic mean assumes Σ0 := σ2
dI . Then the estimate is

pµ =
1T

N
y , (10.30)

with covariance matrix, assuming Σ0 holds

σ2
pµ0

=
σ2
d

N
. (10.31)

If this arithmetic mean is taken, but the actual covariance matrix is σ2
dIN + σ2

b11T

variance propagation of (10.30) yields

σ2
pµ =

1T

N
(σ2
dIN + σ2

b11T)
1

N
(10.32)

This can be simpli�ed to

σ2
pµ =

σ2
d

N
+ σ2

b , (10.33)

which coinsides with (10.23).

10.3.5 Using a more general covariance matrix

The observations up to now have been assumed to be positively correlated, see (10.12)

ρ =
σ2
b

σ2
d + σ2

b

or
σ2
b

σ2
d

=
ρ

1− ρ
. (10.34)

However, they also may have negative correlation. Of course, this then cannot be explained
by a stochastic bias term anymore.

Therefore we assume

Σyy = σ2
l



1 . . . ρ . . . ρ
...

. . .
...

. . .
...

ρ . . . 1 . . . ρ
...

. . .
...

. . .
...

ρ . . . ρ . . . 1

 = σ2
l (1− ρ)IN + σ2

l ρ11T . (10.35)

If ρ < 0 this is implicitly assuming σ2
b < 0. Therefore, we use the derivation above, which

is valid also for σ2
b < 0. We now realize, that the correlation cannot have an arbitrary

negative value ≥ −1, since the variance (10.23) of the mean needs to be positive. This
leads to the following constraint, �rst formally

σ2
d

N
≥ σ2

b or
1

N
≥ σ2

b

σ2
d

(10.36)
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then using (10.34)
1

N
≥ ρ

1− ρ
or

ρ

ρ− 1
≥ −1

N
, (10.37)

which �nally leads to a constraint on the correlation coe�cient

ρ ≥ −1

N − 1
. (10.38)

For example: for two observations N = 2 the correlation coe�cient may be arbitrary in
the range [−1,+1], but for three observations N = 3 the correlation coe�cient needs to
be larger than −50%.

10.4 Random autoregressive noise

10.4.1 The model

The N observations result from
y = 1µ+ b (10.39)

with the following covariance matrices

D(b) = Σbb = [Σbibj ] =
σ2
e

1− a2

[
a|i−j|

]
with |a| < 1 . (10.40)

Hence the covariance matrix of the noise is

Σyy = Σbb (10.41)

We have the inverse of the covariance matrix of the bias, which is a tridiagonal matrix:

W yy = Σ−1
bb =

1

σ2
e

Tri[1, 1 + a2, ..., 1 + a2, 1][−a, ...,−a] (10.42)

10.4.2 The solution

The Gauss�Markov model reads as

py + v = 1µ with Σyy = Σbb = W−1
bb . (10.43)

The normal equation system now is
Npθ = n (10.44)

with (canceling the common factor σ2
e/(1− a))

N = 1TW yy1
σ2
e

1− a
=

2 + (N − 2)(1 + a2)− 2(N − 1)a

1− a
= (N − (N − 2)a) (10.45)

and

n = 1TW yyx
σ2
e

1− a
=

Ņ

n=1

xi − a
N−1̧

i=2

xi . (10.46)

The variance of the estimated mean is

σ2
pµ =

1

(1− a)(N − (N − 2)a)
σ2
e (10.47)

which can be rewritten as

σ2
pµ =

1

(1− a)(1− (1− 2/N)a)

σ2
e

N
. (10.48)

We have the following limits.
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• For large N we achieve

lim
N→∞

σ2
pµ =

1

1− a2

σ2
e

N
, (10.49)

thus the variance is larger by a factor 1/(1−a2) compared to the uncorrelated mean.

• For a = 0 we obtain the result of the uncorrelated mean.

• For a = 1, the noise process is semi-stationary, and we obtain

lim
a→1

σ2
pµ =∞ (10.50)

independent on the number of observations.

10.5 The general case

The situation of the mean with constant correlation is a special case discussed in Rao
(1967) in Lemma 5a. The estimated parameters of the model (y = Xθ,Σ) are the same
if instead of Σ the covariance matrix Σ + XΓXT is used. In our case we used Γ = σ2.
The e�ciency of the estimate, thought being the same, is reduced due to the correlations
induced by b.

Generalizing (10.24), we use the model, assuming Γ = Σbb,[
y
b0

]
+

[
v
vb

]
=

[
X X

0T I

] [
µ
b

]
with D

([
y
b0

])
=

[
Σyy 0
0T Σbb

]
(10.51)

again assuming b0 = 0. The normal equation matrix is

N =

[
M M

M M +W bb

]
(10.52)

=

[
XT 0

XT I

] [
W yy 0
0T W bb

] [
X X

0 I

]
(10.53)

=

[
XTW yyX XTW yyX

XTW yyX XTW yyX +W bb

]
(10.54)

with its inverse

Σpppp = N−1 =

[
Σpµpµ Σpµpb
Σpbpµ Σpbpb

]
. (10.55)

Now we use the inverse of Schur-complement,

Σpµpµ = (M −M(M +W bb)
−1M)−1 , (10.56)

and the Woodbury identity,

(A+ CBCT)−1 = A−1 − A−1C (B−1 + CTA−1C )−1CTA−1 , (10.57)

with A = M−1, B = Σbb and C = I , and obtain

Σpµpµ = M−1 + Σbb (10.58)

hence,
Σpµpµ = (XTΣ−1

yy X )−1 + Σbb . (10.59)

The prior, in�uencing all parameters the same way, leads to an increase of the covariance
matrix.

Again, the result, using Γ = Σbb, also holds if Γ < 0, but only if

(XTΣ−1
yy X )−1 ≥ Σbb (10.60)
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11 Accuracy of the Mean when using a

Wrong Covariance Matrix

Suboptimal, i.e., approximate solutions often are used or needed when estimating parame-
ters. One of such simpli�cations refers to the stochastical model, especially the covariance
matrix of the observations, which often is assumed to be a multiple of a unit matrix,
implicitly assuming all observations have the same weight and are mutually uncorrelated.
This note provides the general relation between the accuracy of the estimated parame-
ters when using an approximate covariance matrix and exempli�es this using the mean of
repeated observations.

[cdy]
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11.1 Preface

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the loss in accuracy of the estimated mean when using a wrong
covariance matrix. The note generalizes the results from Note ??.

11.2 Summary

The note shows the e�ect of using a wrong covariance matrix when estimating parameters.
Especially we obtain the following results for estimating the mean from N values ln:

1. If the mean is estimated assuming, that all values have the same weight w = 1/σ2,
thus pθ =

°
n ln/N , but the values really have individual weights

wn =
1

σ̃2
n

(11.1)

then the variance of the approximately determined mean is larger by a factor

λ = σ̃2
n · 1/σ̃2

n =
µ

(a)
σ̃2

µ
(h)
σ̃2

(11.2)

thus the ratio of the arithmetic mean and the harmonic mean of the variances. The
factor λ only is 1, in case the variances are identical for all values ln.
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2. In the special case, that the weights are assumed to be randomly taken from a
Gamma distribution and their relative variation is

c =
σw
µw

< 1 , (11.3)

then the factor is given by

λ =
1

1− c2
. (11.4)

If c ≥ 1 the factor is not limited.

11.3 Problem

If the estimation is performed in a Gauss-Markov model E(y) = Xθ with Σyy = Σ but

the true covariance matrix of the observations is �Σyy = rΣ, then the covariance matrix of
the estimated parameters is

Σpθpθ = (XTΣ−1X )−1XTΣ−1 rΣ Σ−1X (XTΣ−1X )−1 , (11.5)

which follows from pθ = (XTΣ−1X )−1XTΣ−1(y−x). Observe, only if Σ = rΣ do we obtain
the classical result

Σ̃pθpθ = (XTrΣ−1X )−1 . (11.6)

11.4 The accuracy of the approximate solution

The relation between both covariance matrices can be derived from the eigenvalues of the
quotient

λ(ΣpθpθΣ̃−1
pθpθ ) = λ

(
(XTΣ−1X )−1XTΣ−1 rΣ Σ−1X (XTΣ−1X )−1 XTrΣ−1X

)
. (11.7)

Equations (11.5) and (11.7) can be used to investigate the e�ect of choosing a simpli�ed
stochastical model, e.g., when using Σyy = σ2IN instead of rΣ.

For Σ = σ2I we would obtain

λ(ΣpθpθΣ̃−1
pθpθ ) = λ

(
(XTX )−1XT rΣ X (XTX )−1 XTrΣ−1X

)
, (11.8)

obviously, independent on the scaling of the covariance matrices.
With the hat matrix

H = X (XTX )−1 XT (11.9)

this is equivalent to analysing

λ(ΣpθpθΣ̃−1
pθpθ ) = λ(HrΣHrΣ−1) ≥ 1 , (11.10)

which is a unitless quantity. Due to the Gauss�Markov theorem his quantity always is
not smaller than 1, i.e., � as to be expected � the approximate solution generally is less
accurate than the optimal.

11.5 The weighted arithmetic mean

We want to investigate the e�ect of using a wrong covariance matrix in case of diagonal
covariance matrices, rΣ = Diag([�σ2

i ]) and Σ = I , (11.11)
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11.5.1 The e�ect of using equal weights

We start with a simple example, the weighted arithmetic mean of N observations. The
design matrix for the arithmetic mean is

X = 1 . (11.12)

Then with XTX = 1T1 = N Eq. (11.10) reduces to

λ(ΣpθpθΣ̃−1
pθpθ ) =

σ2
pθ
σ̃2
pθ

(11.13)

=
1

N2
λ
(
11TrΣ11TrΣ−1

)
(11.14)

=
1

N2
λ
(
1TrΣ1 · 1TrΣ−11

)
(11.15)

=
1

N2
trrΣ · trrΣ−1 (11.16)

=

°N
n=1 σ̃

2
n

N
·
°N
n=1 wn
N

(11.17)

= σ̃2
n · wn (11.18)

=
µ

(a)
σ̃2

µ
(h)
σ̃2

≥ 1 . (11.19)

or the ratio of the arithmetic mean µ(a)
σ̃2 = σ̃2

n and the harmonic mean µ(h)
σ̃2 =

(
1/σ̃2

n

)−1

of the variances or of the weights. This ratio always is larger than 1 except all variances
are identical.

11.5.2 Modeling the weights using the Gamma-distribution

The Gamma-distribution is a useful model for the weights, since it is the conjugate prior
for the precision w = 1/σ2 of the Gaussian distribution with known mean.

Let the weights be Gamma distributed

wn ∼ Gamma(α, β) = Gamma(k, θ) (11.20)

where the two parametrizations are related by

k = α and θ =
1

β
. (11.21)

The mean and the variance are given by

E(wn) =
α

β
= kθ and V(wn) =

α

β2
= kθ2 . (11.22)

So, given a mean weight µw and a variance of the weights σ2
w we may choose the parameters

α =
µ2
w

σ2
w

and β =
σ2
w

µw
. (11.23)

The inverse weights, thus the variances follow an inverse Gamma distribution

σ2
n ∼ invGamma(a, b) (11.24)

with the same parameters. Their mean is

E(σ2
n) =

β

α− 1
for α > 1 and V(σ2

n) =
β2

(α− 1)2(α− 2)
. (11.25)
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For values α ≤ 1 the inverse Gamma distribution has no �nite mean, similar to the variance
of the Cauchy distribution. This is plausible, since then the likelihood of small weights
thus large variances is very high.

Hence the product of the means of the variances and the weights is given by

λ =
α

β
· β

α− 1
=

α

α− 1
≥ 1 (11.26)

So, in case the weights on an average are µw and have a standard deviation of σw =
c · µw, thus

c =
σw
µw

, (11.27)

we obtain

λ =
σ2
pθ
σ̃2
pθ

=

µ2
w

σ2
w

µ2
w

σ2
w
− 1

=
1

1− c2
. (11.28)

For values c ≥ 1 the ratio of the variances is unlimited.

11.6 An example

We take as an example the mean of two points in the plane, and compare the arithmetic
mean with the statistically optimal mean.

The Fig. 11.1 shows the arithmetic mean and the weighted mean (centroids) of two

Figure 11.1: Simple mean xaC and weighted mean xwC of two points x1 and x2 with strongly
anisotropic uncertainty (red standard ellipses). The centroid determined as weighted mean
clearly lies outside the line joining the two points.

points. They are assumed to be mutually independent. Their uncertainty is di�erent and
anisotropic (red standard ellipses). The centroids result from the two models[

x1

x1

]
∼ N

([
I 2
I 2

]
xaC , σ

2I 4

)
(11.29)

and [
x1

x1

]
∼ N

([
I 2
I 2

]
xwC ,Diag({Σ11,Σ22})

)
. (11.30)

The variance σ2 in model (11.29) was assumed to be the mean of the two variances in
model (11.30), s. the two blue circles.

Explicitly, the centroids are

pxaC =
1

2
(x1 + x2) und pxwC = (Σ−1

11 + Σ−1
22 )−1(Σ−1

11 x1 + Σ−1
22 x2) . (11.31)

The simple arithmetic mean lies in the middle of the two points x1 und x2 on the con-
necting line. The weighted mean, however, lies signi�cantly o� the connecting line. The
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uncertainty of the two given points allows, that the centroid may be more easily shifted
in the direction of the major axes of the standard ellipses.

The standard ellipses around represent centroids are

• the covariance matrix (blue circle) of the arithmetic mean, assuming the same
isotropic accuracy (blue dashed circles) of the two points. It clearly overestimates
its accuracy, compared to

• the covariance matrix (black ellipse) of the arithmetic mean, assuming the anisotropic
accuracy (red circles around the points), and

• the covariance matrix (red ellipse) of the weighted mean, which is smaller than the
accuracy of the arithmetic mean, when assuming the known uncertainty of the point
during estimation.
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12 Bias of Uncertain Bilinear Forms of

Stochastic Quantities

Bilinear forms of stochastic quantities lead to a bias caused by the nonlinear relation. The
bias is analysed assuming a Gaussian distribution for the given variables.

12.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
12.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
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12.10.2The variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

12.1 Preface

This note (2021) addresses the concatenation and testing of uncertain geometric entities.
They lead to quadratic forms, which, in case of Gaussian distributions lead to biases caused
by the nonlinear relations. The notes collects the basic equations for these biases using
moments up to 4-th order.

12.2 Motivation

Concatenation and testing of uncertain geometric entities leads to quadratic forms, which,
in case of Gaussian distributions lead to biases caused by the nonlinear relation. We derive
expressions for the mean and the variance of nonlinear functions of stochastical variables,
which depend on higher order derivatives and moments.

On notation. We use the following abbreviations for a function y = f(x)

µf = f(µ), µg = g(µ), fx = [fxi ] =

[
∂f

∂xi

]∣∣∣∣
x=µ

, gx = [gxi ] =

[
∂g

∂xi

]∣∣∣∣
x=µ

, (12.1)

and

Fxx = [fxixj ] =

[
∂2f

∂xi∂xj

]∣∣∣∣
x=µ

, Gxx = [gxixj ] =

[
∂2g

∂xi∂xj

]∣∣∣∣
x=µ

. (12.2)

Furthermore, for a vector of normally distributed random variables with zero mean

x ∼ N (0,Σ) with Σ = [σij ] (12.3)
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we use the expectations of even order1

E(x2
i ) = σii (12.4)

E(xixj) = σij (12.5)

E(x4
i ) = 3σ2

ii (12.6)

E(x3
ixj) = 3σiiσij (12.7)

E(x2
ix

2
j ) = σiiσjj + 2σij (12.8)

E(x2
ixjxk) = σiiσjk + 2σijσik (12.9)

E(xixjxkxl) = σijσkl + σikσjl + σilσjk (12.10)

The expectations of odd order are zero.

12.3 A scalar function of a stochastical vector

For a scalar function
y = f(x) with x ∼M (µx,Σxx) (12.11)

of a vector valued stochastical variable x the mean is given by, see Förstner and Wrobel
(2016, Eq. (2.151))

µy = f(µx) + 1
2 tr(HxxΣxx) +O(fn,mn) with n > 2 (12.12)

with the Hessian Hxx = ∂2f(x)/(∂x)2 up to order n = 2, the remaining parts depending
on the higher order derivatives and the higher moments of the distribution.

Proof: We have the Taylor expansion at the mean using

e = x− µx (12.13)

up to fourth order

y = f(µx)+
¸
i

fxiei+
1

2

¸
ij

fxixj eiej+
1

6

¸
ijk

fxixjxkeiejek+
1

24

¸
ijkl

fxixjxkxleiejekel+O(fn,mn) with n > 4

(12.14)
which depends on the derivatives of f up to order 4. Taking expectation, we obtain the mean
value

µy = µf + fT
x(E(e) +

1

2
E
[
eT
Fxxe

]
(12.15)

= µf + 0 +
1

2
E(tr(Fxxee

T)) (12.16)

= µf +
1

2
tr(FxxΣxx) (12.17)

Hence, we have the mean up to �rst and second order approximation

µ(1)
y = f(µx) , (12.18)

µ(2)
y = µ(1)

y +
1

2
tr(FxxΣxx) , (12.19)

�
Similarly we �nd the varaince of the variable y

σ2
y = fT

xΣxxfx + 1
4 tr

2(FxxΣxx) + 2tr(FxxΣxxFxxΣxx) +O(fn,mn) with n > 4

(12.20)
up to order 4.

1see https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Proof: The covariance matrix of a random vector generally is

V(x) = E((x−E(x))(x−E(x))T) = E(xxT)−E(x)E(xT) (12.21)

We �rst determine

[E(y)]2 = (µf +
1

2
tr(FxxΣxx))2 (12.22)

= µ2
f + µf tr(FxxΣxx) +

1

4
tr2(FxxΣxx) . (12.23)

Then we take the square of y

y2 = (µf + fT
x(x− µx) +

1

2
(x− µx)T

Fxx(x− µx)) (12.24)

= µ2
f + 2µff

T
x(x− µx) +

1

2
µf (x− µx)T

Fxx(x− µx)) (12.25)

+fT
x(x− µx)(x− µx)Tfx +

1

2
fT
x(x− µx)(x− µx)T

Fxx(x− µx)) (12.26)

+
1

4
(x− µx)T

Fxx(x− µx))(x− µx)T
Fxx(x− µx)) . (12.27)

We now need moments of the deviations ex = x − µx third and fourth order, which depend on
the distribution of x. We assume the distribution has the same moments up to fourth order as
the normal distribution, sometimes called quasi-normally distributed. Then all odd moments are
zero, and we have the relations for the scalar functions

E(eT
xAex) = tr(AΣxx) and E(eT

Aexe
T
xBex) = tr(AΣxx)tr(BΣxx) + 2tr(AΣxxBΣxx) . (12.28)

Based on this assumption and the given relations we obtain the expectation of y2

E(y2) = µ2
f + 0 +

1

2
µf tr(FxxΣxx) (12.29)

+fT
xΣT

xxfx + 0 (12.30)

+
1

4
tr(FxxΣxx)tr(FxxΣxx) + 2tr(FxxΣxxFxxΣxx) . (12.31)

Hence, we obtain for the variance of y the two approximations

[σ2
y](2) = fT

xΣxxfx . (12.32)

[σ2
y]

(4)
= [σ2

y](2) +
1

4
tr2(FxxΣxx) + 2tr(FxxΣxxFxxΣxx) . (12.33)

�

12.4 Problem

Constructing geometric entities using homogenous coordinates leads to bilinear forms.
Examples are the generation of lines from two points in 2D and 3D:

l = x× y L =

[
YhX0 −XhY 0

X0 × Y 0

]
Generally, we have the form

c = A(a)b = B(b)a

where A(a) and B(b) are homogeneous matrices with entries which are linear in the vectors
a and b.

In case the entities are treated as stochastical variables, thus as vectors with a co-
variance matrix, error propagation appears to be simple, as the two matrices are the
Jacobians:

∂c

∂b
= A(a)

∂c

∂a
= B(b)
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yielding

Σcc = (B(b),A(a))

[
Σaa Σab

Σba Σbb

] [
BT(b)

AT(a)

]
or in case of independence

Σcc = B(b)ΣaaB
T(b) + A(a)ΣbbA

T(a)

However, though the forms are linear in each variable, the form is nonlinear, as products
of variables appear. Thus, error propagation is not rigorous, in the sense, that the �rst
two moments are not su�cient to describe the distribution of the product.

The goal of this note is to investigate the bias which has to be expected. We especially
investigate the bias of the most simple bilinear relations and

z = xy and z = f(x)g(x) .

12.5 Rigorous Mean and Variance for z = xy

We start from the expansion, actually the Taylor series at the mean values, which in this
case is �nite:

z = µz + ez = (µx + ex)(µy + ey) = µxµy + µyex + µxey + exey (12.34)

We assume to have some arbitrary distribution M[
x
y

]
∼M

([
µx
µz

]
,

[
σ2
x σxy

σyx σ2
y

])
= M (µ,Σ) (12.35)

with mean µ and covariance matrix Σ.
Taking the expectation, we obtain the rigorous expression:

E(z) = E(µxµy + µyex + µxey + exey) = µxµy + σxy (12.36)

The variance can be computed from

V(z) = E([z − E(z)]2) = E(z2)− [E(z)]2 (12.37)

We immediately get
[E(z)]2 = µ2

xµ
2
y + 2µxµyσxy + σ2

xy (12.38)

We now have

z2 = (µxµy + µyex + µxey + exey)2 (12.39)

= µ2
xµ

2
y + µ2

ye
2
x + µ2

xe
2
y + e2

xe
2
y + (12.40)

+ 2(µxµ
2
yex + µ2

xµyey + µxµyexey + (12.41)

+ µyexµxey + µye
2
xey + µxe

2
yex) (12.42)

The forth moments depend on the type of distribution. For normally distributed variables
we have

E(e2
xe

2
y) =

» »
(x− µx)2(y − µy)2pxy(x, y)dx dy = σ2

xσ
2
y + 2σ2

xy

Therefore we obtain the expected value

E(z2) = µ2
xµ

2
y + µ2

yσ
2
x + µ2

xσ
2
y + σ2

xσ
2
y + 2σ2

xy + 4µxµyσxy (12.43)

This yields the variance of z

σ2
z = µ2

yσ
2
x + µ2

xσ
2
y + 2µxµyσxy + σ2

xσ
2
y + σ2

xy (12.44)
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12.6 Linear Approximation of Mean and Variance of z =
xy

The mean in a �rst order approximation is

µ(1)
z = µxµy (12.45)

With the Jacobian
J = (y, x)

Using classical error propagation, we obtain the variance

σ2(1)
z = JΣJT = µ2

xµ
2
y + µ2

yσ
2
x + 2µxµyσxy (12.46)

12.7 Bias of Linear Approximation of Mean and Vari-

ance

The bias in mean is
bµz = µ(1)

z − µz = −σxy (12.47)

It is zero if the two variables are uncorrelated.
The bias in variance is

bσ2
z

= σ2(1)
z − σ2

z = −σ2
xσ

2
y − σ2

xy = −σ2
xσ

2
y(1 + ρ2

xy) (12.48)

It is not zero for uncorrelated variables. Actually, the variance is underestimated if one
relies on classical error propagation, as σ2(1)

z < σ2
z for uncorrelated variables, see Haddon

and Forsyth (2001).
The relative bias of the variance, i. e. the bias related to the variance is

rσ2
z

=
bσ2
z

σ2
z

=
−σ2

xσ
2
y − σ2

xy

µ2
yσ

2
x + µ2

xσ
2
y + 2µxµyσxy + σ2

xσ
2
y + σ2

xy

(12.49)

In order to get an impression on the size we assume σx = σy = σ and σxy = 0 and obtain

rσ2
z

= − σ2

µ2
x + µ2

y + σ2
(12.50)

Thus only in case µ2
x + µ2

y < σ2 the relative bias in variance is larger than 50 % of the
variance. These cases have been discussed by Hannon/Forsyth.

12.8 Probability Density Function for Zero Mean Vari-

ables

In case of independent zero mean Gaussian variables

x ∼ N(0, σ2) y ∼ N(0, σ2)

we �nd the probability density function of z from

pz(z) =

» ∞
0

2

u
px(u)py

( z
u

)
du

yielding

pz(z) =

BesselK
(

0,
|z|
σ2

)
πσ2
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with the Bessel function BesselK(x) of the second kind. It de�nitely is not normally
distributed (cf. �g. 12.1), but has the variance

V(z) = 2

» ∞
z=0

z2pz(z)dz = σ4

in accordance with (12.44).

0

0.5

1

1.5

2

–3 –2 –1 1 2 3
x~

Figure 12.1: The Bessel function is the pdf of the product of two zero-mean Gaussian
variables. Shown is the Bessel function and the Gaussian with the same variance

12.9 Generalization to the Cross Product

We now generalize the result to general bilinear forms. We take as an example the previous
one z = xy and

c = a× b = S(a)b = −S(b)a

We assume the general bilinear form

y = f(x) = f(a, b) = B(b)a = A(a)b = U(x)x

with
U(x) =

1

2
[B(b),A(a)]

and the vector

x =

[
a
b

]
or in components

yi = fi(x) = fi(a, b) =
¸
j

Bij(bk)aj =
¸
k

Aik(aj)bk =
¸
l

Uil(xm)xl = uT
i (x)x

We have the Hessians (indexed i)

W i = (Wilm) =

(
∂y2

i

∂xl∂xm

)
=

(
∂Uil(xm)

∂xm

)
which only contains values -1, 0 or 1, as the Bij and the Aik and thus the Uil are linear
in the variables. Actuall we may partition W i into

W i =

[
0 W

(b)
i

W
(a)
i 0

]
=

1

2

 0
∂Bi(b)

∂b
∂Ai(a)

∂a
0


We therefore may write the components of the bilinear form as quadratic forms

yi = xTW ix
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We now easily can give the expected value (cf. Koch (1999, Sect. 27, (2.174)))

E(y
i
) = E(xTW ix) = µT

xW iµx + trW iΣ

which can be simpli�ed to

E(y
i
) = fi(µx) + trW iΣ = fi(µx) + tr(W (a)T

i +W
(b)
i )Σab

Example 1: The observational vector is[
x
y

]
The matrices (Bij) and (Aik) are

B = y A = x

The matrix U = (Uil) therefore is

U =
1

2
[y, x]

leading to the function

z =
1

2
[y, x]

[
x
y

]
In our case we e. g. obtain the single Hessian

W 1 = (W1lm) =
1

2

[
0 1
1 0

]
This we have the mean

E(zi) = (µxµb) + σab

as to be expected.
In case of uncorrelated vectors x and y we obtain

E(zi) = µxµy

�
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Example 2: The observational vector is[
x
y

]
The matrices (Bij) and (Aik) are

−S(y) S(x)

The matrix U = (Uil) therefore is

U =
1

2
[−S(y), S(x)] =

1

2

 0 y3 −y2 0 −x3 x2
−y3 0 y1 x3 0 −x1
y2 −y1 0 −x2 x1 0


leading to the function

l =
1

2
[−S(y), S(x)]

[
x
y

]
In our case we e. g. obtain the Hessian

W 1 = (W1lm) =
1

2

[
0 −Se1
Se1 0

]
=



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0


generally

W i = (Wilm) =
1

2

[
0 −Sei
Sei 0

]
Thus, we have the mean

E(li) = (µa × µb)i + trace(SeiΣab)

In case of uncorrelated vectors x and y we obtain

E(li) = (µx × µy)i + (−1)i+1σxi+1yi+2 + (−1)iσyi+1xi+2

where the indices have to be taken cyclically. In case of isotropic

errors, i. e. no correlation between the components of x and y the

bias is zero. �

The variance depends on the moments up to 4th order, which in case of Gaussian
variables only depend on the �rst two moments. We obtain the covariance of two di�erent
entries of y (cf. Koch (1999, Sect. 27, (2.175)))

Cov(y
i
y
j
) = Cov(xTW ix,x

TW jx) = 2trW iΣW jΣ + 4µT
xW iΣW jµx

which specialized to the variance

V(y
i
) = 2trW iΣW iΣ + 4µT

xW iΣW iµx
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Due to the bilinearity this expression can further be simpli�ed. We obtain

σ2
yi = 2tr

[
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

][
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

]

+ 4[µbW
(a)
i , µaW

(a)
i ]Σ

[
W

(b)
i µa

W
(a)
i µb

]

= 2tr

[
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

][
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

]

+ [BT
i (b), AT

i (a)]Σ

[
Bi(b)
Ai(a)

]
the second term obviously being the result of classical error propagation. The bias is

bσ2
yi

= tr

[
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

][
W

(b)
i Σba W

(b)
i Σbb

W
(a)
i Σaa W

(a)
i Σab

]

Example 1: Here we have

W =
1

2

[
0 1
1 0

]
Σ =

[
σ2
x σxy

σyx σ2
y

]
and

W
(a) = W

(b) =
1

2

Thus the bias of the varince σ2
z is

bσ2
z

= σ2
xσ

2
y + σ2

xy

�

Example 2: Here we have

W
(a) = −W (b) =

1

2
Sei

The bias of the variance σ2
z is more involving. In case of uncorrelated

a and b and

Σaa = Σbb = σ2

 1 0 0
0 1 0
0 0 0


we have the bias in the three variances

bσ2
y1

= bσ2
y2

= 0 bσ2
y3

= 4σ4

�

12.10 Generalization to the Product of two Functions

z = f(x)g(x)

We assume the stochastical N vector

x ∼ N (µ,Σ) , (12.51)

and two functions
f = f(x) and g = g(x) . (12.52)

We need to specify the distribution since we need fourth moments. We assume the distri-
bution has the same fourth moments as the normal distribution.
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The task is to determine the bias of the mean and the variance of

z = f(x)g(x) . (12.53)

We start from the Taylor expansion

z = µz + ez (12.54)

= f(µ+ e)g(µ+ e) (12.55)

=

(
µf + fT

xe+
1

2
eTFe

)(
µg + gT

xe+
1

2
eTGe

)
(12.56)

= µfµg (12.57)

+µfg
T
xe+ fT

xµge (12.58)

+
1

2
µfe

TGe+ fT
xeg

T
xe+

1

2
eTFeµg (12.59)

+
1

2
fT
xee

TGe+
1

2
eTFegT

xe (12.60)

+
1

4
eTFeeTGe . (12.61)

12.10.1 The mean

We obtain � omitting the argument µx

E(z) = µf µg (12.62)

+
1

2
µf tr(GΣ) + gT

xΣfx +
1

2
µg tr(FΣ) (12.63)

+
1

4
(tr(FΣ)tr(GΣ) + 2tr(FΣGΣ)) . (12.64)

Hence, we obtain the mean in three approximations

µ(0)
z = µf µg (12.65)

µ(2)
z = µ(0)

z +
1

2
µf tr(GΣ) + gT

xΣfx +
1

2
µg tr(FΣ) (12.66)

µ(4)
z = µ(2)

z + tr(FΣ)tr(GΣ) + 2tr(FΣGΣ) , (12.67)

where all scalars, vectors and matrices are to be evaluated at the mean value. For Σ = σ2I

we obtain

µ(0)
z = µf µg (12.68)

µ(2)
z = µ(0)

z +

(
1

2
f tr(G ) + gT

xfx +
1

2
g tr(F )

)
σ2 (12.69)

µ(4)
z = µ(2)

z + (tr(F )tr(G ) + 2tr(FG ))σ4 , (12.70)

Example 12.10.25: z = xy. If we specialize the function of a 2-vector

x =

[
x
y

]
∼M

([
µx
µy

]
,

[
σ2
x σxy

σxy σ2
y

])
(12.71)

to
f = x and g = y (12.72)

we obtain the derivatives

fx = e1 , gx = e2, and F = G = 0 . (12.73)

The mean values then are, using from (12.65), �.,

µ(0)
z = µx µy (12.74)

µ(2)
z = µ(0)

z + σxy (12.75)

µ(4)
z = µ(2)

z , (12.76)

consistent with (12.36). �
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12.10.2 The variance

We again use (12.37)

V(z) = E([z − E(z)]2) = E(z2)− [E(z)]2 (12.77)

We directly obtain from (12.62) up to fourth order terms in σ omitting odd terms which
are zero

[E(z)]2 = (µfµg (12.78)

+
1

2
µf tr(GΣ) + gT

xΣfx +
1

2
µg tr(FΣ) (12.79)

+
1

4
(tr(FΣ)tr(GΣ) + 2tr(FΣGΣ))

2 (12.80)

= µ2
fµ

2
g (12.81)

+
[
µ2
fµgtr(GΣ) + 2µfµgg

T
xΣfx + µfµ

2
g tr(FΣ)

]
(12.82)

+

[
1

2
µfµgtr(FΣ)tr(GΣ) + µfµgtr(FΣGΣ) (12.83)

+
1

4
µ2
f tr

2(GΣ) + µf tr(GΣ)gT
xΣfx +

1

4
µfµgtr(GΣ) tr(FΣ) (12.84)

+ (gT
xΣfx)2 + µgg

T
xΣfx tr(FΣ) +

1

4
µ2
gtr

2(FΣ)

]
(12.85)

First, we have up to fourth order terms, omitting the odd terms of e

z2 =
(
µfµg + µfg

T
xe+ µgf

T
xe (12.86)

+
1

2
µfe

TGe+ fT
xeg

T
xe+

1

2
eTFeµg (12.87)

+
1

2
fT
xee

TGe+
1

2
eTFegT

xe (12.88)

+
1

4
eTFeeTGe

)2

(12.89)

= µ2
fµ

2
g (12.90)

+
[
µ2
fµge

TGe+ 2µfµge
Tfxg

T
xe+ µfµ

2
ge

TFe (12.91)

+ µ2
fe

Tgxg
T
xe+ 2µfµge

Tgxf
T
xe+ µ2

ge
Tfxf

T
xe
]

(12.92)

+
[
µfe

Tgxf
T
xee

TGe+ µfe
Tgxg

T
xee

TFe (12.93)

+µge
Tfxf

T
xee

TGe+ µge
Tfxg

T
xee

TFe (12.94)

+
1

4
µ2
f (eTGe)2 + µfe

TGefT
xeg

T
xe+

1

2
µfµge

TGeeTFe (12.95)

+(eTfxg
T
xe)2 + µge

Tfxg
T
xee

TFe+
1

4
µ2
g(e

TFe)2 (12.96)

+
1

16
(eTFeeTGe)2

]
(12.97)
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The expectation is

E(z2) = µ2
fµ

2
g (12.98)

+
[
µ2
fµgtr(GΣ) + 2µfµgf

T
xΣgx + µfµ

2
gtr(FΣ) (12.99)

+ µ2
fg

T
xΣgx + 2µfµgf

T
xΣgx + +µ2

gf
T
xΣfx

]
(12.100)

+
[
µff

T
xΣgx tr(GΣ) + µfg

T
xΣgx tr(FΣ) (12.101)

+µgf
T
xΣfx tr(GΣ) + µgf

T
xΣgx tr(FΣ) (12.102)

+
1

4
µ2
f (tr(GΣ))2 + µf tr(GΣ)fT

xΣgx +
1

2
µfµgtr(FΣ)tr(GΣ) (12.103)

+(fT
xΣgx)2 + µgf

T
xΣgxtr(FΣ) +

1

4
µ2
gtr

2(FΣ) (12.104)

+
1

16
(tr(FΣ)tr(GΣ))2

]
(12.105)

Hence the variance is

σ2
z = µ2

fµ
2
g

(a)
(12.106)

+
[
µ2
fµgtr(GΣ) + 2µfµgf

T
xΣgx + µfµ

2
gtr(FΣ)

(b)

(12.107)

+ µ2
fg

T
xΣgx + 2µfµgf

T
xΣgx + +µ2

gf
T
xΣfx

]
(12.108)

+
[
µff

T
xΣgx tr(GΣ)

(c)
+ µfg

T
xΣgx tr(FΣ) (12.109)

+µgf
T
xΣfx tr(GΣ) + µgf

T
xΣgx tr(FΣ)

(d)
(12.110)

+
1

4
µ2
f (tr(GΣ))2

(e)

+ µf tr(GΣ)fT
xΣgx +

1

2
µfµgtr(FΣ)tr(GΣ)

(f)

(12.111)

+(fT
xΣgx)2(g)

+ µgf
T
xΣgxtr(FΣ) +

1

4
µ2
gtr

2(FΣ)
(h)

(12.112)

+
1

16
(tr(FΣ)tr(GΣ))2

]
(12.113)

− (12.114)[
µ2
fµ

2
g

(a)
(12.115)

+
[
µ2
fµgtr(GΣ) + 2µfµgg

T
xΣfx + µfµ

2
g tr(FΣ)

](b)
(12.116)

+

[
1

2
µfµgtr(FΣ)tr(GΣ)

(f)

+ µfµgtr(FΣGΣ) (12.117)

+
1

4
µ2
f tr

2(GΣ)
(e)

+ µf tr(GΣ)gT
xΣfx

(c)
+

1

4
µfµgtr(GΣ) tr(FΣ) (12.118)

+ (gT
xΣfx)2(g)

+ µgg
T
xΣfx tr(FΣ)

(d)
+

1

4
µ2
gtr

2(FΣ)
(h)
]]

(12.119)

= µ2
fg

T
xΣgx + 2µfµgf

T
xΣgx + µ2

gf
T
xΣfx (12.120)

+
[
µfg

T
xΣgx tr(FΣ) + µgf

T
xΣfx tr(GΣ) + µgf

T
xΣgxtr(FΣ) + µff

T
xΣgxtr(GΣ)(12.121)

+
1

16
(tr(FΣ)tr(GΣ))2 − µfµgtr(FΣGΣ)

]
(12.122)
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hence, we have the two variances of the product z = f(x)g(x)

σ(2)
z = (µfgx + µgfx)T Σ(µfgx + µgfx) , (12.123)

σ(4)
z = σ(2)

z + (12.124)

+(µfgx + µgfx)T (tr(FΣ)gx + tr(GΣ)fx) (12.125)

+
1

16
tr2(FΣ)tr2(GΣ)− µfµgtr(FΣGΣ) . (12.126)
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13 Bounded Quasi Normal Distribution

Transforming homogeneous vectors to non-homogeneous vectors leads to random variables
without mean and variance, if the densities are non-zero on in�nite support, e.g. when
handling Gaussian random variables. Two remedies are proposed: (1) to limit the support
of the given random variables, which corresponds to rejection of outliers, and (2) using
�rst order approximations while avoiding critical con�gurations.

13.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.2 Problem and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.3 Linear and higher approximations . . . . . . . . . . . . . . . . . . . . . . . . 202
13.4 Direct Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.6 Solution: a bounded distribution for the given observation . . . . . . . . . . 203
13.7 Maximum Entropy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 204
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13.1 Preface

The note (2012) addresses using projective relations, which regularly lead to divisions
by the homogeneous part of the homogeneous vector. Assuming a Gaussian distribution
for the given entities the result generally, has no �nite moments, especially no mean or
variance, see Hartley and Zisserman (2000, Sect. A3.1, p.569). We analyse the e�ect
of approximating the Gaussian distribution to a limited range, e�ectively keeping the
moments. The analysis explains, why in most practical cases we do not encounter a
dilemma: our input data have no in�nite range, as the Gaussian assumption suggests.

13.2 Problem and motivation

Given is a random variable x ∼ px(x) witt µx = E(x) and the function y = 1/x. The task
is to determine the mean value µy1.

Example 13.2.26: Side of a rectangle. The area A of a rectangular property with the

sides a and b is assumed to be given. One side, say a, is observed. Then the other side results

from b = F/a. Given the mean value of a we want to know the mean value of b. �
Example 13.2.27: Perspective projektion.

y =
a+ bx

c+ dx
(13.1)

�
Example 13.2.28: Triangulation from two images.

Z =
Bc

px
(13.2)

�
1This is a translation of the note originally written in German.
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13.3 Linear and higher approximations

The Taylor series of the function 1/x at some point m can be written as

1

x
=

1

m
− x−m

m2
+

(x−m)2

m3
+O((x−m)4) =

∞̧

n=0

−1

m

(
x−m
−m

)n
(13.3)

With m = µx we obtain a �rst approximation

E

(
1

x

)(1)

=
1

µx
(13.4)

a 2nd approximation

E

(
1

x

)(2)

=
1

µx
− 1

µ2
x

E(x− µx)
symm.

=
1

µx
(13.5)

and a 3-rd approximation

E

(
1

x

)(3)

=
1

µx
− 1

µ2
x

E(x− µx) +
1

µ3
E((x− µx)2) (13.6)

symm.
=

1

µx

(
1 +

σ2
x

µ2
x

)
(13.7)

For a symmetric function we only need the even approximations. E.g.

E

(
1

x

)(5)

=
1

µx
+

1

µ3
x

E((x− µx)2) +
1

µ5
x

E((x− µx)4) (13.8)

Thus, we only need the even moments of the distribution. If they do not grow faster than
µnx , the series may converge.

For a Gaussian the odd moments are zero and the even moments are

E((x− µ)2) = 1.σ2
x , E((x− µ)4) = 1.3.σ4

x , E((x− µ)6) = 1.3.5.σ6
x (13.9)

or for even n

E((x− µx)n) = (n− 1)!!σn , (n− 1)!! = (n− 1)(n− 3).....1 . (13.10)

The 5-th approximation thus is

E

(
1

x

)(5)

=
1

µx

(
1 +

σ2
x

µ2
x

+
3σ4

x

µ4
x

)
(13.11)

Generally, we obtain the odd approximations for a symmetric distribution

E

(
1

x

)(n)
symm.

=
1

µx

(
1 +

σ2
x

µ2
x

+
3σ4

x

µ4
x

+
15σ6

x

µ6
x

+ ...

)
(13.12)

=
1

µx

¸
i=0:2:n−1

(i− 1)!!

(
σx
µx

)i
with n odd . (13.13)

The series is not convergent, since the quotient criterion is not ful�lled, due to the double
exponential of n. Therefore, no Taylor expansion can is a good approximation.
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13.4 Direct Integration

Another way to show this is direct integration. The mean value of y is de�ned as

E(y) =

» ∞
x=−∞

1

x
px(x) dx (13.14)

Due to the pole at x = 0 we separate the integral into the sum of two parts

E(y) = lim
ε→0

» −ε
x=−∞

1

x
px(x) dx+ lim

ε→0

» ∞
x=ε

1

x
px(x) dx

px(0) /=0
= −∞+∞ = unbestimmt

(13.15)
If the density px(x) at x = 0 is not equal to 0, both integrals diverge and the sum is
unde�ned. Hence, for the case px(0) /= 0 the mean value of 1/x is unde�ned.

13.5 Discussion

In both derivation we do not obtain a �nite mean. A Taylor approximation therefor is no
admissible approximation.

The prerequisite for this dilemma is the division by a random variable, whose density
is non-zero at the zero of the denominator.

The example with the area 13.2 ony may legitimately argue, that distances are only
positive. This argument is not valid for the perspective projection.

13.6 Solution: a bounded distribution for the given ob-

servation

If we can bound the distribution of the random variable x, such that its density is zero
at the zero of the denominator, we can solve this dilemma., see Fig. Since, we always

Figure 13.1: Bounded Gaussian, range [−2,+2]

perform some type of outlier detection, this may be a reasonable assumption. But we do
not want to go to far from the Gaussian distribution

Therefore, we want to have a density p(x | k) which ful�l the following conditions» +k

−k
p(x)dx = 1 (13.16)» +k

−k
xp(x)dx = 0 (13.17)» +k

−k
x2p(x)dx = 1 (13.18)» +k

−k
x3p(x)dx = 0 (13.19)» +k

−k
x4p(x)dx = 3 (13.20)
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This is a density restricted to the range [−k,+k] whose �rst four moments are identical
to those of the Gaussian distribution, sometimes called quasi-Gaussian.

We thus obtain densities depending on the chosen range parameter k.

13.7 Maximum Entropy Distribution

We start from the n constraints» +k

−k
fi(x)p(x)dx = 1 fi(x) = xi i = 0, ..., n (13.21)

If we follow the principle of maximum entropy, we obtain the density in the form (Koch,
1990, (223.14))

p(x) = exp

(
−

ņ

i=0

kifi(x)

)
with f0(x) = 1 , (13.22)

from which we may determine the parameters ki.
If we restrict to moments up to 2nd order we obtain the density

p(x | µ, σ2) = exp
(
−k0 − k1x− k2x

2
)

x ∈ [−k,+k] (13.23)

which is a bounded normal distribution. Since the mean value should be 0, we have k1 = 0.
Therefore we obtain

p(x) =
exp(− 1

2x
2/s2)

Z
(13.24)

by choosing s and Z such that the conditions (13.16) and (13.18) are ful�lled.
From the �rst constraint» +k

−k
p(x)dx =

» +k

−k

exp
(
− 1

2
x2

s2

)
Z

dx = 1 (13.25)

we obtain

Z(s, k) = erf
(

k`
2s

)
(13.26)

For k � s2 this normalization constant is close to 1.
The second constraint for s now is

s2

1− 2k

Z

1`
2πs2

exp

(
−1

2

k2

s2

)
loooooooooooomoooooooooooon

<<1

 = σ2 . (13.27)

For a given variance σ2 = 1 and the range parameter k we can derive s numerically. Für
k � s2 we �nd s ≈ (1 + ε)σ with a generally small value ε, see Tab. 13.1. The density

k Z s p(x = k)
3 .9968686297 1.015386985 .005012998163
4 .9999360767 1.000540144 .0001349266451
5 .9999994267 1.000007435 .000001486985673

Table 13.1: Normierungsfaktoren Z, Steuungen s und Randwerte p(k) für σ = 1.

p(x | σ2, k) at x = k is not continuous. The jump decreases with increasing k.
The even moments of the normal density and of p(x | σ = 1, k = 4) are listed in the

Tab. 13.2 For small n the moments only di�er slightly. For large n the moments of the
approximation are much smaller than those of the normal density, why the series for the
mean value converge.
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n Gauss p(x | 1, 4) q
2 1 1.000000000 1.000000
4 3 2.985952469 0.995317
6 15 14.66926678 0.977951
...
20 654,729,075 151,821,743.5 0.231822
40 319,830,986,772,877,770,815,625 49,961,967,754,647,038,660.8 0.000156

Table 13.2: Moments mn and ma
n of the normal density and of its approximation p(x |

, σ = 1, k = 4) together with the ratio q(n) = ma
n/mn.

13.8 Relevance

The common stochastical model for observations is the Gaussian distribution. With equal
justi�cation we could choose a bounded normal distribution. Both distributions di�er only
marginally.

When performing sums � possibly weighted � of many observations the range of the
resulting distribution increases with the number of observations, however, restricting its
range to a value depending on its standard deviation would lead to acceptable approxi-
mations.

When dividing by random variables, we need to make sure, that the range of the
distribution does not contain a zero of the denominator. Otherwise we obtain results
without mean and variance. A classic example is the division of variables with standard
normal distribution: the ratio is Cauchy distributed, with no mean and variance.

This analysis explains, why in most practical cases we do not encounter the dilemma:
our input data have no in�nite range, as the Gaussian assumption suggests.
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14 Precision of the Inverse of an Uncer-

tain Matrix

We derive the covariance matrix of the inverse of a matrix of random variables, whose
covariance matrix is given, assuming the given covariance matrix is regular. The covariance
matrix of the given matrix may be singular, allowing to handle transformation matrices
with a low degree of freedom.

14.1 The Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
14.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.1 The Goal

Let the stochastic variables aij be collected in the matrix A or, equivalently, in the vector
a = vec(A) with covariance matrix D(a) = Σaa. Following the proof, the covariance
matrix Σbb of the elements bij of its inverse B = A−1

D(b) = Σbb = (rA−T
⊗ rA−1

)Σaa(rA−1
⊗ rA−T

)

where the tilde here indicates the mean value rA := E(A).

14.2 Proof

We have
A B = I

thus
dA B + A dB = 0

or
dB = −B dA B

With
da = vec(dA) and db = vec(dB)

we obtain
db = −(BT ⊗ B) da

yielding the result.

Remark: In case we use the rows of the matrices, thus

da′ = vec(dAT) and db′ = vec(dBT)

we obtain
db′ = −(B ⊗ BT)da′

and therefore
Σbb = (rB ⊗ rBT

)Σaa(rBT
⊗ rB)
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15 Remarks on the Equivalence of Gauge-

or S-transformations and Reducing

Homogeneous Coordinates

Gauge-transformations change the reference coordinate of the covariance matrix of the
coordinates of a point cloud, leave the relative uncertainty of the points invariant, and
result in a regular covariance matrix. Similarly, reducing uncertain homogeneous entities
with a possibly regular covariance matrix to a tangent space, speci�ed by some constraint,
leads to what can be called reduced coordinates. These reduced coordinates have a reg-
ular covariance matrix and capture the full information of the uncertainty of the original
homogeneous coordinates. We show that both concepts are equivalent.

15.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
15.2 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
15.3 S-Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

15.3.1 Singular S-Transformation . . . . . . . . . . . . . . . . . . . . . . . 209
15.3.2 Regular S-Transformation . . . . . . . . . . . . . . . . . . . . . . . . 209

15.4 Reduced Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
15.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

15.1 Preface

This note (2016) adresses the relation between S-transformations (Baarda, 1973) for �xing
the gauge during estimation and using reduced coordinates (Förstner, 2010) for estimating
homogeneous entities without constraints. They are shown to be based on the same
concept, namely controlling or eliminating the the null space of entities with singular
covariance matrices, where the � possible non-linear � constraints are known.

15.2 Motivation and Goal

We assume we have a random U -vector x with covariance matrix Σxx. The random
variables xu are constrained by the H algebraically independent nonlinear constraints
h(µx) = 0. Examples are

• coordinates estimated in a free geodetic network or a free bundle adjustment, thus,
without using reference points to �x the coordinate system; here the constraints �x
the gauge of the covariance matrix (cf. Förstner and Wrobel, 2016, Sect. 4.5.3).

• homogeneous coordinates or matrices to be used in geometric reasoning (cf. Förstner
and Wrobel, 2016, Sect. 10.2.2.1, (10.26) ); here the constraints �x the scale or
enforce other internal properties, such as the singularity of the fundamental matrix
(cf. Förstner and Wrobel, 2016, Sect. 13.3.4.1).
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Figure 15.1: Left: Regular S-transformation of 4 2D points with full covariance matrix
�xing the coordinates of the �rst point (translation only). Right: Uncertain homogeneous
vector in IP2 reduced to the uncertain 1D point on S2

s. Fig. 15.1
S-transformations according to Baarda (1973) (1) can be used to enforce the covariance

matrix to have a prespeci�ed gauge and (2) are required to evaluate the covariance matrix
w.r.t. a criterion matrix.1

Reduced coordinates according to Förstner (2010) can be used (1) for taking x as
observations in an estimation procedure, (2) for deriving estimates px from observations,
and (3) for testing hypotheses about µx.

The goal of this note is to show that the regular S-transformation and reducing the
coordinates are equivalent w.r.t. evaluating the covariance matrix of a constrained random
vector.

15.3 S-Transformations

We distinguish singular and regular S-transformations. Singular S-transformations yield
singular covariance matrices with a speci�ed gauge. Regular S-transformations yield reg-
ular covariance matrices for a subset of the parameters.

As an example, for a set of points in IR3 which are observed by directions or angles
only we have the seven constraints which �x the gauge w.r.t. given approximate values
xa:

• The position of the coordinate system; these are three gauge parameters; this could
be enforced by the constraints

d = 0 with d =
¸
i

wi(xi − xai ) (15.1)

where xai are �xed approximate values and wi are weights ∈ [0, 1].

• The rotation of the coordinate system; these are three gauge parameters; this could
be enforced by the constraints

R = I with R = mean_rotation({xi,xai , wi}) (15.2)

where the weighted mean of the rotation is derived from Algorithm 12 in (cf. Först-
ner and Wrobel, 2016, Sect. 10.5.4.2).

• The scale of the coordinate system; this is one gauge parameter; it could be enforced
from the constraint

s = 1 with log s =
¸
i

wi log
|xi − x0|
|xai − xa0 |

(15.3)

where x0 and xa0 are the weighted centroids of the points.

1We only discuss transformations of the covariance matrices, hence, di�erential coordinate transfor-
mations, which leave the mean values of the random variables unchanged. When comparing the result of
two di�erent estimates for the same parameters (point coordinates), we assume, they already have been
transformed by a K-transformation according to the notion by Molenaar (1981).
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We need the Jacobian of the constraints

H
U×H

=
∂h

∂xT
, (15.4)

and possibly a weight matrix, which de�nes which parameters take part in the �xation of
the gauge of the covariance matrix

W = Diag([wu]) , with wu ∈ [0, 1] , (15.5)

here taken for each parameter xu individually.

15.3.1 Singular S-Transformation

The singular S-transformation uses the U ×U S-matrix (cf. Förstner and Wrobel, 2016,
(4.223))

cS = IU − H(HTcWH)−1HTcW , (15.6)

which is a projection matrix. It is indexed by c, indicating which weight matrix cW is
used, It has null space H since

cSH = 0 . (15.7)

The transformed coordinates, also indexed with c, then are

c∆x = cS ∆x (15.8)

with covariance matrix
cΣxx = cS Σxx

cST . (15.9)

Observe, we would obtain this covariance matrix also when enforcing the constraints

HTcWx = 0 . (15.10)

Therefore
HTcW cΣxx = 0 . (15.11)

15.3.2 Regular S-Transformation

The regular S-transformation uses a special choice of W , namely

kW = Diag([wu]) with
¸
u

wu = H . (15.12)

Without loss of generality we can assume that it has the form

kW = Diag([1, ..., 1loomoon
H ones

, 0, ..., 0loomoon
U−H zeros

]) . (15.13)

The gauge speci�ed by the constraints onto the �rst H parameters. Thus the upper
H ×H-submatrix H1 of H is assumed to be regular. We therefore partition x, H and W

x =

 x1
U×1

x2
U×1

 , H
U×H

=

 H1
H×H
H2

(U−H)×H

 and W
U×U

=

[
IH 0

0 0
(U−H)×(U−H)

]
(15.14)

The singular S-transformation matrix S then has the following structure (for K , cf.
the proof below)

kS =

[
0H×H 0

K IU−H

]
with K = −H2H

−1
1 . (15.15)
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Then the transformed vector has the structure

k∆x = kS ∆x =

[
0H

k∆xr

]
(15.16)

Hence, the �rst H elements of k∆x are �xed values; the remaining parameters, called
k∆xr, capture the complete uncertainty of c∆x. Thus the covariance matrix has the
structure

cΣxx =

[
0 0

0 cΣxx,r

]
. (15.17)

We arrive at the regular S transformation by omitting the �xed elements of c∆x. In
order to arrive at an explicit expression for this covariance matrix we de�ne the regular
S-matrix, now indexed with k,

kSr
(U−H)×U

= [0 (U−H)×H , IU−H ] kS = [−H2H
−1
1 , IU−H ] (15.18)

to obtain the regularly transformed coordinates

k∆xr = kSr ∆x = k∆xr = ∆x2 − H2H
−1
1 ∆x1 , (15.19)

with its regular covariance matrix

kΣxx,r = kSr Σxx
kS

T

r . (15.20)

Proof: We derive K . Omitting the index c we have

S =

[
IH 0

0 IU−H

]
−
[
H1

H2

]
(HT

1H1)−1[HT
1 , 0 ] (15.21)

=

[
0 0

−H2H
−1
1 IU−H

]
. (15.22)

Hence, K = −H2H
−1
1 .

15.4 Reduced Coordinates

Reduced coordinates xr result from projecting the random vector x to the tangent space
of the manifold h(x) = 0 at µx (cf. Förstner and Wrobel, 2016, Figs. 10.4 and 10.10,
Sect. 10.2.2.1 and Sect. 10.6.1). The tangent space is spanned by the null space of HT.
This null space is not unique. We assume it is spanned by a set of H orthonormal vectors
collected in the matrix

Jr(µx)
U×(U−H)

= null(HT(x))
∣∣∣
x=µx

with JT
r (µx)Jr(µx) = IH . (15.23)

The reduced vector xr is then de�ned as the projection of x onto the tangent space,

xr = JT
r (µx)(x− µx) , (15.24)

and has covariance matrix

Σxx,r = JT
r (µx) Σxx Jr(µx) . (15.25)

15.5 Comparison

Both vectors, the vector k∆xr from the regular S-transformation and the vector xr from
the reduction, lie in the null space of h(x) = 0. This is because Jr(µx) and kSr span the
null space of HT:

HTJr(µx) = HTkSr = 0 . (15.26)
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The second relation results from

[HT
1H

T
2 ]

[
−H−T

1 HT
2

IU−H

]
= −HT

2 + HT
2 = 0 . (15.27)

Therefore, both covariance matrices of the transformed vector and the reduced vector
capture the full uncertainty of x.

Thus given two covariance matrices which are to be compared, the comparison leads
to the same result with either transformation. Hence, given two covariance matrices C
and Q and for brevity using S := kSr, the generalized eigenvalues,

λ(STCS , STQS) = λ(JT
rCJr, J

T
rQJr) , (15.28)

are identical.
Proof: The two matrices S and Jr have full rank and span the nullspace of HT. Thus

there is a regular transformation A such that

Jr = SA . (15.29)

Therefore comparing we need to show, that the generalized eigenvalues of

λ(STCS ,STQS) and λ(ATSTCSA,ATSTQSA) (15.30)

are identical. This is because the second term can be replaced by

λ(ATSTCSA(ATSTQSA)−1) = λ(STCSAA−1(STQS)−1A−TAT) = λ(STCS , STQS)
(15.31)

which is identical to the �rst term. �

15.6 Conclusions

The concept of S-transformation has been developed for analysing sets of points in 2D or
3D, thus for a speci�c class of random vectors. It is very �exible, as the gauge can be con-
trolled using the weight matrix W or � equivalently � by selecting those parameters which
de�ne the gauge. The advantage of the S-transformation is, that an explicit expression
for the tangent space (namely the null space of HT) is available for the main applications.

The concept of reduced parameters has been developed for simplifying estimation with
random vectors, which are constrained. It is a general technique, as it works for all types of
constraints. The disadvantage of reduced coordinates is that we have an explicit expression
for the tangent space (i.e., the matrix Jr) only for speci�c constraints, but for large random
vectors the determination of the tangent space is computationally prohibitive. However,
for sets of vectors with only a few elements, say up to 12, the method leads to e�cient
algorithms, e.g., in bundle adjustment.
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16 Gauge Choice and Loop Closing of

Uncertain Polygons

We present a Cincerella animation for exploring the e�ect of choosing a speci�c gauge/datum
and of loop closing onto an uncertain polygon. The note provides the necessary deriva-
tions consistently using complex numbers for representing 2D points and observed distance
ratios and angles.

[cdy]

16.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16.2 The basic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

16.2.1 Complex entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
16.2.2 Observing a polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
16.2.3 The Gauss�Markov model for the free polygon . . . . . . . . . . . . 215
16.2.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

16.3 Using the gauge within the estimation . . . . . . . . . . . . . . . . . . . . . 217
16.4 Changing the gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
16.5 The uncertainty of arbitrary local scaled rotations . . . . . . . . . . . . . . 218

16.1 Scope

We provide the basics for deriving the uncertainty of an open or closed 2D polygon by
using a Gauss�Markov model with constraints for �xing the gauge/datum. We assume
isotropic uncertainty and therefore can use complex numbers for representing point and
measurements to advantage.

We follow the chapter A Generalization of the concept strength of �gure in (Baarda,
1968) and use complex numbers for 2D points and observed logarithms of lenght ratios and
of angles. We only provide the relations which are necessary to de�ne the Gauss-Markov
model for an open or closed polygon as a free network.

We provide two Cinderella animations, one for the polygon and one for a triangulated
point cloud Gauge Choice and Loop Closing, representing a geodetic netwoerk Gauge
Choice in Triangulation.

16.2 The basic relations

Points (x, y) in the plane may be represented by complex numbers z = x+ iy. We assume
their uncertainty is is circular symmetric, i.e., isotropic. Furthermore, we assume the
point cloud is de�ned up to a similar transformation. Then angles and distance ratios are
invariant quantities.

We describe the complex entities involved, present the functional and stochastical
relations between the observations and the points, the Gauss�markov model for the free
polygon, and the uncertainty of a point w.r.t. to a pair of points.
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16.2.1 Complex entities

The chaining in a polygon (z1, ...,zI) based on onserved distance ratios and angles, i.e.,
bearing/direction di�erences of neighbouring points

rjik =
dik
dij

and αjik = βik − βij (16.1)

can be expressed as

zk = zi + rjikR(αjik) (zj − zi) with (j, i, k) = (i− 1, i, i+ 1) . (16.2)

see Fig. 16.1.

Figure 16.1: Entities for one, two and three points. Coordinates zi = diR(βi)e1, co-
ordinate di�erences zij = zj − zi = dijR(βij)e1 between j and i, local scaled rotation
zik = rjikR(αjik)zij between segment (ji) and segment (ik). The vector e1 = [1, 0]T is the
�rst unit vector

We will use complex entities to express this relation, by integrating the distance ratios
and the angels into a complex number, similar to the point coordinates.

We use the entities in Tab. 16.1. In all cases we assume indices indicating the order
of the entity. Obviously, when analysing the relation between three point, the logarithm

Figure 16.2: Entities for one, two and three points. Coordinates zi = di exp iβi, coordinate
di�erences zij = zj − zi = dij exp(iβij) between i and j, local scaled rotation zik/zij =
rjik exp(iαjik) between segment (ji) and segment (ik)

of scale ratios play the same role as angles. If in a polygon the local scaled rotation

Πjik = ln rjik + iαjik (16.3)

is observed for all i > 1, the chaining of the points follows from

zk = zi + eΠjik (zj − zi) with (j, i, k) = (i− 1, i, i+ 1) . (16.4)

16.2.2 Observing a polygon

Therefore, we assume a polygon (z1, z2, ..., zI) is observed by the I−2 local scaled rotations
Πjik(rjik, αjik) at all points, except for the �rst and the last one. In case the polygon is
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Name real representation complex representation

point

1 coordinates z = [x, y]T z = x+ iy
2 distance d to origin d = |z| d = |z|
3 bearing/direction β β = atan2 (y, x) β = arg(z)
4 polar coordinates z = dR(β) e1 z = d eiβ = eln d+iβ

point pair

5 local translation zj = zi + zij zj = zi + zij
6 coordinate di�erence zij = zj − zi zij = zj − zj = eln dij+iβij

7 distance d dij = |zij | dij = |zij |
8 bearing/direction β βij = atan2 (yij , xij) βij = arg(zij)
9 local polar coordinates zij = dijR(βij) e1 Λij = ln zij = ln dij + iβij

point triplet

10 local scaled rotation zik = rjikR(αjik) zij zik = eΠjik = eln rjik+iαjik zij
Πjik = Λik − Λij = ln zik

zij

11 angle αjik = δik − δij αjik = βij − βik = =(Πjik)

12 scale ratio rjik = dik
dij

ln rjik = ln dik − ln dij = <(Πjik)

similarity

13 transformation z′ = mR(φ)z + t z′ = sz + t
14 scaled rotation mR(φ) s = elogm+iφ

Table 16.1: Names, real and complex entities for points, point pairs, point triplets and
similarities

closed, we in addition have two additional scaled ratations ΠI,1,2 and ΠI−1,I,1 for the �rst
and the last point.

We assume, the relative accuracy σr/r of the scale ratios and standard deviations σα
of the angles are identical. This is equivalent to assuming the logarithm ln rjik of the scale
ratios and the angles αjik have the same standard deviation, say σi, since from

q = ln r and
dq
dr

=
1

r
(16.5)

we obtain
σq = σln r =

σr
r
. (16.6)

Hence, we assume

D

([
ln rjik
αjik

])
= σ2

i I 2 . (16.7)

Hence, we assume isotropy. When using the combined entity Πjik its distribution is
circular symmetric with variance 2σ2, see https://en.wikipedia.org/wiki/Complex_

random_variable. Hence we have

V(<(Πjik)) = V(=(Πjik)) =
1

2
V(Πjik) and Cov(<(Πjik),=(Πjik)) = 0 . (16.8)

In the following we call the combined value

Πjik = ln rjik + iαjik (16.9)

the scaled rotation, taking into account, that the name omits the logarithm of the scale
ratio of neighbouring sides.

Remark: This model �ts to the idea that the path along the polygon is observed with a camera,

and the relative pose between two points (ij) and the next point k is determined by evaluating

image triplet, which provide the scale ratios rjik and the angles αjik with approximately the same

(relative) accuracy. �
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16.2.3 The Gauss�Markov model for the free polygon

For establishing a Gauss�Markov model with gauge/datum constraints we need the lin-
earization of the observed entities.

16.2.3.1 Observation equations

We assume the local observations are scaled rotations of subsequent points in the polygon:

Πjik with (j, i, k) = (i− 1, i, i+ 1) and i = 2, ..., I − 1 . (16.10)

In case of a closed polygon, representing a loop closing, we have the additional observations

Πjik with (j, i, k) = (I, 1, 2) and Πjik with (j, i, k) = (I − 1, I, 1) for i = 1, I .
(16.11)

for the starting and the end point of the polygon. The complete set of observations y then
consists of the complex values

y = [yi] := [Πjik] , (16.12)

with or without the border observations.
The observation equations are

E(Πjik) = ln
zk − zi
zj − zi

. (16.13)

which gives an explicit relation to the unknown point coordinates zi, i = 1, ..., I. The
stochastical model is

D
(
Πjik

)
= 2σ2

i . (16.14)

where σi represents the standard deviations of the real and the imaginary part of Πjik,
i.e., the logarithm of the distance ratios and the angles.

16.2.3.2 Gauge constraints

Since we we can determine the coordinates only up to a similarity, we need to enforce
constraints onto the coordinates. This �xes the gauge or the datum of the uncertainty of
the points. The constraints are related to the approximate values z0

i of the points. We
require, that the mean of all coordinates and the mean scaled rotation around the centroid
z are zero. Since the scaled rotation is represented as a complex variable log s+iα, requiring
that the scaled rotation is 0, is equivalent to the requirement, that the average scale ratio
to the approximate values z0

i is 1. Now we observe, that the centerd coordinates are

czi = zi − z =

°
i z

0
i

I
(16.15)

This leads to the constraints for the estimated coordinates, now referring to the centroid

c1 =
°
i wi(pzi − z) = 0 and c2 =

°
i wi(s (pzi − z) + t− z0

i ) = 0 , (16.16)

the �rst constraint requiring the weighted mean of at least two point estimates being 0,
the second constraint requiring, that the weighted mean di�erence between the (with s
and t) transformed estimated and the approximate values is 0.

Linearization of the observation equations and the constraints lead to a linearized
Gauss�Markov model.
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16.2.4 Linearization

16.2.4.1 Linearized observation equations

Linearization of the observation equations leads to

Πijk + vjik = Π0
ijk + aT

i θ with E(Πjik) = ln
zk − zi
zj − zi

(16.17)

with the non-zero elements of ai

aT
i0 =

[
∂Πijk

∂zj
,
∂Πijk

∂zi
,
∂Πijk

∂zk

]
(16.18)

and the unknown parameters

θ :=


z1

...
zi
...
zI

 . (16.19)

The index 0 in aT
i0 indicates that only the non-zero elements are shown.

The di�erentials of the various elements are given as follows

dzij = dzj − dzi (16.20)

dΛij = d ln zij (16.21)

=
1

zij
dzij =

1

zij
(dzj − dzi) (16.22)

dΠjik = d(Λik − Λij) (16.23)

=
1

zik
(dzk − dzi)−

1

zij
(dzj − dzi) (16.24)

=

[
− 1

zij
,

1

zij
− 1

zik
,

1

zik

]
looooooooooooooomooooooooooooooon

daT
i0=[aij ,aii,aik]

 dzj
dzi
dzk

 (16.25)

=

[
1

zji
, − 1

zji
− 1

zik
,

1

zik

] dzj
dzi
dzk

 (16.26)

the last expression mimiking the second derivative operator [1,−2, 1], which would result
from a straight polygon, say in x-direction with all distances being one.

The complete Jacobian of an open polygon is a tridiagonal matrix

Ainner = Tri([ai−1,i, ai,i, ai,i+1]) , for i = 2, ..., I − 1 . (16.27)

and for a closed polygon may be augmented by

Aborder =

[
aI−1,1 aI−1,2 0 0 0 0 aI−1,I

aI,1 0 0 0 0 aI,I−1 aI,I .

]
(16.28)

to obtain the Jacobian A = ∂y/∂θ.

16.2.4.2 Linearized constraints

The linearization of the two constraints leads to

H = W

[
∂c1
∂θ

,
∂c2
∂θ

]
(16.29)
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with
∂c1
∂θ

= 1 ,
∂c2
∂θ

= θ0 = [z0
i ] and W = Diag([wi]) . (16.30)

Observe, we asumed the approximate value s0 for the scaled rotation of the point set in
(16.16) is 1.

As an example, if all weights are zero except for w1 = w2 = 1, then the �rst two points
are not changed compared to the approximate values, i.e., �x the gauge, and the resulting
constraint matrix is

HW = W [1,θ0] , (16.31)

only having non-zeros in the �rst two rows, namely being
1 z0

1

1 z0
2

0 0
... ...
0 0

 . (16.32)

16.3 Using the gauge within the estimation

The gauge constraints can easily be intorduces using a Gauss�Markov model with con-
straints. The covariance matrix of the parameters θ can be derived from[

Σpθpθ .
. .

]
=

[
ATΣ−1

yy A WH

HTW 0

]
(16.33)

(Förstner and Wrobel, 2016, Sect. 4.3). Observe, the transposition includes conjugation
of the complex elements.

In the Cinderella animation we show the circular standard ellipses of the points pzi
based on the standard deviations

σxi = σyi =
σθi`

2
=

d(
Σpθpθ
)
ii

2
. (16.34)

This is the way the script in the Cinderella animation is realized.

16.4 Changing the gauge

We could also start with an arbitrary choice of the gauge, and afterwards change the gauge
using a gauge or S -transformation (standing for similarity transformation), (Förstner and
Wrobel, 2016, Sect. 4.5.3)

We can chang the gauge by specifying a weightmatrix W = Diag([wi]) and projecting
the estimated parameters to a subspace of size I − 2 (referring to complex variables)

SW = I − H(HTWH)−1HTW (16.35)

namely
∆θW = SW ∆θ . (16.36)

where the transposition includes conjugation of the elements of the matrix H. The pro-
jection �xes the gauge by enforcing the constraints

c1 =
¸
i

wi (pzi − z) = 0 and c2 =
¸
i

wi(s (pzi − z) + t− z0
i ) = 0 , (16.37)

where the weights need not be the same as used for deriving the intial covariance matrix.
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16.5 The uncertainty of arbitrary local scaled rotations

Local scaled rotations are invariant to the choice of the gauge/datum. Therefore, also their
uncertainty is an invariant quantity. Using variance propagation we are able to derive the
variance of some arbitrary local scaled rotation Πjik using the Jacobian in (16.25). We
have

V(Πjik) = aT
i0loomoon

1×3

[Σθθ]jiklooomooon
3×3

ai0loomoon
3×1

(16.38)

where the 3× 3 matrix is the submatrix of Σθθ referring to the three points (jik). In the
Cinderella animation we report the standard deviations of the corresponding logarithmic
scale ratio and the angle:

σαjik =
σrjik
rjik

=
σΠjik`

2
=

c
V(Πjik)

2
. (16.39)
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17 Markov-Random Fields and Geode-

tic Networks

Geodetic networks are speci�c Markov random �elds. This is shown by relating the usually
sparse graph of observations to the information matrix, the normal equation matrix, which
encodes the conditional independencies of the parameters, namely the coordinates.

17.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
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17.1 Preface

The note (2009) shows that geodetic networks are speci�c Markov random �elds. This
is shown by relating the usually sparse graph of observations to the information matrix,
which usually is referred to as normal equation matrix and which encodes the conditional
independencies of the parameters. The results of this note are partly use in Förstner
(2013).

17.2 The Problem

Geodetic networks inherently lead to sparse observation and normal equations. The net-
work structure explicitly is re�ected in the non-zero-structure which can be derived from
the adjacency matrix of the observation graph.

Markov-Random Fields rely on a sparse conditional independence structure. This is
given by the set of maximal cliques which in many cases only contain a few, sometimes
only two, nodes in a graph.

This note shows the equivalence of both models. The equivalence also transfers to cer-
tain methods to �nd optimal solutions, namely the iterative method of iterative conditional
modes and the Gauss-Seidel-iteration method.
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17.3 Markov-Random-Fields

17.3.1 General form

Given is a graph with nodes and undirected edges. The nodes X = {xn, n = 1, ..., N}
represent random variables xn. In general, we do not distinguish between the nodes
themselves and the random variables they stand for. In case we do, the nodes are denoted
by the indices of the random variables, so we also could write X = {n, n = 1, ..., N} where
n stands for the node representing the variable xn.

No constraint is imposed on the type of random variable. They may be continuous,
discrete or mixed.

We denote sets of nodes or random variables with calligraphic letters. Sometimes we
prefer to collect scalar random variables in a vector.

The edges denote some weak constraints to be speci�ed below. The graph structure is
meant to show conditional independencies. Let Nx be the neighbours of a node x. In case
the graph represents a Markov-random �eld (MRF) we have the following Markov-relation

p(x|X \ x) = p(x|Nx) (17.1)

I. e. the probability of x given the values of all other nodes X \x is equal to the probability
of x given its neighbours Nx.

The probability p(X ) of all nodes can be now be related to functions ψC(XC) of the
values of the maximal cliques XC by

p(X ) =
1

Z

¹
xC

ψC(Xc) (17.2)

This requires some explanation:

• The maximal cliques XC are given by the application. One may restrict to two-
cliques even in case three nodes are pairwise neighbours. All k-cliques Ck with k
nodes, contain smaller k′-cliques Ck′ , with k′ < k. The relation between these smaller
cliques need be taken into account, as their relation can be captured in the function
ψC .

• The functions ψC are called potential functions. They are assumed to be positive.
Therefore, it may be useful to write them as exponentials

ψC(XC) = e−UC(XC) (17.3)

The functions UC(XC) = − logψC(XC) are called energy functions.
The potential functions may contain some additional unknown parameters, Θ, parametriz-
ing the stochastic properties.
As the probability of the complete set of nodes should be maximal when searching
for parameters hidden in the potential functions, the potential functions should be
chosen such that likely parameter values for xn lead to large values of ψC(XC) or
small values of UC(XC).

• The constant Z, sometimes called the partition function, is used to normalize the
product such that the integral over p(X ) over all possible states of X is 1. This usu-
ally hinders to determine probabilities. However, often one may use the probabilities
as preference measure, then the knowledge of Z is not necessary.

• Maximizing the probability p(X ) is equivalent to minimizing

Ω = − log p(X ) =
¸
xC

UC(XC) + logZ (17.4)

In case the partition function Z is constant, though unknown, this is the sum of the
individual energy functions.
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17.3.2 Solution techniques

17.3.2.1 Iterative Conditional Mode

A simple solution technique is the so-called iterative conditional mode method. Here all
nodes X \ x except one x are assumed to be known and one determines

x(ν+1) = argmaxxp(x|N (ν)
x ) (17.5)

using the relation (17.1).
The sequence of visiting the nodes can be chosen randomly or in a prespeci�ed order.

A prespeci�ed order may guarantee that each node is really visited regularly. Observe that
the total number of iterations will in general be several times the number |X | of nodes
in order to guarantee convergence. The solution will depend on the initial values, thus in
general yields a local maximum.

The situation may be improved by simultaneously updating multiple nodes, which are
not mutual neighbours. In case of a gridded structure with a 4-neighbourhood on may
update each second node in each row, taking the odd nodes in the odd rows and the
even nodes in the even rows in a �rst run, and the other nodes, cf. �g. 17.1. Thus one
needs to colour the graph, such than no two neighbouring nodes have the same colour and
then repeat the update of the nodes following the sequence of the colours. Obviously, the
update of all nodes of the same colour can be done in parallel.

Figure 17.1: Colouring of a graph with 4-neighbourhood

17.3.2.2 Min-Cut-Algorithm

In case the nodes are binary nodes, we maximally have three-cliques and the optimization
function ful�ls certain regularity constraints one can solve the problem rigorously using
the so-called min-cut-algorithm1. The idea is to extend the graph by two nodes, a source
and a sink node connected to all nodes of the given graph, and �nd the cheapest set of
edges, a cut of the graph, to interrupt the �ow from the source to the sink.

Figure 17.2: Tree for determining minimum cut

1cf. Y. Boykov and V. Kolmogoro� (2004): An Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision, In IEEE Transactions on PAMI, Vol. 26, No. 9, pp.
1124-1137, Sept. 2004
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17.3.2.3 Monte Carlo Techniques

In more general situations, especially in case no good approximate values are available, on
need to use Monte-Carlo-techniques. Their idea is to change the values at the nodes in a
sequence, where the new con�guration, i. e. set of values X (ν+1), depends randomly on
the previous con�guration X (ν). With the sequence of iterations, the di�erence between
successive states are controlled to get smaller at the same time guaranteeing to reach
a probable con�guration. One of the techniques is the simulated annealing. Here the
generation of crystals is simulated, by starting with a liquid and slowly cooling the material.

17.4 The probability distribution of geodetic networks

Geodetic networks usually lead to coordinates of sets of points. Their uncertainty is
represented by a covariance matrix, implicitly assuming a multivariate normal distribution.
In the following we analyse how independence between multivariate Gaussian variables x
is encoded.

17.4.1 Independence, correlation and conditional independence

The uncertainty is represented by their covariance matrix Σxx or their precision matrix

Pxx = Σ−1
xx (17.6)

This precision matrix is identical to the weight matrix in case σ2
0 = 1. Thus we may write

x ∼ N (µx,Σxx) = N (µx,P
−1
xx ) (17.7)

It will turn out that it might be bene�cial to use the precision matrix Pxx instead of the
covariance matrix Σxx.

In case we split the complete vector x in two parts we obtain the complete description[
y
z

]
∼ N

([
µy
µz

]
,

[
Σyy Σyz

Σzy Σzz

])
= N

([
µy
µz

]
,

[
Pyy Pyz
Pzy Pzz

]−1
)

(17.8)

The relation between the submatrices of Σxx and Pxx is well known:

Pxx =

[
Σ
−1

yy −Σ
−1

yy ΣyzΣ−1
zz

−Σ−1
zz ΣzyΣ

−1

yy Σ−1
zz + Σ−1

zz ΣzyΣ
−1

yy ΣyzΣ−1
zz

]
(17.9)

with the Schur-complement
Σyy = Σyy − ΣyzΣ−1

zz Σzy (17.10)

Inversely we obtain

Σxx =

[
W
−1

yy −W−1

yy PyzP
−1
zz

−P−1
zz PzyW

−1

yy P−1
zz + P−1

zz PzyW
−1

yy PyzP
−1
zz

]
(17.11)

with the Schur-complement

W yy = Pyy − PyzP−1
zz Pzy (17.12)

Marginal distribution. The marginal distribution of y is

y ∼ N(µy,Σyy) (17.13)

Thus the uncertainty of the marginal distribution is obtained by selecting the appropriate
rows and columns in the covariance matrix.
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Conditional distribution. We also need the distribution of y in case z is given. This
is

y|z ∼ N (µy|z,Σyy|z) (17.14)

with
µy|z = µy + ΣyzΣ−1

zz (z − µz) Σyy|z = Σyy − ΣyzΣ−1
zz Σzy (17.15)

or using the precision matrices

µy|z = µy − P
−1
yy Pyz(z − µz) Σyy|z = P−1

yy (17.16)

The proof can be done easily by expanding the exponent of the Gaussian of x, cf.2.
Thus the uncertainty of the conditional distribution is obtained by selecting the appro-

priate rows and columns in the precision matrix and inversion.

Independence. Two variates y
j
and y

j
are stochastically independent, in case they are

uncorrelated, thus in case Σyiyj = 0 :

yi ⊥⊥ yj ⇔ Σyiyj = 0 (17.17)

Conditional independence. Two variates y
i
and y

j
are conditionally independent

given z, in case they are conditionally uncorrelated, thus in case Σyiyj |z = 0 . Thus, using
eq. (17.16)

yi ⊥⊥ yj |z ⇔ Σyiyj |z =
(
P−1

)
yiyj

= 0 (17.18)

This gives a method to determine conditional independencies, as Pyy is obtained by
cancelling the rows and columns in Pxx belonging to z. In case z is chosen such that Pyy
is block diagonal,

y1 ⊥⊥ y2|z ⇔ Σyy|z =

[
Py1y1 0

0 Py2y2

]−1

(17.19)

the di�erent blocks will also be uncorrelated: Then the two subsets y1 and y2 of parameters
are conditionally independent w. r. t. z.

17.4.2 Independencies in geodetic networks

The precision of geodetic networks usually is represented using the covariance Σkk of their
coordinates k, implicitly assuming their distribution is a multi-variate Gaussian. Storing
the full covariance matrix may be prohibitive, in case the network is quite large, with,
say, more than 100000 points. The reason is simple, the integration of all measurements
within a simultaneous estimation process leads to a full covariance matrix in general.

The integration of di�erent sets of measurements usually is done with the help of the
normal equations Nk = h as

N =
¸
t

Nt h =
¸
t

ht (17.20)

Moreover, the normal equations usually are sparse.
This leads us to the following observations

• Coordinates in geodetic networks usually are correlated, thus not statistically inde-
pendent. This holds even for points which are quite far apart, the correlations may
be small, but they do not vanish.

• Coordinates in geodetic networks show a sparse precision structure, encoded in the
normal equation matrix3 N = Σ−1

kk . The normal equations usually are quite sparse.
Zeros in the precision matrix N go along with conditional independence. We will
come back to this below.

2this is: − 1
2

(x − µx)TPxx(x − µx) = − 1
2

(y − µy)TPyy(y − µy) − 1
2

(y − µy)TPyz(z − µz) − 1
2

(z −
µz)TPzy(y −µy)− 1

2
(z −µz)TPzz(z −µz) �xing all values for z and rearranging the terms to obtain a

quadratic expression (y − a)TPyy(y − a) �nding a to be µy|z
3assuming the variance factor to be σ2

0 = 1.
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17.5 An illustrative example

17.5.1 The given graph

Let the small graph with N = 4 nodes X = {1, 2, 3, 4} be given. Let us further as-
sume �ve edges E = {(1, 2), (2, 3), (3, 4), (1, 4), (2, 4)} connect these nodes. Then we
have 4 one-cliques C1 = {1, 2, 3, 4}, �ve two-cliques, C2 = E and two three-cliques C3 =
{(1, 2, 4), (2, 3, 4)}

1 2

34

Figure 17.3: A small Markov-Random-Field

In case we restrict ourselves to two-cliques as maximal cliques the general form of the
joint probability of the four nodes can be written as

p(X ) = p(x1, x2, x3, x4) (17.21)

=
1

Z

¹
(ij)∈E

ψij(xi, xj) (17.22)

=
1

Z
ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ14(x1, x4)ψ14(x2, x4) (17.23)

as we only have 5 two-cliques, the arcs.
In case we allow for three-cliques as maximal cliques we obtain the general form of the

joint probability

p(X ) =
1

Z

¹
(ijk)∈C3

ψijk(xi, xj , xk)

=
1

Z
ψ124(x1, x2, x4)ψ234(x2, x3, x4) (17.24)

17.5.1.1 Example 1a: Potential function for a levelling network

Let the graph represent a levelling network. The nodes are points with height xi. We
assume we observe the �ve height di�erences, leading to values dij . In addition, we have
some information about the heights of the points 1 and 3. Then we can model the situation
as a MRF.

The xi are continuous scalar variables. We further assume the following potential
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34

Figure 17.4: A levelling network as MRF

functions

ψ12 = e
−1

2
(x1 − x2 − d12)2w12

e
−1

2
(x1 − d1)2w1

(17.25)

ψ23 = e
−1

2
(x2 − x3 − d23)2w23

(17.26)

ψ34 = e
−1

2
(x3 − x4 − d34)2w34

e
−1

2
(x3 − d3)2w1

(17.27)

ψ14 = e
−1

2
(x1 − x4 − d14)2w14

(17.28)

ψ14 = e
−1

2
(x2 − x4 − d24)2w24

(17.29)

where d1 and the dij are given numbers, namely the given heights and the observed height
di�erences. The potentials ψij are large in case the di�erence xi − xj are close to dij ,
deviations are assumed to be normally distributed. The given values wij := pij may be
used to weight the di�erences. The �rst and the third potential in addition prefers values
for x1 close to d1 and values x3 close to d3.

The probability density of X thus reads as

p(X ) =
1

Z

4¹
i=1

e
−1

2
(xi − di)2wi ¹

(ij)∈E
e
−1

2
(xi − xj − dij)2wij

(17.30)

with p2 = p4 = 0.
The energy function thus reads as

Ω =
1

2

 4̧

i=1

(xi − di)2wi +
¸

(ij)∈E
(xi − xj − dij)2wij

 (17.31)

17.5.1.2 Example 1b: Potential function for a distance network

We now assume the graph represents a geodetic network in the plane. The nodes therefore
represent points with coordinates xi = [ui, vi]

T. We additionally assume to observe �ve
distances dij between the points.

The xi again are continuous variables, namely 2-vectors with components xi = [ui, vi]
T.
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34

Figure 17.5: A planar network with measured distances as MRF

We further assume the following potential functions

ψ12 = e
−1

2
(|x1 − x2| − d12)2w12

e
−1

2
|x1 − d1|2w1

(17.32)

ψ23 = e
−1

2
(|x2 − x3| − d23)2w23

(17.33)

ψ34 = e
−1

2
(|x3 − x4| − d34)2w34

e
−1

2
|x3 − d3|2w1

(17.34)

ψ14 = e
−1

2
(|x1 − x4| − d14)2w14

(17.35)

ψ24 = e
−1

2
(|x2 − x4| − d24)2w24

(17.36)

where the di are given 2-vectors and the dij are given positive numbers, representing the
given positions and the observed distances. The potentials ψij are large in case the norms
|xi − xj | of the di�erences are close to dij . The given values pij may be used to weight
the di�erences. The �rst and the third potential in addition prefers values for x1 close to
d1 and x3 close to d3.

The probability density of X thus reads as

p(X ) =
1

Z

4¹
i=

e
−1

2
|xi − di|2wi ¹

(ij)∈E
e
−1

2
(|xi − xj | − dij)2wij

(17.37)

The energy function thus reads as

Ω =
1

2

 4̧

i=1

|xi − di|2wi +
¸

(ij)∈E
(|xi − xj | − dij)2wij

 (17.38)

17.5.1.3 Example 1c: Potential functions for an angle network

We now again assume the graph to represent a geodetic network in the plane. However,
we now observe angles dijk at point j between points i and k. Then we need to take into
account potentials of 3-cliques. The angles constrain the form of triangles, thus all three
points of such a triangle need to be pairwise neighbours. In case we want to leave the
graph unchanged we therefore can introduce angle measurements in the triangles (1, 2, 4)
and (2, 3, 4). In case we also would observe angle d123 we would need to introduce an edge
between 1 and 3.

The nodes again represent two-vectors. The potentials of the two 3-cliques are assumed
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34

Figure 17.6: A planar network with measured angles as MRF

to be

ψ124(x1, x2, x4) = e
−1

2

(
|a421 − d421|2p421 + |a142 − d142|2p142 + |a214 − d214|2p214 + |x1 − d1|2p1

)
ψ234(x2, x3, x4) = e

−1

2

(
|a243 − d243|2p243 + |a324 − d324|2p324 + |x3 − d3|2p3

)
(17.39)

where we have the nonlinear function

ai,j,k(xi, xj , xk) = rjk(xj , xk)− rji(xj , xi) rjk(xj , xk) = atan2 (vk − vj , uk − uj)
(17.40)

being the angle at j between the directions to i and k.
Obviously, the two potentials represent 5 angle measurements and two point measure-

ments, being unbiased observations of the angles and the point coordinates with a precision
re�ected in the weights pijk and pi.

17.5.1.4 Example 2: Potential function for a classi�cation network

Now, let us assume the xi are discrete and binary variables xi ∈ {−1, 1}. We further
assume the following potential functions

ψ12 = eβ12x1x2eα1x1d1 + α2x2d2 (17.41)

ψ23 = eβ23x2x3 (17.42)

ψ34 = eβ34x3x4eα3x3d3 − α4x4d4 (17.43)

ψ14 = eβ14x1x4 (17.44)

In case the given values βij > 0 the potential functions favour the same value for neigh-
bouring nodes, as then the product xixj = 1, otherwise they favour di�erent values. The
degree of preference is coded in the absolute value of the βij 's. In case the given val-
ues αi > 0 the �rst and the third potential function favour values of xi = di, where
di ∈ {−1, 1} are given values. These preferences are weighted with the given values αi.

The example can be interpreted as follows. Assume, we have four neighbouring parcels,
which either contain a building or not. Let us assume we may derive the land cover of the
parcels from a satellite, which yields an uncertain classi�cation of the parcels.

1 2

34

Figure 17.7: A set of neighbouring parcels as MRF
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This knowledge may be represented by

p(X|D) ∝ p(D|X )p(X ) (17.45)

where p(X ) represents the a priori knowledge about the classes and p(D|X ) the observation
process of the classi�cation procedure.

Let us assume the we know from previous analysis', that it is likely that two neigh-
bouring parcels usually have the same or di�erent land cover. This knowledge may be
encoded as

p(X ) =
1

Z

¹
(ij)∈E

eβijxixj (17.46)

E. g. in case βij = 1 we have ψij = e ≈ 2.72 in case the classes of two neighbouring sites
are equal and ψij = 1/e ≈ 0.368, i. e. in case the classes of two neighbouring sites are
equal the probability for the situation is e2 ≈ 7.4 more probable than if the two sites have
di�erent classes, all other nodes having the same label.

The likelihood term may be represented as

p(di|xi) = eαidixi (17.47)

Again, in case αi = 1 the probability of the complete situation is e2 ≈ 7.4 times more
probable in case di = xi than if di /= xi.

Then the complete knowledge may be represented as

p(X ) =
1

Z

¹
n

eαndnxn
¹

(ij)∈E
eβijxixj (17.48)

Thus, in general, the probability density for X reads as

p(X ) =
1

Z
exp

 4̧

n=1

αndnxn +
¸

(ij)∈E
βijxixj

 (17.49)

whereas the energy function reads as

Q = −

 4̧

n=1

αndnxn +
¸

(ij)∈E
βijxixj

 (17.50)

In our special case we have α2 = α4 = 0, i. e. any observation of nodes x2 and x4 have
no in�uence.

17.5.2 Solutions for the example

17.5.2.1 Solutions for the continuous variables

In order to �nd an optimal set of values X we need to take the partial derivatives of p(X )
with respect to the unknown values xi or equivalently the partial derivatives of − log p(X )
and solve the four equations

∂(− log p(X ))

∂xn
= 0 n = 1, ..., 4 (17.51)

These derivatives lead to 4 equations, which in general are nonlinear. We discuss the �rst
example, since the resulting equations are linear.
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17.5.2.2 Numerical solution for the Levelling network

In this case we have the partials

∂(− log p(X ))

∂x1
= 0 = (x1 − x2 − d12)w12 + (x1 − d1)w1 + (x1 − x4 − d14)w14

∂(− log p(X ))

∂x2
= 0 = −(x1 − x2 − d12)w12 + (x2 − x3 − d23)w23 + (x2 − x4 − d24)w24

∂(− log p(X ))

∂x3
= 0 = −(x2 − x3 − d23)w23 + (x3 − x4 − d34)w34 + (x3 − d3)w3

∂(− log p(X ))

∂x4
= 0 = −(x3 − x4 − d34)w34 − (x1 − x4 − d14)w14 − (x2 − x4 − d24)w24

which can be written as the following equation system

Nx = h (17.52)

with

N =


p12 + p14 + p1 −p12 0 −p14

−p12 p12 + p23 + p24 −p23 −p24

0 −p23 p23 + p34 + p3 −p34

−p14 −p24 −p34 p34 + p14 + p24

(17.53)

h =


p12d12 + p14d14 + p1d1

−p12d12 + p23d23 + p24d24

−p23d23 + p34d34 + p3d3

−p34d34 − p14d14 − p24d24

 (17.54)

Observe, in case we �x the values of nodes 2 and 4, then the normal equation system
reduces to a 2 × 2-system for the variables 1 and 3: As the o�-diagonal element (1, 3) in
N is zero, the two variables x1 and x3 are conditionally independent, given x2 and x4:

x1 ⊥⊥ x3|x2, x4 (17.55)

This is directly visible from the graph.
Moreover, here the ICM-algorithm leads to the following iterative scheme, in case the

weights pi and pij are all assumed to be 1:

x
(ν+1)
1 =

1

3
(h1 + x

(ν)
2 + x

(ν)
4 ) (17.56)

x
(ν+1)
2 =

1

3
(h2 + x

(ν+1)
1 + x

(ν)
3 + x

(ν)
4 ) (17.57)

x
(ν+1)
3 =

1

3
(h3 + x

(ν+1)
2 + x

(ν)
4 ) (17.58)

x
(ν+1)
4 =

1

3
(h4 + x

(ν+1)
1 + x

(ν+1)
3 + x

(ν+1)
2 ) (17.59)

This exactly is what is called the Gauss-Seidel-Iteration scheme (see http://de.wikipedia.
org/wiki/Gau%C3%9F-Seidel-Verfahren), known from numerical mathematics for iter-
atively solving equation systems.
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18 Motions and their Uncertainty

We address the ambiguity of representing uncertain motions. We analyse the relation
between an exponential representation with a homogeneous 4x4 matrix and the repre-
sentation with a rotation matrix, also represented exponentially, and a translation vector.
The rotation parts turns out to be identical, while the translation parts di�er, why a trans-
parent documentation of the motion representation is necessary. As a sideline, the note
addresses the inversion, the concatenation, and the di�erence between uncertain rotations
and uncertain motions.
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18.1 Preface

The note initially (2009) was motivated by the need to concatenate uncertain motions.
Later, in 2017 an extension was motivated by the search for an error in a program for
estimating the motion between two point clouds based on corresponding planar regions.
The error turned out to be a conceptual one: the generation of the test data and the
check of the estimated motions was inconsistent, since one used the exponential form of a
motion, while the other used the exponential form of a rotation and the translation. For
a detailed discussion see Solà et al. (2018).

18.2 Motivation

This note is motivated by a problem when handling uncertain 3D motions or poses: The
two classical representations, the one what we call the exponential representation and the
other what we call partially exponential representation, may both be used for estimating
motions or poses, but lead to di�erent covariance matrices of the translation component.
The note aims at clarifying the mutual relations between the di�erent representations.

The exponential representation of an uncertain motion with mean rotation R and mean
translation Z, exploits the Lie group structure of the noise component of the motion using
what is called a twist vector s, which contains the noise components r and t for rotation
and translation,1 in the form

sM = exp(A(s)) M , (18.1)

with

M =

[
R Z
0T 1

]
, s =

[
r
t

]
, A(s) =

[
S(r) t
0T 0

]
, (18.2)

and

S(r) =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (18.3)

The matrix A(s) is close to zero, such that the motion matrix exp(A(s)) is close to I 4.
The partially exponential representation directly integrates the noise components ρ and

τ for a small rotation and translation

ζM =

[
exp(S(ρ))R Z + τ

0T 1

]
, (18.4)

into M thus only applies the exponential map to the noise component of the rotation.
Again, since ρ is small, the rotation matrix exp(S(ρ)) is close to I 3.

The following example shows the e�ect of the di�erent representations. Given are 100
random samples of an uncertain motion together with the true motion. From this sample
we may obtain two covariance matrices Σ1 and Σ2 with the following vectors of standard
deviations for the rotational and the translational component:

σ1 =


0.5109
0.4803
0.2760
0.4696
0.3324
0.3591

 and σ2 =


0.5109
0.4803
0.2760
0.6125
0.6189
0.7433

 . (18.5)

The rotation parameters have the same standard deviations, while the standard devia-
tions of the translational component signi�cantly di�er. Without further information we
cannot judge, which covariance matrix is the correct one. We would prefer the �rst one,

1Random variables are underscored.
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since it shows smaller standard deviations for the translation component, and thus is more
likely to be the Cramér-Rao lower bound for the uncertainty of the parameters. Actu-
ally, the motion matrices were simulated using the partially exponential representation
and the covariance matrices Σ1 and Σ2 were derived from the sample assuming the par-
tially exponential representation and the exponential representation, respectively. This
demonstrates, the meaning of the two vectors (r, t) and (ρ, τ ) are di�erent.

Both representations are useful, as the following examples demonstrate:

1. On one hand, concatenating uncertain motions appears to be easier with the expo-
nential representation, where the (di�erential of the) twist vector s of the concate-
nated motion M = M2M1 is given by

ds = Ad(M2) ds1 + ds2 with Ad(M2) =

[
R2 0

S(Z2)R2 R2

]
, (18.6)

or
dr = R2 dr1 + dr2 and dt = R2 dt1 + dt2 + S(Z2)R2dr2 . (18.7)

Observe, the matrix Ad(M2) only depends on one of the two motions. In contrast,
the partially exponential representation yields the joined rotation and translation
components

dρ = R2 dρ1 + dρ2 and dτ = R2 dτ 1 + dτ 2 − S(RT
2Z1)dρ2 , (18.8)

which looks very similar. But the relation cannot be written using a matrix only de-
pending on one of the two motions, which is a clear disadvantage when concatenating
multiple motions.

2. On the other hand the epipolar constraint for two calibrated images using partially
exponential representation directly refers to the uncertain rotation and translation
component

x′
T
S(Z + τ ) R(ρ)R x′′ = 0 (18.9)

whereas with the exponential representation it is given by

x′
T

[I 3 | 0 ] Ad(M)
−T

[
0

I 3

]
x′′ = 0 , (18.10)

with the adjoint motion matrix Ad(M) (18.73) or more explicitly by

x′
T
S(R(r)Z + t) R(r)R x′′ = 0 (18.11)

which is more cumbersome to handle, see (18.60).

When estimating a motion matrix from observed points, lines or planes using a maxi-
mum likelihood approach we basically obtain three types of numbers, which can be checked,
i.e., statistically tested, using simulated data, which should lead to the following state-
ments: (a) there are no reasons to believe the parameters are biased, (b) there are no
reasons to believe the variance factor2 deviates from 1, and (c) there are no reasons to
believe the theoretical covariance matrix di�ers from the empirical covariance matrix, see
(Förstner and Wrobel, 2016, Sect. 4.6.8). The test on the parameters and the covariance
matrix may be performed for rotations and translations separately. Depending on how
the representation for the motion is chosen and how the empirical tests are realized, the
parameters usually show no bias, the variance factor does not show a deviation from 1,
the covariance matrix of the rotation parameters coincide but there may be discrepancies
in the covariance matrix of the translation parameters.

2The variance factor measures the distance of the assumed model and the given data. It is Fisher
distributed, if the model holds.
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The dependency on the representation of motions or poses has a direct e�ect on (1)
checking their covariance matrices empirically, either using real or synthetic data,3 on (2)
reporting covariance matrices for motions or poses, and on (3) using them in subsequent
analysis steps.

This note especially we will show:

• The Lie group property of matrix groups can, with some slight modi�cations be
applied to the de�nition and use of uncertain motions represented with the partially
exponential representation.

• We will discuss the variance propagation for inverse, concatenated and relative mo-
tions.

• We derive the relations for rotations as most simple case, and for motions in the
mentioned two representations.

• We give two examples: (1) for estimating motions from corresponding points, and (2)
deriving relative motions from bundle adjustment taking the full covariance matrix
of the resulting pose parameters into account.

Basic material on Lie groups for representing uncertain transformations has been col-
lected by Eade (2014), however, the note does not provide proofs. The most recent paper
on handling uncertain motions which are correlated is by Mangelson et al. (2019), which
appears not to always give the most intuitive expressions. Both papers do not address the
second representation with the pair (R,Z), only.

The note is organized as follows. We �rst give a summary of the relations, assuming
the reader is acquainted with the basic concepts. Then we will provide the relations
in more detail, �rst for rotations � as special motions �, and then for the two types of
motion representations. We will compare the two motion representations and, �nally, give
examples for estimating motions and analysing the relative pose derived from a bundle
adjustment. The proofs will be found in an appendix.

On notation. Matrices are written in capital sans-serif letters, homogeneous 4×4 matri-
ces in upright letters, 3×3 matrices in slanted letters, such as M, A and R, S . Vectors are
written in boldface times, 3-vectors representing 3D points in upright, such as Z vectors
representing (numerically), numerically small entities are written in small vectors, such
as r or m. Stochastic entities are underscored, such as a stochastic 3×3 matrix R or a
stochastic 3-vector r. Names of entities are written in calligraphic letters, in order to be
able to express di�erent representations, e.g., M (M) and M (R,Z). If the entity is as-
sumed to be uncertain we underscore its name, e.g., the uncertain motion may be de�ned
as M (M). For clarity, we sometimes use the multiplication dot between matrices, e.g., in
the expression Ad(M) · s, which is not the multiplication dot for the scalar multiplication
in a.b.

18.3 Overview

We assume the following notation for Lie groups, which in our context refer to groups of
regular matrices:

• A Lie group G has elements g, h ∈ G , an operation f = g ◦ h ∈ G and an inverse
element such that g−1 ◦ g = g ◦ g−1 = e, with the unit element e. The dimension
n of the Lie group is the number of degrees of freedom for representing an element.
An element of G also is called an action (rotation, motion), as it is meant to operate
on a vector.

3The author, not being aware of the di�erence in the two representations, spent one month �nding an
error in his software on estimating a motion from corresponding planes, see (Förstner and Khoshelham,
2017)
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In our case we discuss rotations R ∈ SO(3) and motionsM ∈ SE(3), having dimension
n = 3 and n = 6 respectively.

• The corresponding Lie algebra g spans the tangent space at the unit element, its
elements are n-vectors x ∈ IRn or � equivalently � matrices X = x∧ (read: �wedge�)4

linearly depending on x, y and having the same size as the elements of the Lie group.
The inverse relation is x = X∨ used for deriving the n-vector from the corresponding
matrix.
In our case the elements are 3-vectors r ∈ g = IR3, also called rotation vectors,
and the � not necessarily small � 6-vectors m ∈ g = IR6 also called twist vectors,
concatenating the rotation and the translation components of the motion. As an
example for the matrix X, we have the element S(r) = r∧ , being the skew matrix
of the rotation vector r ∈ g = IR3.

• The basic relation between the Lie algebra and the Lie group is the exponential map

g 7→ G : g = exp(x∧ ) (18.12)

which describes the elements g of G around the unit element e.
As an example, we have the exponential R(r) = exp(S(r)), being the rotation matrix
as element of G = SO(3). The unit element e ∈ G of the rotation group G = SO(3)
here is the unit matrix I 3 = exp(S(0)) and corresponds to the 3-vector 0, i.e.,
x = 0 ∈ g in the Lie algebra g = so(3).
If we write exp(x), where x is an element of the Lie algebra, we actually mean
exp(x∧ ):

exp(x) := exp(x∧ ) . (18.13)

The two tables 18.1 and 18.2 collect the main algebraic relations for rotations, and motions
in exponential and partially exponential representation. They are derived and discussed
more in detail in the next section. The collected relations are useful in the following
situations:

• Representing rotations R (R) and motions M (M) (row 1).

• Generating uncertain rotations R (R) and uncertain motions M (M) (rows 6, with
2 and 3), assuming the small elements have mean 0 and some covariance matrix.
Here the di�erence between the exponential representation M (sM) and the partially
exponential representation M (ζM) become visible.

• Deriving the small left rotation or motion from a small right rotation or motion
leading to the same uncertain rotation or motion (rows 4 and 5), e.g., in the form
M(Ad(M) ·s) M = M(sad) ·M = M ·M(s), derived from the adjoint action exp(xad) =
g exp(x)g−1. Observe, the adjoint matrix is not used in other relations of the
partially exponential representation.

• Deriving small deviations between estimated and true rotations and motions (row
7) using V (r) ≈ I 3 and R(dr) ≈ I 3 + S(dr).

• Switching between the two motion representations (row 8, columns 3 and 4).

• Deriving the mean and covariance matrix of the inverse (rows 10 and 11).

• Deriving mean and the covariance matrix of the concatenation (rows 12 and 13), of
two possibly correlated rotations or motions.

• Deriving mean and the covariance matrix of the relative rotation or motion (rows
14 and 15), of two possibly correlated rotations or motions.

Comparing the relations for the two motion representations in columns 3 and 4, we observe
great similarities, partially identical relations. Speci�cally, the two di�erential motions ds

4The notation results from the outer product of two vectors, which in the special case of 3-vectors
reduces to the cross product. Thus we have x ∧ y = x∧ y equivalent to x× y = [x]×y = S(x)y
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of the exponential representation and dζ of the partially exponential representation are
related by a linear transformation. This can be interpreted as a change of the basis of the
three axes in the tangent space of the Lie group which refer to the translation component.
On the other hand, is it obvious, that the relations for the exponential representation are
simpler and more mutually connected. As mentioned above, e.g., the concatenation of
two di�erential motions (row 12, column 3) only uses the adjoint matrix Ad(M2) of the
second motion, whereas the term −S(R2Z1) with the skew matrix in the expression for
the translation component (row 4) depends on both motions.

1 2 3 4
↓ object \ G → SO(3) SE(3), s SE(3), ζ

1 action, group element

g ∈ G R M =

[
R Z

0T 1

]
M =

[
R Z

0T 1

]
2 small algebra element

x ∈ g r s =

[
r
t

]
ζ =

[
ρ
τ

]
3 log of small action

X = x∧ S(r) A(s) =

[
S(r) t

0T 0

]
(log of row 7, column 4)

(18.3) (18.2)

4 adjoint action at e ∈ G
exp(xad) = g exp(x)g−1

R(rad) = RR(r)RT
M(sad) = M M(s) M−1

M(ζad) = M M(ζ) M−1

(18.29) (18.70) (18.91)
5 adjoint matrix for dx

Xad, dxad = Xad dx Rad = R Ad(M) =

[
R 0

S(Z)R R

]
Ad(M) =

[
R 0

S(Z)R R

]
(18.34) (18.73) (18.94)

6 uncertain group element

g = exp(x) g ∈ G , x small R = R(r)R s
M = exp(A(s)) M ζ

M =

[
R(ρ)R Z + τ

0T 1

]
(18.21) (18.52) (18.54)

7 multiplicative noise element

exp(x) = g g−1 ∈ G R(r) exp(A(s)) =

[
R(r) V (r)t

0T 1

] [
R(ρ) (I3 − R(ρ))Z + τ

0T 1

]
(18.56) (18.56) (18.90)

8 di�erential noise element

dx−1 ∈ g dr ds =

[
I3 0

S(Z) I3

]
dζ dζ =

[
I3 0

−S(Z) I3

]
ds

(18.67) (18.67) (18.67)

Table 18.1: Lie group elements (1/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

18.4 Uncertain Rotations

18.4.1 General setup

In all cases we represent the uncertain linear transformation X by the mean transformation
matrix of size m×m

X : {X ,Σ∆x∆x} (18.14)

and a stochastic n-vector ∆x, which captures the noise of the transformation, and has
zero mean and a covariance matrix as second moments

∆x ∼ N (0,Σ∆x∆x) . (18.15)

I.e. we assume the distribution is uni-modal and can be represented su�ciently well by the
�rst two moments. We do not assume the distribution to be a normal distribution, unless
we want to perform statistical testing. Then, we assume higher order of the nonlinear
relations e�ects are small enough to be acceptable for the application.

The dimension n of the vector ∆x is identical to the degrees of freedom of the trans-
formation, in order to have regular covariance matrix in general. Hence, the two matrices
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1 2 3 4
↓ object \ G → SO(3) SE(3), s SE(3), ζ

9 uncertain inverse

g(−1) ∈ G R
−1 = R

T
(
r(−1)

)
R

T s
M
−1 = M

−1
(
s(−1)

)
M
−1 ζ

M
−1

=

[
R(ρ(−1))RT −RTZ + τ (−1)

0
T 1

]
(18.36) (18.77) (18.95)

10 di�erential inverse

dx(−1), dx(−1) ∈ g dr(−1) = −RTdr ds(−1) = −M−1

ad
ds

[
dρ(−1)

dτ (−1)

]
= −

[
R

T
0

R
T
S(Z) R

T

] [
dρ
dτ

]
(18.38) (18.78) (18.97)

11 concatenation
g = g2 ◦ g1 ∈ G R = R2R1 M = M2M1 M = M2M1

12 di�erential
concatenation dr = R2,ad dr1 + dr2 ds = Ad(M2) ds1 + ds2 dρ = dρ2 + R2dρ1

dx = d(x2 ◦ x1) dτ = dτ2 + R2dτ1 − S(R2Z1)dρ2
(18.42) (18.238) (18.102)

13 relative action

g = g−1
1 ◦ g2 ∈ G R = R

T
1R2 M = M

−1
1 M2 M = M

−1
1 M2

14 di�erential

relative action dr = R
T
1(dr2 − dr1) ds12 = M

−1

1,ad
(ds2 − ds1) dρ = R

T
1(dρ2 − dρ1)

dx = d(x−1
1 ◦ x2) dτ = R

T
1S(Z2 − Z1)dρ1 + R

T
1d(τ2 − τ1)

(18.49) (18.87) (18.107), (18.108)

Table 18.2: Lie group elements (2/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

X and Σ∆x∆x have di�erent dimension in general. The matrix X may be the mean mo-
tion X := E(X ), or an estimated motion X := pX , depending on the context. If we use
a minimal representation, it also may be the vector x specifying the motion. The way
how X is related to ∆x needs to be speci�ed, and even may vary for the same type of
transformation. In all cases we might exploit the fact that transformations build a Lie
group, i.e., a continuous group, and can be written as matrix exponential. We warm up
with rotations as special motions.

18.4.2 Representing rotations

There are many ways to represent rotations. We only address three of them.

1. We start with the classical de�nition of rotations using Euler angles, say α =
(α1, α2, α3). We generally have the uncertain rotation

R : {α,Σ∆α∆α} . (18.16)

e.g., speci�ed by

R = R2(α3)R2(α2)R1(α1) with α = α+ ∆α , (18.17)

where the indices of the rotation matrices indicate the rotation axes. In whatever
sequenced the angles are applied, and what ever axis sequence is chosen, the repre-
sentation for some angles will have a singularity, what is called the gimbal lock.

2. Therefore the Rodriguez form, depending on a rotation vector ϑ, often is preferred.
Here we have the uncertain rotation

R : {ϑ,Σ∆ϑ∆ϑ} . (18.18)

It is given by the exponential map of the skew matrix Sϑ of the rotation vector ϑ:

R = exp(S(ϑ)) = I 3 +
sin ‖ϑ‖
‖ϑ‖

Sϑ +
1− cos ‖ϑ‖
‖ϑ‖2

S2
ϑ with ϑ = ϑ+ ∆ϑ , (18.19)
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3. Finally, we also can adopt the multiplicative de�nition of an uncertain rotation. Here
the uncertain rotation is given by

R : {R,Σrr} , (18.20)

speci�ed by
R = exp(S(r)) R = R(r) R . (18.21)

18.4.3 Relations between the representations

When comparing the three de�nitions of the uncertain rotations, we need to have explicit
expressions for the derivatives of R w.r.t. the elements of the noise component, either ∆α,
∆θ, or r.

Unfortunately, the expressions for the derivatives of the exponential exp(S(ϑ)) w.r.t. ϑ
at some arbitrary � not necessarily small � vector, e.g., at ϑ = E(ϑ) are quite cumbersome.
Therefore in the following we will not use the de�nition of an uncertain transformation
using the exponential of some matrix depending on arbitrary parameters. This excludes
choice 2 for de�ning uncertain rotations.

However, we can derive the Jacobian of the angles r in the multiplicative exponential
representation w.r.t. Euler angles α. We speci�cally have

Jrα =
∂r

∂α
= [R2(α3)R2(α2)e1 | R2(α3)e2 | e3] , (18.22)

see Appendix 18.8.2. Since |Jrα| = cosα2 we have

Jαr = J−1
rα if cosα2 /= 0 . (18.23)

This not only makes the Gimbal lock of the representation with Euler angles explicit, but
shows, that we can choose either representation if we avoid the Gimbal lock.

Since all minimal representations for rotations show singularities for speci�c rotations
or are not unique, we only discuss the option 3, with the multiplicative way to represent
an uncertain rotation.

18.4.4 The rotation in exponential representation

We now discuss the adjoint rotation, the inverse, the concatenated, and the relative rota-
tion.

18.4.4.1 The adjoint rotation

Let us for a moment de�ne an uncertain rotation by �rst applying a small random rotation
R(q) and then a �xed large rotation, e.g., R := E(R):

R = R R(q) D(q) = Σqq . (18.24)

Applying it to a vector x we obtain a stochastic vector

y = R x = R R(q) x . (18.25)

Now, let us choose another small rotation via what is called the adjoint rotation vector
qad

5

R(qad) = R R(q) R−1 = R R(q) RT . (18.26)

If we apply this small rotation with qad to y = Rx we obtain

R(q
ad

) R x = R R(q) x . (18.27)

5the use of the name q for a rotation vector, should not be confused with the common naming of
quaternions, which do not play a role in this note.
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Hence, if we �rst perturb x by a small rotation q and then rotate the perturbed vector
R(q) x we obtain the same uncertain vector as when �rst rotating x and then perturbing
the rotated vector y = Rx with the adjoint rotation vector q

ad
. We could also have

written the relation � neutrally w.r.t. order � as

R(q
L

) R x = R R(q
R

) x , (18.28)

the indices standing for left and right hand rotation. Hence the adjoint rotation q
ad

=: q
L

leads to the same result if applied to the left of a rotation as the original rotation q applied
to the right of a rotation.6

Thus we have for any rotation vector r the adjoint rotation

R(rad) = R R(r) R−1 (18.29)

or the relation
R(rad) R = R R(r) . (18.30)

Now, we express the di�erential adjoint rotation vector drad directly as a function of the
di�erential vector dr. We have

dR(rad) R = R dR(r) (18.31)

or
S(drad) R = R S(dr) = S(Rdr) R (18.32)

hence
drad = R dr . (18.33)

We observe: the di�erential rotation vector r and its di�erential adjoint rotation vector
drad are linearly related by the rotation matrix R. Since, due to R(r) = I 3 +S(r)+O(r2

i ),
the vector r spans the tangent space of a rotation at the unit rotation. But rad also de�nes
a basis, just a di�erent one in this 3-dimensional tangent space.

Later we will see that the rotation matrix in (18.33) actually is the adjoint rotation
matrix, which in this case simpli�es to

Rad = R , (18.34)

see (18.73).

18.4.4.2 The uncertain inverse rotation

Let now the uncertain rotation be given by

R = R(r) R . (18.35)

The inverse rotation is represented the same way

R−1 = R(r(−1)) R−1 . (18.36)

The mean of the uncertain inverse is the inverse of the mean rotation:

E(R−1) = (E(R))
−1

. (18.37)

The di�erential rotation vector dr(−1) of the inverse rotation can be shown to be

dr(−1) = −RTdr , (18.38)

see Appendix 18.8.5.
6Following this interpretation of the adjoint rotation it would have been straight forward to de-

�ne an uncertain rotation by R = R exp(S(r)). However, most authors use the original de�nition
of an uncertain rotation, where the noise component of the rotation is applied after the mean rota-
tion. Unfortunately the de�niton of a similarity transformation or conjugation of matrices B = X

−1
AX

(https://mathworld.wolfram.com/SimilarMatrices.html) is just using the inverse operation sequence as
the adjoint action exp(xad) = g exp(x) g−1 in a Lie group; however, see https://mathworld.wolfram.

com/SimilarityTransformation.html.
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18.4.4.3 The uncertain concatenated rotation

Let a possibly correlated rotation pair be given by{
R

1
,R

2

}
:

{
[R1,R2],D

([
r1

r2

])}
. (18.39)

The concatenated rotation is

R = R
2
R

1
: R = R2R1 = R(r)R . (18.40)

The mean of the concatenated rotations is

E(R) = E(R2) E(R1) . (18.41)

The di�erential of the rotation vector r of the concatenated rotations is given by

dr = R2dr1 + dr2 . (18.42)

This is a special case of the concatenated motions, see Appendix 18.8.8.
Observe, Eq. (18.42) allows to derive the uncertainty of a correlated rotation pair{

R
1
,R

2

}
Σrr = J Σpp J

T , (18.43)

with

J = [R2 | I 3] and Σpp = D

([
r1

r2

])
=

[
Σr1r1 Σr1r2

Σr2r1 Σr2r2

]
. (18.44)

18.4.4.4 The uncertain relative rotation

We want to determine the relative rotation

R12 = R−1
1 R2 (18.45)

in case all rotations are uncertain and possibly correlated. Let the uncertain rotations be
given by

R1 = R(r1) R1 and R2 = R(r2) R2 . (18.46)

Then the uncertain relative rotation is

R(r12) R12 = (R(r1) R1)−1R(r2) R2 . (18.47)

The mean of the relative rotations is

E(R) = E(R1)−1 E(R2) . (18.48)

The di�erential dr12 of the rotation vector of the relative rotation is

dr12 = RT
1 (dr2 − dr1) . (18.49)

The result is a special case of the relative motion, see Appendix 18.8.10
The result in (18.49) can be derived using the relation (18.36) for the inverse and the

relation (18.42) for the concatenation.
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18.5 Uncertain Motions

18.5.1 Representations

The uncertainty of a motion is captured in the uncertain twist vector m(∆m)

∆m ∼ N (0,Σ∆m∆m) . (18.50)

We address the following two representations

1. The exponential representation with the twist vector

m : s =

[
r
t

]
. (18.51)

is given by

sM : sM = exp(A(s)) M with A(s) =

[
S(r) t
0T 0

]
. (18.52)

2. The partially exponential representation with the twist vector

m : ζ =

[
ρ
τ

]
. (18.53)

is given by
ζM : ζM =

[
ζR ζZ
0T 1

]
(18.54)

with
ζR = exp(S(ρ)) R and ζZ = Z + τ (18.55)

It appears obvious, that both representations are useful. However, they di�er in the
meaning of the twist vector, as we will see.

Observe, we have

R(r) = exp(S(r)) and M(s) = exp(A(s)) =

[
R(r) V (r)t
0T 1

]
(18.56)

with

R(r) = I 3 +
∞̧

n=1

Sn(r)

n!
= I 3 +

sin ‖r‖
‖r‖

Sr +
1− cos ‖r‖
‖r‖2

S2
r (18.57)

and

V (r) = I 3 +
∞̧

n=1

Sn(r)

(n+ 1)!
= I 3 +

1− cos ‖r‖
‖r‖2

Sr +
1− sin ‖r‖
‖r‖3

S2
r . (18.58)

see Leonardos et al. (2015, eq. (19)). Thus for small values of ‖r‖ we may use the �rst
order approximation

V (r) ≈ I 3 . (18.59)

Therefore we have for an uncertain motion in exponential representation with small s

sM ≈
[
R(r) t
0T 1

] [
R Z
0T 1

]
=

[
R(r)R R(r)Z + t

0T 1

]
. (18.60)

The corresponding expression for the partially exponential representation is lengthy.
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18.5.2 Comparing the two representations

We now compare the two representations with the two twist vectors

s =

[
r
t

]
and ζ =

[
ρ
τ

]
(18.61)

for de�ning the uncertain motions as

sM = exp(A(s)) M and ζM =

[
exp(S(ζ)) R Z + τ

0T 1

]
. (18.62)

Assuming the two uncertain motions are statistically equivalent, we can relate the di�er-
entials of the twist vectors. We obtain the total di�erential for the two motions from:

• for the exponential representation

sdM =

[
S(dr) dt

0T 0

] [
R Z
0T 1

]
=

[
S(dr)R S(dr)Z + dt

0T 1

]
(18.63)

and

• for the partially exponential model

ζdM =

[
S(dρ) dτ

0T 0

] [
R Z
0T 1

]
=

[
S(dρ)R dτ

0T 1

]
(18.64)

If the uncertain motions are the same, the two di�erentials must be identical, and we
obtain the relations

dr = dρ or dρ = dr (18.65)

dt = dτ + S(Z)dρ or dτ = dt− S(Z)dr (18.66)[
dr
dt

]
=

[
I 3 0

S(Z) I 3

] [
dρ
dτ

]
or

[
dρ
dτ

]
=

[
I 3 0

−S(Z) I 3

] [
dr
dt

]
between the twist vectors s and ζ. Hence, we have the relations

ds = Jsζdζ and dζ = Jζsds (18.67)

with

Jsζ =

[
I 3 0

S(Z) I 3

]
and Jζs = J−1

sζ =

[
I 3 0

−S(Z) I 3

]
. (18.68)

This allows us to transfer the covariance matrices of the twist vectors

Σsξ = JsζΣζζJ
T
sζ and Σζζ = JsζΣssJ

T
sζ . (18.69)

between both representations.
As a result, we �nd: the uncertain rotation components dr and dρ of both representa-

tions are identical but the uncertain translation components dt and dτ di�er by the e�ect
of the uncertain rotation applied to the full translation Z.

18.5.3 The motion in exponential representation

We now discuss the adjoint, the inverse, the concatenated, and the relative motion in
exponential representation.
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18.5.3.1 The adjoint motion for the exponential representation

The adjoint motion M(sad) is de�ned with, what is called the adjoint motion vector sad,

M(sad) = M M(s) M−1 . (18.70)

For proofs we often use it in the di�erential form

A(sad) M = M A(s) , (18.71)

allowing to exchange the di�erential of the perturbing noise matrix A and the motion
matrix M. Also here we obtain a simple linear relation between the di�erentials of the
twist vectors

dsad = Ad(M) ds , (18.72)

with the adjoint motion matrix relating the two 6-vectors

Ad(M) =

[
R 0

S(Z)R R

]
, (18.73)

and its inverse

M−1
ad =

[
RT 0

RT ST(Z) RT

]
. (18.74)

Eq. (18.73) can also be written as

A (Ad(M) · ds) M = M A(ds) . (18.75)

The proof is given in Appendix 18.8.3. We observe: the di�erential rotation vector s
and its di�erential adjoint motion vector dsad are linearly related by the adjoint motion
matrix Ad(M). The relation between the small motion vectors only holds for di�erential
motions. This is su�cient for all practical cases, where the relative precision of the motion
parameters is high enough. Observe, when restricting to rotations we have

Rad = R , (18.76)

The simplicity of this relation does not reveil the strength of the concept for more general
transformations.

18.5.3.2 The inverse motion in exponential representation

Similarly as for rotations, we can derive the relation between the di�erential twist vector
of the inverse motion to the one of the original motion.

We have the basic relation

M−1 = M
(
s(−1)

)
·M−1 = (M(s) ·M)−1 = M−1 ·M−1(s) . (18.77)

Using the adjoint motion we can derive the following relation between the di�erential twist
vectors:

ds(−1) = −Ad(M)
−1 ds , (18.78)

see the proof in the Appendix 18.8.6

18.5.3.3 The concatenated motion in exponential representation

Let a possibly correlated motion pair be given by

{
sM 1,

sM 2

}
:

{
[M1,M2],D

([
s1

s2

])}
. (18.79)
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The concatenated motion is

sM = sM 2
sM 1 : sM = sM2

sM1 = M(s)M . (18.80)

The mean of the concatenated motion is

E(sM) = E(sM2) E(sM1) . (18.81)

The di�erential of the rotation vector s of the concatenated rotation is given by

ds = M2ds1 + ds2 . (18.82)

see Appendix 18.8.8.

18.5.3.4 The relative motion in exponential representation

We want to determine the relative motion

M12 = M−1
1 M2 (18.83)

in case all motions are uncertain. Let the uncertain motions be given by

sM1 = M(s1) M1 and sM2 = M(s2) M2 . (18.84)

Then the uncertain relative motion is

M(s12) M12 = (M(s1) M1)−1M(s2) M2 ., (18.85)

The mean of the relative rotations is

E(sM) = E(sM1)−1 E(sM2) . (18.86)

The di�erential ds12 of the rotation vector of the relative rotation is

ds12 = MT
1 (ds2 − ds1) . (18.87)

see Appendix 18.8.10

18.5.4 The motion in partially exponential representation

The uncertain motion is de�ned as

ζM =

[
R(ρ)R Z + τ

0T 1

]
, D(ζ) = Σζζ , (18.88)

We also can write this as a multiplication of a motion with a small random motion

ζM = M(ζ) M with (18.89)

with the small motion

M(ζ) =

[
R(ρ) (I 3 − R(ρ))Z + τ
0T 1

]
and M =

[
R Z
0T 1

]
(18.90)
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18.5.4.1 The adjoint motion for the partially exponential representation

Since the adjoint motion transfers small motions, we also can de�ne an adjoint motion in
case of the partially exponential representation. It is de�ned as the motion depending on
the adjoint twist vector ζad

M(ζad) = M M(ζ) M−1 . (18.91)

Thus we have the form which can be used in proofs

M(ζ
ad

) M = M M(ζ) . (18.92)

Interestingly, also here we have a linear relationship between the di�erential adjoint
twistvector dζad and the di�erential original twist vector dζ:

dζad = ζMad dζ (18.93)

with the adjoint motion matrix

ζMad =

[
R 0

S(Z) R R

]
, (18.94)

Observe, that the two adjoint matrices sMad in (18.73) and ζMad in (18.94) are identical.
This results from the fact, that the adjoint motion for a di�erential twist has translation
component zero, hence the two adjoint twist vectors do not di�er if the original twist
vectors are the same: The Jacobians in (18.68) then are unit matrices. This is the reason,
why we did not indicate the di�erence in the naming of the adjoint matrices in Table 18.1
in row 5, columns 3 and 4.

18.5.4.2 The inverse motion in partially exponential representation

The uncertain inverse in partially exponential representation is de�ned as

ζM
−1

=

[
R(ρ(−1))RT −RTZ + τ (−1)

0 1

]
, (18.95)

and depends on the stochastic twist vector

ζ(−1) =

[
ρ(−1)

τ (−1)

]
. (18.96)

As we saw in the last section, the di�erential adjunct twists are related to their twists via
the adjoint motion matrix, which is identical for both cases. Therefore also the di�erential
of the inverse twist vector in the partially exponential representation is given by[

dρ(−1)

dτ (−1)

]
= −

[
RT 0

−RTST(Z) RT

] [
dρ
dτ

]
, (18.97)

see Appendix 18.8.7. Observe, this is not the negative inverse of the adjunct motion
matrix, since we have

Ad(M) Ad(M)
−1

=

[
R 0

S(Z) R R

] [
RT 0

−RTS(Z) RT

]
=

[
I 3 0

0 I 3

]
, (18.98)

and the second factor di�ers in the sign of the (2,1)-submatrix.
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18.5.4.3 The concatenated motion in partially exponential representation

Let a possibly correlated motion pair be given by

{
ζM 1,

ζM 2

}
:

{
[M1,M2],D

([
ζ

1
ζ

2

])}
. (18.99)

The concatenated motion is

ζM = ζM 2
ζM 1 : ζM = ζM2

ζM1 . (18.100)

We �nd the mean values of the concatenated motion is

E(ζM) = E
(
ζM2

)
E
(
ζM1

)
. (18.101)

The di�erentials of the twist vectors also are linearly related by

dρ = dρ2 + R2dρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 (18.102)

Observe, the rotation component transforms as for the exponential represenation and
the translation component has a di�erent term with the skew matrix. Moreover, and much
more important: this matrix depends on both motions via Z1 and R2, which complicates
multiple concatenations.

18.5.4.4 The relative motion in partially exponential representation

Let a possibly correlated motion pair be given by

{
ζM 1,

ζM 2

}
:

{
[M1,M2],D

([
ζ

1
ζ

2

])}
. (18.103)

Then the relative pose can be determined by

ζM12 = ζM
−1

1
ζM2 =

[
ζR12

ζZ12

0T 1

]
=

[
R(ρ

12
)R12 Z12 + τ 12

0T 1

]
. (18.104)

or from
ζR12 = ζR

T

1
ζR2 and ζZ12 = ζR

T

1 (ζZ2 − ζZ1) . (18.105)

We obtain the mean relative motion as

E(ζM12) = E(ζM1)−1E(ζM2) (18.106)

Using the result from the uncertain relative rotation the di�erentials of the rotation and
the translation vector are related by

dρ12 = RT
1 (dρ2 − dρ1) (18.107)

and by variance propagation from (18.105)

dτ 12 = RT
1S(Z2 −Z1)dρ1 + RT

1d(τ 2 − τ 1) . (18.108)

18.5.5 Evaluating the covariance matrix of estimated motions

We now discuss how to evaluate whether a theoretical covariance matrix is consistent with
an empirical one.

Evaluating whether the theoretical covariance matrix Σpθpθ of estimated parameters θ

is trustworthy, it can be compared with the empirical covariance matrix pΣpθpθ derived from
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a sample of {pθk, k = 1, ...,K}, when knowing the true value θ̃, e.g., when using simulated
data pΣpθpθ =

1

K

Ķ

k=1

(pθk − θ̃)(pθk − θ̃)T . (18.109)

In our context we, instead of the di�erences pθk−θ̃ of the estimated and the true parameters
we use the estimated twist vectors xmk, since their means are zero.

When evaluating the covariance matrix of estimated motions from a sample pMk, k =
1, ...,K and a given true motion M we need to distinguish how we determine the empirical
covariance matrix of the twist vector.

• In the case of the exponential representation we use the small matrices

Lk = pMkM
−1 (18.110)

=

[ pRk pZk
0T 1

] [
RT −RTT
0T 1

]
(18.111)

=

[ pRkRT pZk − pRkRTZ
0T 1

]
(18.112)

≈ I 4 +

[
S(prk) ptk

0T 1

]
. (18.113)

and derive the small twist vectors psk = (prk,ptk) from

prk =

 Lk23

Lk12

Lk31

 =

 (pRkRT)23

(pRkRT)12

(pRkRT)31

 and ptk =

 Lk14

Lk24

Lk34

 = pZk− pRkRTZ (18.114)

This also could be written compactly as

psk = log
(pMkM

−1
)∨

, (18.115)

the operator ∨ (read: �vee�) being the inverse of the operator ∧, thus, if X = x∧ we
have x = X∨.
Then the empirical covariance matrix of ps is

pΣpsps =
1

K

¸
k

sks
T
k . (18.116)

• In the case of the partially multiplicative model we use

Gk = pRkRT ≈ I 3 + S(ρk) and hk = pZk −Z = τ k (18.117)

This leads to the elements of the small twist vector ζk = (ρk, τ k)

ρk =

 Gk23

Gk12

Gk31

 =

 (pRkRT)23

(pRkRT)12

(pRkRT)31

 and τ k = hk = pZk −Z . (18.118)

Then the empirical covariance matrix of ps is
pΣpζ pζ =

1

I

¸
k

ζkζ
T
k . (18.119)

As a result, linearizing the given model and deriving the empirical deviations of the esti-
mated motions from the true motion need to be consistent.

In both cases we use a statistical test to check whether the expectation of the covariance
matrix from the sample is identical to the theoretical covariance matrix, see (Förstner and
Wrobel, 2016, Sect. 4.6.8.2).
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18.6 Examples

We discuss two applications:

• Estimating motion parameters,

• Comparing absolute and relative poses.

18.6.1 Estimating motion parameters

Let us assume we have given I corresponding 3D points {X,Y }i, i = 1, ..., I, where the
coordinates Xi are �xed given values, and the coordinates Y i are noisy observations
of the corresponding moved points Xi, having covariance matrices Σii. We assume the
correspondences are mutually independent, hence Σii′ = 0 . Then, with the homogeneous
coordinates

Xi =

[
Xi

1

]
and Yi =

[
Y i

1

]
(18.120)

we have the non-linear Gauss-Markov model (stochastical variables are underscored)

E(Yi) = M Xi and D(Yi) =

[
Σii 0
0T 0

]
with i = 1, ..., I . (18.121)

or, with the residuals (corrections),

Yi + vi = M Xi . (18.122)

We assume we have an approximate motion matrix Ma. The model needs to be linearized,
which depends on the type of representation.

18.6.1.1 Linearization with the exponential representation

With the exponential representation we have

Yi + vi = M(s) Ma Xi = M(s) Xa
i (18.123)

with the approximately moved coordinates

sXa
i = Ma Xi . (18.124)

The goal is to estimate the twist vector s form the I correspondences. Linearization leads
to

Yi + vi = (I 4 + A(s)) sXa
i (18.125)

where vi are the residuals of (corrections to) the coordinates Yi. With the linearized
observations

s∆y = Yi − sXa
i (18.126)

this can be rewritten as

s∆yi + vi = A(s)) sXa
i (18.127)

s∆yi + vi =

[
S(r) t
0T 0

] [
sXa

i

1

]
(18.128)

s∆yi + vi = S(r)sXa
i + t (18.129)

(18.130)

thus �nally
s∆yi + vi = [−S(sXa

i ) | I 3]

[
s
t

]
(18.131)
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or the linear substitute model
∆yi + vi = sX i ∆θ (18.132)

with the design matrix for each point and the unknown parameters

sX i = [−S(sXa
i ) | I 3] and ∆θ = s . (18.133)

The update of the parameters within the ν-th iteration is

sM(ν+1) =

[
exp(S(pr(ν))) pt(ν)

0T 1

]
M(ν) . (18.134)

18.6.1.2 Linearization with the partially exponential representation

With the exponential representation we have

Yi + vi = ζM Xi =

[
R(ρ) R Z + τ

0T 1

] [
Xi

1

]
(18.135)

Linerization leads to

Yi + vi =

[
(I 3 + S(ρ)) Ra Za + τ

0T 1

] [
Xi

1

]
(18.136)

Yi + vi =

[
Ra Xi + S(ρ) Ra Xi +Za + τ

1

]
(18.137)

With the approximately rotated coordinates

ζX
a

i = Ra Xi (18.138)

and the linearized observations

ζ∆y = Y i − (Ra Xi +Za) (18.139)

we have the linearized model

ζ∆y + ζvi = S(ρ)ζX
a

i + τ (18.140)

or �nally
ζ∆y + ζvi = ζX i ∆θ (18.141)

with
ζX i = [−S(ζX

a

i ) | I 3] and ∆θ = ζ . (18.142)

The update of the parameters within the ν-th iteration is

ζM
(ν+1)

=

[
R(pρ(ν)) R(ν) Z(ν) + pτ (ν)

0T 1

]
. (18.143)

18.6.1.3 Comparison

The design matrices di�er in the argument of the skew matrix. For the exponential model
we have explicitly

sX i = [−S(RaXi +Za) | I 3] (18.144)

while for the partially exponential model we have

ζX i = [−S(RaXi) | I 3] (18.145)

Hence, the normal equation matrices

sN =
¸
i

sXT
i Σ−1

ii
sX i and ζN =

¸
i

ζX
T

i Σ−1
ii

ζX i (18.146)
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are di�ering in the rotation component and therefore also the inverse normal equation
matrices, i.e., the covariance matrices of the estimated parameters.

Observe, in an extended Kalman �lter for the motion parametrized by x with inno-
vation of measurement residual yk = zk − h(pxk|k−1) the Jacobian H = ∂h/∂x depends
on the representation of the motion in the function h, which may use one of the repre-
sentations discussed in this note. The resulting covariance matrices will of course di�er,
depending on the choice of the representation.

18.6.2 Example for comparing absolute and relative poses in multi-
view analysis

Let aus assume a free bundle block adjustment with two cameras at Zt, t = 1, 2 and 6
scene points Xi, i = 1..6, as shown in Fig 18.1. The basis points towards the scene points,
mimicking a docking situation. We are interested in precision of the relative motion.

X

21

i

ZZ

D

Z

X

Y

Figure 18.1: Relative motion from free bundle adjustment. The basis is 1 m. The distance
D to the scene points is 2 m. The distance di�erence of the scene points is 0.3 m. The
uncertainty of the image rays is 0.1 mrad

The free bundle adjustment with the software package BACS7 (Schneider and Förstner,
2013) yields the covariance matrix of all pose parameters �xing the gauge in the centroid
of the given scene points. The covariance matrix of the 12 parameters of the two twists is
given by

Σpppp = D

([
ζ

1
ζ

2

])
= SRS (18.147)

where the diagonal matrix S = Diag([σpu ]) contains the standard deviations, and the
matrix R = [ρu′u′′ ] the correlations between the parameters. As an example we obtain the
standard deviations for the rotations in [rad] and for the translations in [m] σρ11 στ11 σρ21 στ21

σρ12 στ12 σρ22 στ22
σρ13 στ13 σρ23 στ23

 =

 0.0141 0.0425 0.0137 0.0278
0.0141 0.0425 0.0137 0.0278
0.0004 0.0121 0.0003 0.0078

 (18.148)

The correlation matrix R is given by

1

1000



1000 0 0 0 −1000 0 995 0 0 0 −995 0
0 1000 0 1000 0 0 0 995 0 995 0 0
0 0 1000 0 0 0 0 0 7 0 0 0
0 1000 0 1000 0 0 0 995 0 995 0 0

−1000 0 0 0 1000 0 −995 0 0 0 995 0
0 0 0 0 0 1000 0 0 0 0 0 992

995 0 0 0 −995 0 1000 0 0 0 −1000 0
0 995 0 995 0 0 0 1000 0 1000 0 0
0 0 7 0 0 0 0 0 1000 0 0 0
0 995 0 995 0 0 0 1000 0 1000 0 0
−995 0 0 0 995 0 −1000 0 0 0 1000 0

0 0 0 0 0 992 0 0 0 0 0 1000



For symmetry reasons the rotations around and the translations along the X- and the
Y -axes have the same standard deviation. Observe the position of the cameras w.r.t. scene
is only 3 to 4 cm. Also, the rotation angles around the Y -and the Y -axis are 0.014 [rad] or
appr. 0.8◦. Also there are very high correlations between the two sets of pose parameters,
some numerically nearly 1.

7bundle adjustment for cameras systems
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If we now determine the relative pose M := M12 = M−1
1 M2 we obtain the following set

of standard deviations of the twist vector of the relative pose using (18.107) and (18.108) σρ1 στ1
σρ2 στ2
σρ3 στ3

 =

 0.0014 0.0028
0.0014 0.0028
0.0005 0.0045

 (18.149)

The precision of the rotations around and the translations along the X- and Y -axes are
approximately 10-times more precise, which is cause by the high correlations of the corre-
sponding pose parameters of the two cameras. The correlation matrix of the relative pose
parameters is

1.0000 0 0 0 −0.4963 0
0 1.0000 0 0.4963 0 0
0 0 1.0000 0 0 0
0 0.4963 0 1.0000 0 0

−0.4963 0 0 0 1.0000 0
0 0 0 0 0 1.0000

 (18.150)

showing no correlations above 50 %.

18.7 Matlab Software

The main routines are available as Matlab-functions.

1 calc_A_from_s.m A =

[
S(r) t

0T 0

]
2 calc_concatenated_M_s.m M(s) = M(s2) ·M(s1)

4 calc_concatenated_M_z.m M(ζ) = M(ζ
2
) ·M(ζ

1
)

5 calc_concatenated_R.m R(r) = R2(r2) · R(r1)

6 calc_inverse_M_s.m M(s(−1)) = M(s)

7 calc_inverse_M_z.m M(ζ(−1)) = M(ζ)

8 calc_inverse_R.m R(r(−1)) = R(r)

9 calc_relative_M_s.m M(s) = M−1(s1) ·M(s2)

10 calc_relative_M_z.m M(ζ) = M−1(ζ
1
) ·M(ζ

2
)

11 calc_relative_R.m M(r) = RT(r1) · R(r2)

12 calc_s_from_A.m A =

[
S(r) t

0T 0

]
→ s =

[
r

t

]
13 calc_z_from_M_M0.m M = M(ζ) ·M0 → ζ

Table 18.3: Matlab routines for rotations and motions in exponential and partially expo-
nential representation

The variables for rotations and motions are structs:

{R.R, R.C} {M.Ms, M.Cs} {M.Mz, M.Cz} . (18.151)

with the covariance matrices *.C* having the sizes 3×3, 6×6, and 6×6. For the input of
the concatenated and relative rotations and motions we have structs for the transformation
pairs:

{Rp.Rp, Rp.Cp} {Mp.Msp, Mp.Csp} {Mp.Mzp, Mp.Czp} . (18.152)
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Here the transformations are concatenated leading to

Rp.Rp = [R1.R,R2.R] (18.153)

Msp.Msp = [M1s.Ms,M2s.Ms] (18.154)

Mzp.Mzp = [M1z.Mz,M2z.Mz] . (18.155)

The covariance matrices of the pairs allow for correlated transformation parameters, i.e.,

Rp.Cp :=

[
Σr1r1 Σr1r2

Σr2r1 Σr2r2

]
(18.156)

Msp.Csp :=

[
Σs1s1 Σs1s2

Σs2s1 Σs2s2

]
(18.157)

Mzp.Czp :=

[
Σζ1ζ1 Σζ1ζ2

Σζ2ζ1 Σζ2ζ2

]
. (18.158)

In addition we have two routines for each representation to check the implementation:

• check_basics_rotations.m and check_simulated_rotation.m,

• check_basics_motion_s.m and check_simulated_motion_s.m, and

• check_basics_motion_z.m and check_simulated_motion_z.m.

One checks the basic relations:

• vector of adjoint transformtion,

• vector of inverse transformtion,

• function for inverse transformtion,

• vector of concatenated transformtion,

• vector of relative transformtion,

• di�erence transformation T12 as concatenation of T −1
1 and T2, hence T12 = T −1

1 ◦T2.

The output are di�erences between entities derived in two di�erent manners, which there-
fore should be numerically small. If no relation fails the numerical test, the transformation
is classi�ed as ok.

The other checks the whether the mean parameters and their covariance matrix de-
rived from a sample is identical to the given (theoretical) mean and covariance matrix.
The output provides the test statistics for the covariance matrix and the mean and the
corresponding critical region. E.g. for the exponentially represented motion we obtain:

Checks for motions s

Number U of unknown parameters = 6

Redundancy R = 6

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx ok: lambda = 23.9562 in [5.8957,49.0108]

mean of parameters x ok: mean(dx) = 6.2880 in [0.2994,24.1028]

If the prespeci�ed noise standard deviation sigma_n is small, generally no test fails. If
it is set to sigma_n= 0., it is likely that the tests fail due to neglected second order e�ects.
Also, if the number K of samples is large, the statistical test becomes more sensitive, such
that test statistics may lie outside the critical region.

Finally, the covariance matrices derived with the partially exponential and the expo-
nential representations are compared assuming the motions have been generated with the
partially exponential representation. The comparison shows, that the rotations together
with their covariance matrix do not signi�cantly di�er, but the mean values do:
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Checks for rotations s|z

Number U of unknown parameters = 3

Redundancy R = 3

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx ok: lambda = 11.8448 in [0.2994,24.1028]

mean of parameters x ok: mean(dx) = 1.6323 in [0.0153,17.7300]

++++++++++++++++++++++++++++++++++++++++++++++++

Checks for translations s|z

Number U of unknown parameters = 3

Redundancy R = 3

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx not ok: lambda = 108.5578 not in [0.2994,24.1028] *****

mean of parameters x ok: mean(dx) = 0.5210 in [0.0153,17.7300]

18.8 Appendix

18.8.1 Epipolar constraint using motion matrices

If the two images can be modelled as (see Förstner and Wrobel (2016, Eq. (12.34)), PCV)

x′ = [K1 | 0]M−1
1 X and x′′ = [K2 | 0]M−1

2 X

the projection rays are (see PCV (12.76))

lx′ = Q1 L and lx′′ = Q2 L

with the projection matrices for lines

Q1 = [0 | KO
1] M−1

L,1 and Q2 = [0 | KO
2] M−1

L,2

The motion matrix for lines and its inverse are given by (see PCV (12.75))

ML =

[
R 0

S(Z)R R

]
and M−1

L =

[
RT 0

RTST(Z) RT

]
and identical to the adjoint motion matrix, see Table row 5:

ML ≡ Ad(M) (18.159)

Hence we have the line projection matrices

Q1 = [0 | KO
1] M−1

ad,1 and Q2 = [0 | KO
2] M−1

ad,2

Two lines Li, i = 1, 2 intersect if LT
1DL2 = 0 (see PCV (7.100)), which is the basis for the

de�nition of the fundamental matrix (see PCV (13.70))

F = Q1DQ
T
2 = [0 | KO] M−1

ad,1

[
0 I

I 0

]
M−T

ad,2

[
0

KOT

]
which specializes to the essential matrix assuming the coordinate system in the left image
and the motion M from the left to the right camera

E = [I 3 | 0 ]M−T
ad,2

[
0

I 3

]
= S(Z)R . (18.160)
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18.8.2 Di�erential relation between Euler angles and the expo-
nential representation

A rotation can be represented by Euler angles with the vector

α =

 α1

α2

α3

 (18.161)

e.g., as
R(α) = R3(α3)R2(α2)R1(α1) (18.162)

and by a multiplicative representation with a small vector

r =

 r1

r2

r3

 (18.163)

as
R(r,Ra) := R(r)Ra . (18.164)

The task is to derive the Jacobian

Jrα =
∂r

∂α
. (18.165)

We start from the identity of the total derivative

dR = dR(α) = dR(r,Ra) . (18.166)

and aim at �nding a relation between dα and dr under the assumption R = Ra, i.e.,
di�erential vectors dα and dr. We �rst obtain

dR(α) = d (R3(α3)R2(α2)R1(α1)) (18.167)

= dR3(α3) (R2(α2)R1(α1)) + R3(α3) dR2(α2) R1(α1) + (R3(α3)R2(α2)) dR1(α1)

Now we observe, e.g., for α1

dR1(α1) = d

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

 (18.168)

=

 0 0 0
0 − sinα1 − cosα1

0 cosα1 − sinα1

dα1 (18.169)

=

 0 0 0
0 0 −1
0 +1 0

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

dα1 (18.170)

= S(e1)R1(α1)dα1 , (18.171)

or generally
dRi(α) = S(ei)Ri(α)dαi . (18.172)

Similarly we thus have

dR2(α2) = S(e2)R2(α2) dα2 and dR3(α3) = S(e3)R3(α3) dα3 (18.173)

This leads to

dR(α) = S(e3) R3(α3) R2(α2) R1(α1) dα3 + (18.174)

R3(α3) S(e2) R2(α2) R1(α1) dα2 + (18.175)

R3(α3) R2(α2) S(e1) R1(α1) dα1 (18.176)
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We now use the relation R(a× b) = Ra× Rb which is valid for all b in the form

RS(a) = S(Ra)R or RS(a)RT = S(Ra) . (18.177)

Then we obtain

dR(α) = S(e3)R dα3 + (18.178)

S(R3(α3)e2)R dα2 + (18.179)

S(R3(α3)R2(α2)e1)R dα1 (18.180)

or the skew symmetric matrix

dR(α)RT = S(e3dα3) + (18.181)

S(R3(α3)e2dα2) + (18.182)

S(R3(α3)R2(α2)e1dα1) (18.183)

Now the total di�erential of R(r;Ra) is given by

dR(r,Ra) = S(dr)Ra (18.184)

Hence we have
dR(r,Ra)RaT = S(dr) (18.185)

Since the approximate rotation matrix is the point of linearization, we have the constraint

dR(α)RT = dR(r,Ra)RT (18.186)

Therefore the two skew symmetric matrices (18.181) and (18.185) need to be identical.
From this we follow

e3dα3 + R3(α3)e2dα2 + R3(α3)R2(α2)e1dα1 = dr (18.187)

or
dr = Jrα dα (18.188)

with the Jacobian
Jrα = [R3(α3)R2(α2)e1 | R3(α3)e2 | e3] (18.189)

The determinant of the Jacobian is

|Jrα| = cosα2 . (18.190)

This is why for cosα2 = 0 or for α2 = ±90◦ there is no unique relation between dr and
dα, which is known as the Gimbal lock.

18.8.3 Adjoint motion matrix in exponential representation

We prove (18.73):

Ad(M) =

[
R 0

S(Z)R R

]
. (18.191)

For this, we express the di�erential dsad of the small motion vector saddirectly as a function
of the di�erential ds. We start from (18.71)

dM(sad) M = M dM(s) (18.192)

with its di�erential
A(dsad) M = MA(ds) (18.193)

With the vector

dsad =

[
drad
dtad

]
(18.194)
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this explicitly yields[
S(drad) dtad

T 0

] [
R Z
0T 1

]
=

[
R Z
0T 1

] [
S(dr) dt

0T 0

]
(18.195)[

S(drad) R S(drad) Z + dtad
0T 0

]
=

[
R S(dr) Rdt

0T 0

]
(18.196)[

S(drad) R S(drad) Z + dtad
0T 0

]
=

[
S(Rdr) R Rdt

0T 0

]
(18.197)

hence by comparing the upper left submatrices

drad = R dr , (18.198)

and therefore
dtad = R dt+ S(Z)drad . (18.199)

Compound this reads as

dsad = Ad(M) ds with Ad(M) =

[
R 0

S(Z)R R

]
. (18.200)

with the adjoint motion matrix Ad(M).

18.8.4 Adjoint motion in partially exponential representation

We prove (18.94)

dζad = ζMad dζ with ζMad =

[
R 0

S(Z) R R

]
(18.201)

with the vector

dζad =

[
dρad
dτ ad

]
. (18.202)

We have start from
M(dζad) = M M(dζ) M−1 (18.203)

The di�erential reads[
S(dρad) dτ ad

0T 0

]
=

[
R Z
0T 1

] [
S(dρ) dτ

0T 0

] [
RT −RTZ
0T 1

]
=

[
R S(dr) Rdτ

0T 0

] [
RT −RTZ
0T 1

]
(18.204)

=

[
RS(dρ)RT −RS(dρ)RTZ + Rdτ

0T 0

]
(18.205)

=

[
S(Rdρ) −S(Rdρ)Z + Rdτ

0T 0

]
(18.206)

=

[
S(Rdρ) S(Z)Rdρ+ Rdτ

0T 0

]
(18.207)

From the upper left sub-matrix we conclude

dρad = R dρ . (18.208)

With this relation we obtain from the upper right part

dτ ad = R dτ + S(Z)R dρ . (18.209)
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Joined this can be written as

dζad = ζMad dζ with ζMad =

[
R 0

S(Z) R R

]
. (18.210)

with the adjoint motion matrix ζMad, which is the same as for the exponential represen-
tation.

18.8.5 Uncertain inverse rotation

We prove (18.36). We have the relation

R(r(−1)) R−1 = (R(r) R)−1 = RTRT(r) . (18.211)

Taking the total di�erential we obtain

S(dr(−1)) R−1 = RTST(dr) . (18.212)

This yields
S(dr(−1)) = RTST(dr)R = S(−RTdr) . (18.213)

Thus we obtain the Jacobian

Jr(−1)r =
∂r(−1)

∂r
= −RT . (18.214)

Remark: If we would have de�ned the uncertain rotation with a noisy rotation from the right
R = RR(r), we would have obtained:

R
−1

R(r(−1)) = (R R(r))−1 = R
T(r) RT , (18.215)

thus the di�erential
S(dr(−1)) = R S

T(dr) RT = S
T(Rdr) , (18.216)

thus
dr(−1) = −Rad dr = −R dr . (18.217)

This relation is slightly more intuitive than (18.214). �

18.8.6 Uncertain inverse motion in exponential representation

We prove (18.78)
ds(−1) = −Ad(M)

−1 ds . (18.218)

We have the basic relation

exp(A(s(−1))) ·M−1 = (exp(A(s)) ·M)−1 = M−1(exp(A(s))−1 . (18.219)

Taking the total di�erential, and using the �rst order approximation of (exp(X ))−1 =
I − X + 1/2X 2 − ... we obtain by taking the total di�erential

A
(
ds(−1)

)
M−1 = −M−1 A(ds) . (18.220)

This yields

A
(
ds(−1)

)
= −M−1 A(ds)M , (18.221)

or
MA

(
ds(−1)

)
M−1 = −A(ds) (18.222)

thus using (18.75)

A
(
Ad(M)ds(−1)

)
= −A(ds) (18.223)

Therefore, we obtain the Jacobian

Js(−1)s =
∂s(−1)

∂s
= −M−1

ad , (18.224)

which yields

ds(−1) = −Ad(M)
−1 ds . (18.225)
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18.8.7 Uncertain inverse motion in partially exponential repre-
sentation

We prove (18.97) [
dρ(−1)

dτ (−1)

]
= −

[
RT 0

−RTST(Z) RT

] [
dρ
dτ

]
. (18.226)

It should hold[
R(ρ)R Z + τ
0 1

] [
R(ρ(−1))RT −RTZ + τ (−1)

0 1

]
= I 4 , (18.227)

or [
R(ρ)RR(ρ(−1))RT R(ρ)R(−RTZ + τ (−1)) +Z + τ

0T 1

]
= I 4 . (18.228)

The di�erential of the upper left submatrix is

S(dρ) + RR(dρ(−1))RT = S(dρ) + R(Rdρ(−1)) = 0 . (18.229)

Therefore we obtain
dρ(−1) = −RT dρ . (18.230)

The di�erential of the upper right matrix is

− S(dρ)Z + Rdτ (−1) + dτ = 0 (18.231)

This yields
dτ (−1) = RTS(dρ)Z − RTdτ = −RTS(Z)dρ− RTdτ . (18.232)

This can be written as [
dρ(−1)

dτ (−1)

]
= −

[
RT 0

RTS(Z) RT

] [
dρ
dτ

]
(18.233)

18.8.8 Uncertain concatenated motions in exponential represen-
tation

We prove (18.82)
ds = M2ds1 + ds2 . (18.234)

We start from the total di�erential of M = M2M1:

A(s)M = A(s2)M + M2A(s1)M1 (18.235)

or multiplying with M−1 = M−1
1 M−1

2 from the right

A(s) = M2A(s1)M−1
2 + A(s2) . (18.236)

With (18.75) we thus obtain

A(s) = A(M2ad s1) + A(s2) . (18.237)

This allows to express the di�erential motion parameters as

ds = M2adds1 + ds2 . (18.238)
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18.8.9 Uncertain concatenated motions in partially exponential
representation

We prove (18.102)

dρ = dρ2 + dR2ρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 . (18.239)

We explicitly have

M =

[
R(ρ)R Z + τ

0T 1

]
=

[
R(ρ) (I 3 − R(ρ))Z

0T 1

] [
R Z
0T 1

]
(18.240)

and similarly

Mi =

[
R(ρ

i
)Ri Zi + τ i

0T 1

]
Therefore

M =

[
R(ρ

2
)R2 Z2 + τ 2

0T 1

] [
R(ρ

1
)R1 Z1 + τ 1

0T 1

]
(18.241)

=

[
R(ρ

2
)R2R(ρ

1
)R1 R(ρ

2
)R2(Z1 + τ 1) +Z2 + τ 2

0T 1

]
(18.242)

We now linearize, multiplicatively for R, additively for Z:[ (
S(dρ2) + R2S(dρ1)RT

2

)
R (R2Z1 +Z2) + S(dρ2)R2Z1 + R2dτ 1 + dτ 2

0T 1

]

=

[
(S(dρ2 + R2dρ1)) R Z + S(dρ2)R2Z1 + R2dτ 1 + dτ 2

0T 1

]
(18.243)

By comparison with (18.240) we �nd

dρ = dρ2 + dR2ρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 (18.244)

Relation to the concatenated motion with exponential representation. We can
write (18.244) as

dζ = Mcon1 dζ1 + Mcon2dζ2 , (18.245)

with

Mcon1 =

[
R2 0

0 R2

]
and Mcon2 =

[
I 3 0

−S(R2Z1) I 3

]
. (18.246)

Using the Jacobians Jsζ for switching between the representations, see (18.67) we can
show, that this leads to the form

ds = M2ad ds1 + dζ2 with M2ad =

[
R2 0

S(Z2)R2 R2

]
. (18.247)

In detail we have

dζ = Mcon1 dζ1 + Mcon2dζ2 (18.248)

Jζsds = Mcon1 J1,ζsds1 + Mcon2J2,ζsds2 (18.249)

ds = J−1
ζs Mcon1 J1,ζsds1 + J−1

ζs Mcon2J2,ζsds2 (18.250)

Now we use

Jζs =

[
I 3 0

−S(R2Z1 +Z2) I 3

]
and Ji,ζs =

[
I 3 0

−S(Zi) I 3

]
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and �rst obtain

J−1
ζs Mcon1 J1,ζs =

[
R2 0

S(R2Z1 +Z2)R2 R2

]
J1,ζs (18.251)

=

[
R2 0

S(R2Z1 +Z2)R2 − R2S(Z1) R2

]
(18.252)

=

 R2 0

S(Z2)R2 + S(R2Z1)R2 − R2S(Z1)loooooooooooooomoooooooooooooon
=0

R2

 (18.253)

=

[
R2 0

S(Z2)R2 R2

]
. (18.254)

Similarly we have

J−1
ζs Mcon2J2,ζs =

[
I 3 0

S(R2Z1 +Z2)− S(R2Z1) I 3

]
J2,ζs =

[
I 3 0

0 I 3

]
,

which yields
ds = M2ad ds1 + ds2 . (18.255)

18.8.10 Uncertain relative motion in exponential representation

We prove (18.87)
ds12 = M−1

1,ad (ds2 − ds1) . (18.256)

The uncertain relative motion is

M(s12) M12 = (M(s1) M1)−1M(s2) M2 ., (18.257)

or
M(ds12) M12 = M−1

1 M−1(ds1)M(ds2) M2 . (18.258)

Taking the total di�erential, we obtain

A(ds12) M12 = M−1
1 A(−ds1) M2 + M−1

1 A(ds2) M2 . (18.259)

or
A(ds12) = M−1

1 A(ds2 − ds1) M1 (18.260)

or
M1A(ds12)M−1

1 = A(ds2 − ds1) (18.261)

Hence, with
M1A(ds12)M−1

1 = A(Ad(M1) ds12) (18.262)

Therefore we �nally have the relation

ds12 = M−1
1,ad (ds2 − ds1) . (18.263)

Check using the inverse and the concatenation We start from the concatenation

M = M2M1 , (18.264)

use (18.78) and (18.238)

ds(−1) = −M−1
ad ds and ds = Ad(M2) ds1 + ds2 , (18.265)

and apply this to
M12 = M−1

1 M2 . (18.266)

This yields
ds12 = M−1

1,ad ds2 −M−1
1,ad ds1 = M−1

1,ad (ds2 − ds1) . (18.267)
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18.8.11 Uncertain relative motion in partially exponential repre-
sentation

We prove (18.107) and (18.108)

dρ12 = RT
1d(ρ2 − ρ1) and dτ 12 = RT

1S(Z2 −Z1)dρ1 + RT
1d(τ 2 − τ 1) . (18.268)

We start from

Mi :=

[
R(ρ

i
)Ri Z i + τ i

0T 1

]
(18.269)

and obtain

M12 = M−1
1 M2 (18.270)

=

[
R(ρ

1
)R1 Z 1 + τ 1

0T 1

]−1 [
R(ρ

2
)R2 Z 2 + τ 2

0T 1

]
(18.271)

=

[
RT

1R
T(ρ

1
) −(RT

1R
T(ρ

1
))(Z 1 + τ 1)

0T 1

] [
R(ρ

2
)R2 Z 2 + τ 2

0T 1

]
=

[
RT

1R
T(ρ

1
)R(ρ

2
)R2 RT

1R
T(ρ

1
)(Z 2 + τ 2)− (RT

1R
T(ρ

1
))(Z 1 + τ 1)

0T 1

]
Linearizing the rotation multiplicatively and the translation additively we have

M12 ≈
[
RT

1 (ST(dρ1) + S(dρ2))R2 RT
1S

T(dρ1)Z2 + RT
1dτ 2)− RT

1S
T(dρ1))Z1 − RT

1dτ 1)
0T 1

]
=

[
RT

1S(dρ2 − dρ2) RT
1S(Z2 −Z1)dρ1(Z 2 + dτ 2) + RT

1 (dτ 2 − dτ 1)
0T 1

]
(18.272)

Check using the inverse and the concatenation We start from the concatenation

M = MlMr , (18.273)

use (18.97) and (18.102)

dζ(−1) =

[
dρ(−1)

dτ (−1)

]
=

[
−RT 0

−RTS(Z) −RT

] [
dρ
dτ

]
(18.274)

and [
dρ
dτ

]
=

[
R ldρr + dρl

R ldτ r + dτ l − S(R lZr)dρl

]
. (18.275)

and apply this to

Mlr := M−1
1loomoon
Ml

M2loomoon
Mr

=

[
RT

1 −RT
1Z1

0T 1

] [
R2 Z2

0T 1

]
=

 RT
1R2loomoon
R12

RT
1 (Z2 −Z1)looooooomooooooon
Z12

0T 1

 .
(18.276)

We obtain

Mlr :=

[
R(ρ

12
)R12 Z 12 + τ 12

0T 1

]
(18.277)

We use [
dρr
dτ r

]
:=

[
dρ2

dτ 2

]
(18.278)

and[
dρl
dτ l

]
:=

[
−RT

1 0

−RT
1S(Z1) −RT

1

] [
dρ1

dτ 1

]
=

[
−RT

1dρ1

−RT
1S(Z1)dρ1 − R

T
1dτ 1

]
(18.279)
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Now, we have[
dρlr
dτ lr

]
=

[
dρ(−1)

12

dτ (−1)
12

]
(18.280)

=

[
RT

1dρ2 − R
T
1dρ1

RT
1dτ 2 − RT

1dτ 1 − RT
1S(Z1)dρ1 − S(RT

1Z2)(−RT
1dρ1)

]
=

[
RT

1 (dρ2 − dρ1)

RT
1 (dτ 2 − dτ 1) + RT

1S(−Z1 +Z2)dρ1

]
(18.281)

262



19 Centroid Form of an Uncertain Plane

A plane can be represented in various manners. We especially discuss the centroid form of
an uncertain plane, which naturally results from estimating a plane from a given point set.
We discuss the representation, its recursive estimation assuming isotropic point uncertainty
and optimal estimation.
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19.1 Problem

This note (2020) collects methods for representing and estimating uncertain planes. It
focusses on the geometrically intuitive centroid representation, naturally resulting from
�tting a plane through a point cloud. We collect methods for estimating a plane from
scene points, for averaging uncertain planes and for estimating a motion for plane corre-
spondences.

The statistically rigorous estimation, discussed here in Sect. 19.3.2, has the advantage
of giving insight into the uncertainty structure, whereas the solution based on spherically
normalized homogeneous plane coordinates in Note 20 is technically more elegant, and
easily generalizes to the estimation of multiple planes.

A natural representation of an uncertain plane is its centroid form

A : {X0,Q;σq, σφ, σψ} , (19.1)

see Fig. 19.1. This representation can directly be derived from a set of 3D points Xi, i =
1, ..., I with isotropic uncertainty ΣXiXi = σ2

i I 3.
This note addresses three problems, namely

1. the estimation of a plane from uncertain points,
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2. the estimation of a spatial motion from plane-to-point correspondences, and

3. the estimation of a spatial motion from plane-to-plane correspondences.

19.2 Centroid Representation of a Plane

19.2.1 The Representation

The centroid representation of a plane is given by (see Fig. 19.1)

A : {X0,Q;σq, σφ, σψ} . (19.2)

X’

Y’
q

q

N

A

2L
1L

2

1

X0

Figure 19.1: Uncertain plane A . Its center is X0; the center is that point of the plane
where the uncertainty across the (perpendicular to the) plane is smallest; it is uncertain
along the normal by σq. Its normal is N ; its rotational uncertainty is composed of two
independent uncertain rotations around L1 and L2 which are mutually perpendicular. The
standard deviations σφ and σψ are the uncertainties of the X ′- and Y ′-components of the
normal N . The three directions form an orthonormal tripod Q = [q1, q2,N ]

Here we have:

• the coordinates of the centroid Z;

• the rotation matrix
Q = [q1, q2, q3] (19.3)

with its normal
N = q3 = Qe3 (19.4)

and the local coordinate system [q1, q2] in the plane, where q1 is the major axis,
and q2 is the minor axis of the moment matrix point cloud, when projected into the
plane.

• the variance σ2
q across the plane;

• the variances σ2
φ of the normal around q2 and σ2

ψ around q1.

The point Z0(Z0) closest to the origin is given by

Z0 = DN . (19.5)

We will represent the coordinates X0 of the centroid X0 as the sum of two orthogonal
vectors Z0 and M

X0 = Z0 +M = Q(DN ′′ +M ′′) . (19.6)

see Fig. 19.2, and � represented in the rotated coordinate system (see Fig. 19.2 right) �

N ′′ = N ′ =

 0
0
1

 = e3 M ′′ =

 M ′′X
M ′′Y

0

 . (19.7)
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Figure 19.2: Representation of uncertain plane. Left: Relation between global frame
(XY Z) and the local frame (X ′Y ′Z′). Right: Relation between the global system rotated
by Q (X ′′Y ′′Z′′) and the local frame (X ′Y ′Z′), which are parallel

19.2.2 Covariance Matrix of the Plane Parameters

The standard deviations can be derived by transforming the points into the coordinate
system (X ′Y ′Z ′) of their weighted centroid. Then we only have three uncertain parameters
collected in the 3-vector

A◦ =

 A◦1
A◦2
A◦3

 . (19.8)

We have

• the uncertain Z ′-coordinate A◦1 of the centroid, and

• the uncertain X ′- and Y ′-coordinates (A◦2, A
◦
3) of the normal.

Hence we represent the uncertainty of the plane by

D(A◦) =

 σ2
q

σ2
φ

σ2
ψ

 . (19.9)

The three parameters are related to the centroid and the normal by

∆A∗ :=

[
∆X0

∆N

]
=


Q

 0
0

∆A◦1


Q

 ∆A◦2
∆A◦3

0



 = Jr(Q)∆A◦ (19.10)

with

Jr(Q)
6×3

=

[
Q

Q

]


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 =

[
q3 0 0
0 q1 q2

]
. (19.11)

The covariance matrices of the centroid and the normal then can be given directly. The
centroid and the normal are statistically uncorrelated.

The centroidX0 is only uncertain across the plane, hence in the direction of the normal

ΣX0X0
= Q

 0
0

σ2
q

QT = σ2
qNN

T . (19.12)
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The uncertainty of the normal N is

ΣNN = Q

 σ2
φ

σ2
ψ

0

QT = σ2
φq1q

T
1 + σ2

ψq2q
T
2 . (19.13)

Hence the direction of the major uncertainty of the normal of the plane is coded in the
covariance matrix. Eqs. (19.12) and (19.13) clarify, why we only need the rotation matrix
Q and the three standard deviations σq, σφ, and σψ for representing the uncertainty of the
plane. The rotation matrix Q this is responsible for both, the normal and the covariance
matrix of the plane.

The inverse relation is

∆A◦ =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

[ QT

QT

] [
∆X0

∆N

]
=

 qT
3 0T

0T qT
1

0T qT
2

[ ∆X0

∆N

]
=: JT

r (Q)∆A∗ .

(19.14)
which has covariance matrix

ΣA◦A◦ =

 σ2
q

σ2
φ

σ2
ψ

 . (19.15)

Hence, if a point Xi lies on the plane A , then the point X ′i ([X ′i, Y ′i , 0]) lies on the plane
A ′, which is the X ′Y ′-plane. The points Xi and X ′i are related by

Xi = QX ′i +X0 or X ′i = QT(Xi −X0) . (19.16)

19.3 Uncertain Plane from 3D Points

19.3.1 Fitting a plane through 3D points with isotropic uncer-
tainty

Given are I uncertain 3D points Xi, i = 1, ..., I, with {Xi, σ
2
i I 3}.

1. We can show that the best �tting plane A(A) with

A =

[
N
−D

]
(19.17)

passes through the weighted centroid X0, that its normal N is the eigenvector of
the (unweighted) moment matrix belonging to the smallest eigenvalue, and that it
is given by NT(X −X0) = 0.
The moment matrix is

M =
¸
i

wi(Xi −X0)(Xi −X0)T = QΛQT = λ1q1q
T
1 + λ2q2q

T
2 + λ3q3q

T
3 (19.18)

with

wi =
1

σ2
i

and X0 =

°
i wiXi°
wi

(19.19)

and the rotation matrix,
Q = [q1, q2, q3] , (19.20)

and the diagonal matrix

Λ =

 λ1

λ2

λ3

 , (19.21)
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where the eigenvalues are sorted in decreasing order. The normal is

N = q3 = eT
3Q . (19.22)

2. (Exercise) Show the theoretical variances of the parameters of a plane through I
equally weighted (wi = 1) 3D points Xi with standard deviation σ for all coordinates
can be determined from

σ2
q =

σ2

I
σ2
φ =

σ2

λ1
σ2
ψ =

σ2

λ2
, (19.23)

where σ2
q is the variance of the position of the plane in the direction of the normal

and σ2
φ and σ2

ψ are the variances of rotations around the two principle axes of the
point set.
Hint: Translate the point cloud into the origin and rotate it such that the two major
axes of the moment matrix fall into the X- and the Y -coordinate axes. Then apply
the reasoning from the chapter on the best �tting 2D line.
Using the weighted moment matrix, for general weights this generalizes to

σ2
q =

1

Iw̄
σ2
φ =

1

λ1
σ2
ψ =

1

λ2
(19.24)

3. (Exercise) Show that the estimated variance of the plane's position q perpendicular
to the plane and the two principle normal directions are given by

σ2
q =

1

I − 3

λ3

I
σ2
φ =

1

I − 3

λ3

λ1
σ2
ψ =

1

I − 3

λ3

λ2
. (19.25)

Using the weighted moment matrix, for general weights this generalizes to

pσ2
q =

1

I − 3

λ3

Iw̄
pσ2
φ =

1

I − 3

λ3

λ1
pσ2
ψ =

1

I − 3

λ3

λ2
. (19.26)

19.3.1.1 Relation to moments and recursive estimation

Now we observe, that the parameters specifying an uncertain plane can be uniquely derived
from the non-central moments. They allow a simple and possibly recursive estimation of
the mean of several planes.

The non-central moments are

mkln =
¸
i

wiX
k
i Y

l
i Z

n
i with k + l + n ∈ {0, 1, 2} (19.27)
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namely

m000 =
¸
i

wi (19.28)

m100 =
¸
i

wiXi (19.29)

m010 =
¸
i

wiYi (19.30)

m001 =
¸
i

wiZi (19.31)

m200 =
¸
i

wiX
2
i (19.32)

m110 =
¸
i

wiXiYi (19.33)

m101 =
¸
i

wiXiZi (19.34)

m020 =
¸
i

wiY
2
i (19.35)

m011 =
¸
i

wiYiZi (19.36)

m002 =
¸
i

wiZ
2
i (19.37)

together with the number of points
I =
¸
i

1 . (19.38)

Especially we have

Iw = m000 (19.39)

X0 = m100/m000 (19.40)

Y0 = m010/m000 (19.41)

Z0 = m001/m000 (19.42)

µ200 = m200/m000 −X2
0 (19.43)

µ110 = m110/m000 −X0Y0 (19.44)

µ101 = m101/m000 −X0Z0 (19.45)

µ020 = m020/m000 − Y 2
0 (19.46)

µ011 = m011/m000 − Y0Z0 (19.47)

µ002 = m002/m000 − Z2
0 (19.48)

M =

 µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002

 . (19.49)

The eigenvalues of the moment matrix yield the variances of the position and the normal
via (19.26). Hence we have a mapping from the moments m (including the number of
points I) to the centroid form c of the plane

m 7→ c : c = c(m) or
{
X0,Q;σ2

q , σ
2
φ, σ

2
ψ

}
← {m000, ...,m002, I} . (19.50)

19.3.2 Fitting a plane through a set of 3D points with arbitrary
covariance matrix

We can assume to have approximate values, thus only need to update these using an
iterative scheme, where often only one iteration is necessary.
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19.3.2.1 An iterative solution

We start from the nonlinear constraints

gi(xXi;xN , pD) = xNTxXi − pD = 0 (19.51)

where D is the distance of the plane to the origin. We will later �nd the centroid X0 on
the plane. In addition, we have the length constraint for the normal

h(xN) =
1

2

(
|xN |2 − 1

)
= 0 (19.52)

Starting from approximate values for the unknown parameters and the �tted observa-
tions we thus have the linearized model

gi(xXi;xN , pD) = xNaTxXa

i − pDa +xNaTy∆Xi +xXaT

i
z∆N + y∆D = 0 (19.53)

or
gi(xXi;xN , pD) = gi(xXa

i ;xNa
, pDa) + aT

i
x∆θ + bT

i
y∆y = 0 (19.54)

with the corrections to the unknown parameters, collected in a 4-vector

x∆θ :=

[ z∆Ny∆D
]
, y∆yi := y∆Xi , ai :=

[ xXa

i

1

]
, and bi := Na . (19.55)

Therefore we have the normal equations

Mx∆p = m or
[

N H

HT 0

] [ x∆θ
λ

]
=

[
n
ch

]
(19.56)

with

N =
¸
i

wqiaia
T
i , (19.57)

n =
¸
i

wqi(ai(−gi + bT
i (xXi −Xi)) , (19.58)

H = xNa
, (19.59)

cg = −(|xNa
|2 − 1) (19.60)

wqi =
1

bT
i Σyiyibi

:=
1

NaTΣXiXiN
a

(19.61)

We use the following update for the normal

xN = N(xNa
+ ∆xN) (19.62)

The covariance matrix of the parameters results from the inverse of the normal equation
matrix, or, when eliminating the Lagrangian parameter from the 4× 4 matrix

Σpθpθ = (N + HHT)−1 − HHT =

[
ΣxNxN ΣxN pD
Σ pDxN Σ pD pD

]
, (19.63)

which has rank 3, and generally is a full matrix.

19.3.2.2 Choosing the Local Coordinate System

We now choose the points reduced to some reference frame with center X0 and axes Q

Xi = QX ′i +X0 or X ′i = QT(Xi −X0) , (19.64)
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In homogeneous coordinates this is[
Xi

1

]
=

[
Q X0

0T 1

] [
X ′i
1

]
(19.65)

The plane therefore transforms as

A =

[
Ah

A0

]
=

[
Q X0

0T 1

]O

=

[
A′h
A′0

]
= A′ (19.66)

or explicitly [
Ah

A0

]
=

[
Q 0

−XT
0Q 1

] [
A′h
A′0

]
. (19.67)

The normal N = Ah therefore is transformed as

N = QN ′ or N ′ = QTN . (19.68)

The distance D = −A0 to the origin is transferred as

D = D′ +XT
0QN

′ = D′ +XT
0N or D′ = D −NTX0 . (19.69)

The covariance matrices transform as

D(A) =

[
ΣNN ΣND

ΣDN σ2
D

]
(19.70)

=

[
Q 0

XT
0Q 1

] [
ΣN ′N ′ 0

0 σ2
D′

] [
QT QTX0

0 1

]
(19.71)

=

[
QΣN ′N ′Q

T QΣN ′N ′Q
TX0

XT
0QΣN ′N ′Q

T XT
0QΣN ′N ′Q

TX0 + σ2
D′

]
(19.72)

and

D(A′) =

[
ΣN ′N ′ ΣN ′D′

ΣD′N ′ σ2
D′

]
(19.73)

=

[
QT 0

−XT
0 1

] [
ΣNN 0

0 σ2
D

] [
QT −X0

0 1

]
(19.74)

=

[
QTΣNNQ −QTΣNNX0

−XT
0 ΣNNQ XT

0 ΣNNX0 + σ2
D

]
(19.75)

We �rst choose Q such that the covariance matrix

ΣxNxN = QΣxN ′xN ′Q
T = Q

 σ2
pφ

σ2
pψ

0

QT (19.76)

of the normal is diagonal, which can be achieved by an eigenvalue decomposition of ΣxNxN .
Then the normal is (19.4)

xN ′ = N


 pN ′XpN ′Y

1


 = N

([ xN ′r
1

])
= QTN . (19.77)

After the diagonalization we obtain the covariance matrix, where the distance D′′ is in
the rotated and not yet translated system:

D

([ xN ′pD′′
])

=

 Diag([σ2
pφ, σ

2
pψ]) 0 ΣxN ′r pD′′

0T 0 0
Σ pD′′xN ′r 0 σ2

pD′′

 (19.78)
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with

D

([
N ′X
N ′Y

])
= Diag([σ2

pφ, σ
2
pψ]) =

[
qT

1

qT
2

]
ΣxNxN [q1, q2] (19.79)

and

Cov
([

N ′X
N ′Y

]
, pD′′) =

[
σxN ′X pD′′
σxN ′Y pD′′

]
=

[
qT

1

qT
2

]
ΣxN pD . (19.80)

Next we choose X0 such that the uncertainty of a point across the plane is minimum.
An arbitrary point X (X) has the distance

DX = NTX −D = [XT,−1]

[ xN
− pD

]
. (19.81)

Its variance is
σ2
DX = XTΣxNxNX − 2Σ pDxNX + σ2

pD . (19.82)

From its derivative w.r.t. dX

∂σ2
DX

∂X
= 2ΣxNxNX − 2Σ pDxN (19.83)

In the rotated system we have

∂σ2
D′′X

∂X ′′
= 2ΣxN ′xN ′X

′′ − 2Σ pD′′xN ′′ = 2

 σ2
pφ 0 0

0 σ2
pψ 0

0 0 0


 M ′′X
M ′′X

0

 . (19.84)

from which we obtain[
M ′′X
M ′′Y

]
= −

[
σ2
pφ 0

0 σ2
pψ

]−1 [
σxN ′X pD′′
σxN ′Y pD′′

]
= −

[
σ2
pφ 0

0 σ2
pψ

]−1 [
qT

1

qT
2

]
ΣxN pD (19.85)

Finally, we have the centroid

X0 = xN − Q
 σ2

pφ 0 0

0 σ2
pψ 0

0 0 0


+

QTΣxN pD . (19.86)

or

X0 = xN − Σ+
xN pDΣxN pD . (19.87)

Remark: This is in full analogy to the centroid of the 2D line when using the covariance
matrix of the normal

Σpnpn = σ2
φn
⊥n⊥T and Σ+

pnpn = σ−2
φ n⊥n⊥T with n =

[
sinα
cosα

]
and n⊥ =

[
cosα
− sinα

]
(19.88)

and the covariance with the distance
Σpn pd = σφdn

⊥ (19.89)

since

x0 =

[
cosα sinα
− sinα cosα

] [
m0

d

]
(19.90)

=

[
sinα
cosα

]
d+

[
cosα
− sinα

]
m0 (19.91)

= n−
[

cosα
− sinα

] (
−σ−2

φ σφd
)

(19.92)

= n− Σ+
pnpnΣpn pd . (19.93)

�
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19.3.3 Checking a Set of Points for Planarity

19.3.3.1 Assuming the uncertainty of the points is known

We test whether the surface consisting of I points is planar, testing the null hypothesis

H01 : pσ2
0 = 1 (19.94)

versus the alternative hypothesis

Ha1 : pσ2
0 > 1 (19.95)

using the chi-square test statistic

X|H01 = Ω|H01 ∼ χ2
R . (19.96)

which is χ2
R-distributed under the null hypothesis. If the test is rejected, this may be

caused

• by a too small standard deviation of the given points, or

• by a signi�cant deviation of the surface from a plane, or

• both.

Remark: The degrees of freedom R should not be taken too large, since otherwise the null-

hypothesis always will be rejected, see the discussion in Förstner and Wrobel (2016), around Eq.

(4.88). �

19.3.3.2 Assuming an estimate of the uncertainty of the points of the plane

is not known

We assume, the variance factor pσ2
0a of all given points may be taken from a robust estimate

of all variance factors. Its degrees of freedom is assumed to be R0.
We test the null hypothesis for the current plane

H02 : pσ2
0 = pσ2

0a (19.97)

against the alternative hypothesis

Ha2 : pσ2
0 > pσ2

0a (19.98)

using the Fisher test statistic

F |H02 =
pσ2

0pσ2
0a

|H02 ∼ FR,R0
(19.99)

which is FR,R0 -distributed under the null hypothesis.

19.4 Estimating a Mean Plane

Given are I planes Ai, the task is to �nd the best estimate for the mean plane A.
We discuss three solutions:

1. A solution based on moments of the point cloud, assuming isotropic uncertainty.

2. A statistically suboptimal solution for the.

3. A statistically optimal solution based on the centroid representation.
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19.4.1 Estimating the mean plane using moments

Let us assume we have J patches, represented by their moment vector mj .
Obviously, it is simple to derive the mean plane. We just need to add all non-central

moments. Hence:
m =

°J
j=1mj . (19.100)

The parameters of the uncertain mean plane can then be derived from c(m), see (19.50).
We need to observe:

1. Eq. (19.100) allows a recursive estimation of the plane. Let the mean plane derived
from the �rst j patches be

m(j) =
j̧

k=1

mk . (19.101)

Then adding the (j + 1)-th patch leads to

m(j+1) = m(j) +mj+1 . (19.102)

2. In a similar manner a patch k can be deleted if k ∈ {1, ..., j}:

m(j\k) = m(j) −mk . (19.103)

3. Before inserting a patch into the list of patches, a statistical test could be performed.
This can be based on the di�erence vector of the new patch Aj+1 and the current
mean plane A(j)

d = JT
r (µA)(Aj+1 −A(j)) (19.104)

and its covariance matrix

Σdd = JT
r (µA)

(
ΣAj+1Aj+1 + ΣA(j)A(j)

)
Jr(µA) (19.105)

leading to the test statistic
T = dTΣ−1

dd d ∼ χ
2
3 . (19.106)

Observe, the vector d in (19.104) is the di�erence Aj+1,r−A(j)
r of the reduced plane

coordinates assuming the common tangent plane is given by µA. The argument µA
of J(µA) best is chosen as the current mean plane µA := A(j).
Here we assume, the planes are Euclideanly normalized, see (19.17), i.e., the normal
has length 1. Then the projection matrix Jr(A) is given by

Jr(A)
4×3

=

[
Jr(N)

3×2
0

0T 1

]
with Jr(N) = null(NT) . (19.107)

4. All moments need to refer to the same coordinate system. Therefore, it might be
useful to condition all coordinates before determining and fusing all patches.

5. There is no non-linearity involved in the recursive estimation involved, if we only
consider the moments. The non-linearity only refers to deriving the centroid or
other parameters of the planes. Especially no directions or angles are involved. A
recursive determination of the variances would be di�cult, without going back to
the moments.

6. Eq. (19.102) can also be specialized to including a single point.

7. The whole procedure could once be repeated with modi�ed weights. If the weights
are reduced to 0, this is equivalent to deleting previously included patches, which
can be done using (19.103).

Hence, the moments, the 11 parameters including the number of points, can be interpreted
as the memory generating the current version of the plane. In statistical terms, the
moments are su�cient test statistics, i.e., no other information is necessary to perform the
estimation.
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19.4.2 Approximate estimating the mean plane using plane pa-
rameters

Let us assume we have J patches, represented by their homogeneous vector Aj = [NT
j ,−Dj ]

T

together with the covariance matrix of the reduced vector, namely
{(
Aj ,ΣAjrAjr

)}
.

The constraint, that the individual patch is identical to the mean plane is given by

I I (Aj)A = − I I (A)Aj = 0 with I I (A) =


0 −NZ NY 0
NZ 0 −NX 0
−NY NX 0 0
−D 0 0 −NX

0 −D 0 −NY
0 0 −D −NZ

 ,
(19.108)

see Förstner and Wrobel (2016, Eq. (7.41)). Since a plane has only three degrees of
freedom, we need to select three constraints from the six constraints in (19.108). If the co-
ordinate system is chosen such that all distances Dj are non-zero, the last three constraints
may be used. leading to

CT
j I I (Aj)A = −CT

j I I (A)Aj = 0 with CT
j = [03 | I 3] , (19.109)

or

g(Aj ,A) = X jA = Z jAj = 0 with XT
j = [−Dj I 3 | −N j ] and Z j = [DI 3 |N ] .

(19.110)
Observe, the Jacobians of the constraint g(Aj ,A) w.r.t. the unknown parameters and the
observations are X j and Z j , the last matrix is not depending on j.

For estimating the plane, we concatenate all 3J constraints in the following form

g({Aj},A) = X
3J×4

A = 0 . (19.111)

The right singular vector of X belonging to the smallest singular value is the algebraically
optimal mean plane, and can be determined using the SVD of X :

pA = V :,4 with X = USV T . (19.112)

For deriving the covariance matrix of this solution, we start with the di�erential of g:

dg(y,A) = XJr(A)looomooon
3J×3

dAr
3×1

+ Zloomoon
3J×3J

dy
3J×1

(19.113)

with

y =


A1r

...
Ajr

...
AJr

 , Ajr = JT
r (A) Aj and Z = Diag({Z j

4×3

Jr(A)
3×4

}) . (19.114)

With the reduced coe�cient matrix

X r = XJr(A) (19.115)

we thus obtain the di�erential estimatesxdAr = −X+
r Zdy = −(XT

rX r)
−1XT

r Z dy . (19.116)

Hence, we have the covariance matrix of the estimated reduced plane parameters

Σ pAr pAr = X+
r Z Σyy Z

T X+T
r . (19.117)
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where
Σyy = Diag

({
Σyjyj

})
= Diag

({
JT
r (A)ΣAjAjJr(A)

})
. (19.118)

Observe, the solution is suboptimal, since the pseudo inverse X+
r is taken instead of the

weighted pseudo inverse (X r,Wll
)
+

= (XT
rW yyX r)

−1XT
rW yy. Finally, we obtain the co-

variance matrix of the estimated mean plane

Σ pA pA = Jr(A) Σ pAr pAr J
T
r (A) , (19.119)

which has rank 3.

19.4.3 An optimal solution based on the centroid representation

We assume we have given the planes in centroid form,

Ai : {X0i,Qi;σqi , σφi , σψi} , (19.120)

and want to determine the mean plane, also in centroid form

A : {X0,Q;σq, σφ, σψ} . (19.121)

We use the following nonlinear constraints:

xN ×xN i = 0 , (19.122)

which represents two degrees of freedom. We select two independent constraints:

M
(s)
i S(xN)xN i = 0 (19.123)

and the translational constraint

xNT
(xX0i −xX0) = 0 , (19.124)

which represents the third degree of freedom. For proofs we will use

M
(s)
i = M(s)(N i) = M(s)(qi3) =

[
qT
i1

qT
i2

]
with M

(s)
i M

(s)T
i = I 2 , (19.125)

hence

M
(s)
i S(xN i) =

[
qT
i1

qT
i2

]
S(q3) =

[
qT

2

−qT
1

]
(19.126)

Hence the nonlinear constraints are

gi(
xN i,xX0i;xN ,xX0) =

[ xNT
(xX0i −xX0)

M
(s)
i S(xN)xN i

]
= 0 , i = 1, . . . , I . (19.127)

19.4.3.1 The Iterative Solution

We also can assume approximate values, thus can update them using an iterative scheme.
Linearization of the constraints yields

gi(
xN i,xX0i;xN ,xX0) = gi(

xNa

i ,
xXa

0i;
xNa

,xXa

0) (19.128)

+

[
(xX0i −xX0)Tz∆N +xNT{∆X0i −xNTz∆X0

−M(s)S(xN i)z∆N +M(s)S(xN)z∆N i

]
(19.129)

This can be written as

gi(
xN i,xX0i;xN ,xX0) = gi(

xNa

i ,
xXa

0i;
xNa

,xXa

0) + X ix∆θ + ZT
i
y∆yi (19.130)
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with

x∆θ = JT
r

[
∆X0

∆N

]
= y∆A◦ and y∆yi = JT

r

[
∆X0i

∆N i

]
= y∆A◦i (19.131)

and, since xN i ≡ xN ,

X i =

[
−xNT

(xX0i −xX0)T

02×3 −M(s)S(xN)

]
Jr and ZT

i =

[ xNT
0T

02×3 M(s)S(xN)

]
Jr =

[
1 0T

0 I 2

]
= I 3 .

(19.132)
The weight matrix of the residuals therefore is

W cici = (BT
i ΣyiyiBi)

−1 = WA◦iA
◦
i
. (19.133)

The normal equation matrix thus is

N =
¸
i

A
T
iW ciciAi (19.134)

=
¸
i

J
T
r

[
−xN 03×2

(xX0i −xX0) S(xN)M(s)T

]
WA◦iA

◦
i

[
−xNT

(xX0i −xX0)T

02×3 −M(s)
S(xN)

]
Jr (19.135)

=
¸
i

 qT
3 0T

0T qT
1

0T qT
2

[ −xN 03×2

(xX0i −xX0) S(xN)M(s)T

]
WA◦iA

◦
i

[
−xNT

(xX0i −xX0)T

02×3 −M(s)
S(xN)

] [
q3 0 0
0 q1 q2

]

=
¸
i

 −1 0 0
X ′′0i −X ′′0 1 0
Y ′′0i − Y ′′0 0 1

 wqi
wφi

wψi

 −1 X ′′0i −X ′′0 Y ′′0i − Y ′′0
0 1 0
0 0 1

 (19.136)

=
¸
i

 −1 0 0
X ′′0i −X ′′0 1 0
Y ′′0i − Y ′′0 0 1

 −wqi wqi(X
′′
0i −X ′′0 ) wqi(Y

′′
0i − Y ′′0 )

wφi
wψi

 (19.137)

=
¸
i

 wqi −wqi(X ′′0i −X ′0) −wqi(Y ′′0i − Y ′′0 )
−wqi(X ′′0i −X ′′0 ) wφi + wqi(X

′′
0i −X ′′0 )2 wqi(X

′′
0i −X ′0)(Y ′′0i − Y ′′0 )

−wqi(Y ′′0i − Y ′′0 ) wqi(X
′′
0i −X ′′0 )(Y ′′0i − Y ′′0 ) wψi + wqi(Y

′′
0i − Y ′′0 )2

 (19.138)

The normal equation matrix is diagonal, if1¸
i

wqi(X
′′
0i −X ′′0 ) =

¸
i

wqi(Y
′′
0i − Y ′′0 ) = 0 . (19.139)

Then we obtain

N =
¸
i

 wqi 0 0
0 wφi + wqiX

′2
0i

0 wψi + wqiY
′2
0i

 . (19.140)

Hence, all entities have to be taken at their estimates. If we use the centroid of the �tted
centroids

X ′′0 =

°
i wqi

xX ′′0i°
i wqi

(19.141)

and the individual centroids reduced to the common centroid

X ′0i = X ′′0i −X
′′
0 . (19.142)

The right hand side of the normal equation system is

n =
¸
i

AT
iW cici(−gi(pθa, pya) + Bi(pyi − yi) . (19.143)

1The original note said
°
i wφi (X

′′
0i −X′′0 ) =

°
i wψi (Y

′′
0i − Y ′′0 ) = 0. But due to (19.141), this appears

to be incorrect.
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19.4.3.2 The Theoretical Precision

We obtain the variances for the three entities

σ2
pq =

1

I

1

wq
(19.144)

σ2
pφ =

1

I

1

wφ + wqX2
0i

(19.145)

σ2
pψ =

1

I

1

wψ + wqY 2
0i

. (19.146)

If the I planes would have the same precision we would obtain

σ2
pq =

1

I
σ2
q , σ2

pφ =
1

I

σ2
qσ

2
φ

σ2
q + σ2

φX
2
0i

, σ2
pψ =

1

I

σ2
qσ

2
ψ

σ2
q + σ2

ψY
2
0i

. (19.147)

This is a plausible result: The precision of the normal of the average plane increases with
the number I of the planes and with increasing scatter of the individual planes. Observe,
if the standard deviation σq is 0, then the directions will also have standard deviation 0.

19.5 Motion from Plane to Plane correspondences

19.5.1 Problem Statement

Given are I correspondences {Ai,A ′j} which are related by

M : A ′j 7→ Ai Ai ≡M (A ′j) for all (ij) ∈ C . (19.148)

There are two options to establish the correspondences:

1. The planes (Ai,A ′j) refer to the planar patches derived from some segmentation of
two point clouds. Then each of the planes Ai or A ′j may have several correspondences,
namely if there are coplanar planes one or both of the point clouds. The Jacobian
B of the Gauss�Helmert model is block diagonal, each block Bk referring to the
correspondence of coplanar planes {ik} and {j′k} in the two point clouds.

2. The planes (Ai,A ′j) refer to aggregated coplanar planes in each point cloud. Then
there is a one-to-one correspondence, and we may refer to the same index, thus refer
to (Ak,A ′k). In this case the partitioning of the point cloud has a �nal merge-step
to �nd sets of coplanar points and to determine the average (ML-estimates) plane
parameters.

We do not distinguish the two cases until we discuss the solution of the nonlinear Gauss�
Helmert model.

We explicitly have
Ai :

{
X0,Q;σ2

q , σ
2
φ, σ

2
ψ

}
i

(19.149)

The constraint implies an unknown motion M

M : {T ,R} (19.150)

which transforms the 3D points Xi into the coordinate system

X = RX ′ + T . (19.151)

The corresponding transformation of the plane parameters is

X0i = RX ′0j + T (19.152)
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and
Qi = RQ ′j . (19.153)

We need three constraints for the identity of two planes. These can be the following
rotational constraint

N i = RN ′j , (19.154)

which represents two degrees of freedom, and the translational constraint

NT
i (RX ′0j + T −X0i) = 0 , (19.155)

which represents the third degree of freedom.
From a counting argument we would need only two planes. However, then the trans-

lation along the intersecting 3D line is not determined. Therefore, we need at least three
planes in general position for being able to determine the motion.

19.5.2 Minimal Solution for the Motion from Three Plane Corre-
spondences

The three planes need to intersect in a 3D point Y not at in�nity. Otherwise the translation
in this direction is not determined.

Then the translation can be determined from the two intersection points Y and Y ′,
and the rotation from the three normals.

If enough plane-plane correspondences are available the rotation may be derived from
(19.154) in the form

N = RN ′ (19.156)

Hence we have
H = N ′

T
N = UΛV T (19.157)

and thus
R = UV T . (19.158)

Using this rotation the translation then can be determined from (19.155) in the form

NT
i (RX ′0j −X0i) = −NT

j T (19.159)

which leads to the linear equation system

BTBT = BTb (19.160)

with
B = −N = −[NT

i ] and b = [NT
i (RX ′0j −X0i)] . (19.161)

Weighting is possible.

19.5.3 An Iterative Solution

We use the three constraints for each correspondence

gij
3×1

(pT , pR(pθ);xX0i,xN i,xX ′0j ,xN ′j) =

[ xNT

i (pRxX ′0j + pT −xX0i)

M
(s)
i S(xN i)pRxN ′j

]
= 0 . (19.162)

WhereM(s)
i S(xN i) ∈ nullT(NT

i ) is a orthonormal 2×3 matrix which is achieved by selecting
two independent rows of the skew symmetric matrix S(xN i).

The linearized model reads as

gij(
pT , pR(pθ);xX0i,xN i,xX ′0j ,xN ′j) = gij(

pθa, pya)(19.163)

+

[
(pRxX ′0j + pT −xX0i)

Tz∆N i −xNT

i S(pRxX ′0j)x∆θ +xNT

i
pRy∆X ′0j +xNT

i
y∆T −xNT

i
y∆X0i

−M(s)
i S(pRxN ′j)z∆N i −M(s)

i S(xN i)S(pRxN ′j)x∆θ +M
(s)
i S(xN i)pRz∆N ′j

]a
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Hence we have
gij = gij(

pθa, pya) + X ij x∆θ + ZT
ij
y∆y = 0 (19.164)

with

∆θ
6×1

:=

[
∆T
∆θ

]
and ∆y

6×1
:=

[
∆A◦i
∆A◦j

]
(19.165)

The Jacobians are

XT
ij

3×6

=
∂gij

∂pθ =

[
−xNT

i S(pRxX ′0j) xNT

i

−M(s)
i S(xN i)S(pRxN ′j) 0

]a
(19.166)

and

ZT
ij

3×6

=
∂gij

∂[AT
i ,A

′T
j ]T

(19.167)

=
∂gij

∂[A∗Ti ,A′∗Tj ]T

∂[A∗Ti ,A′∗Tj ]T

∂[AT
i ,A

′T
j ]T

(19.168)

=

[
−xNT

i (pRxX ′0j + pT −xX0i)
T xNT

i
pR 0T

02×3 −M(s)
i S(pRxN ′j) 02×3 M

(s)
i S(xN i)pR

]
3×12

a [
Jr(Qi)

Jr(Q
′
j)

]a

If each plane only is present in one constraint, hence we have i = j, the normal
equations for the six unknown parameters read as

Nx∆θ = n (19.169)

with

N
6×6

=
¸
i

Ai
6×3

(BT
i

3×6
Diag({ΣA◦iA

◦
i
,ΣA′◦i A

′◦
i
})loooooooooooooomoooooooooooooon

6×6

Bi
6×3

)−1AT
i

3×6
(19.170)

n
6×1

=
¸
i

Ai
6×3

(BT
i

3×6
Diag({ΣA◦iA

◦
i
,ΣA′◦i A

′◦
i
})loooooooooooooomoooooooooooooon

6×6

Bi
6×3

)−1(−gi(pθa, pyai )) + Bi(pyai − yi))loooooooooooooooooomoooooooooooooooooon
3×1

(19.171)

The update of the translation and the rotation then is[ pT (ν+1)

pR(ν+1)

]
=

[ pT (ν)
+ y∆T

R(x∆θ)pR(ν)

]
. (19.172)

19.5.4 Theoretical Accuracy of the Motion

We assume the rotation and translation is an identity. We also assume the corresponding
planes to have the same mean parameters and the same covariance matrix. This simpli�es
the expressions and allows us to derive the covariance matrix as a function of the planes.

We use the relations

Dr = = rrT (19.173)

S2(r) = −(I 3 − Dr) (19.174)

S(r)R = RS(RTr) (19.175)

N = Qe3 or e3 = QTN . (19.176)

The Jacobians are (omitting the hats and assuming we always refer to the �tted values)

XT
i =

∂gi

∂pθ =

[
−xNT

i S(X ′0j) NT
i

−M(s)
i S(N i)S(N ′i) 0

]
=

[
(X0i ×N i)

T NT
i

M
(s)
i (I 3 − DNi) 0

]
(19.177)
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and

ZT
i =

∂gij

∂[AT
i ,A

′T
j ]T

(19.178)

=

[
−NT

i 0T NT
i 0T

02×3 −M(s)
i S(N i) 02×3 M

(s)
i S(N i)

]
[
q3 0 0
0 qi1 qi2

]
0

0

[
q3 0 0
0 qi1 qi2

]


=

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]
(19.179)

We now assume the covariance matrices of all planes to be identical and isotropic

ΣA◦iA
◦
i

= ΣA◦A◦ =

 σ2
q

σ2
φ

σ2
φ

 (19.180)

Remark: Better do not do this! �
Then we have

BT
i ΣA◦iA

◦
i
Bi =

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

] [
ΣA◦A◦

ΣA◦A◦

] [
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]T

=

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]

−ΣA◦A◦e3 −ΣA◦A◦

 0T

qT
i2

−qT
i1

M(s)T
i

ΣA◦A◦e3 ΣA◦A◦

 0T

qT
i2

−qT
i1

M(s)T
i

 (19.181)

=

[
σ2
q 0

0 2σ2
φ M

(s)
i (qi1q

T
i1 + qi2q

T
i2)M

(s)T

i

]
(19.182)

= 2ΣA◦A◦ (19.183)

Hence the normal equation matrix is

N =
1

2

¸
i

[
X0i ×N i (I 3 − DNi)M

(s)T
i

N i 0

] [
wq

wφI 2

] [
(X0i ×N i)

T NT
i

M
(s)
i (I 3 − DNi) 0

]

=
1

2

¸
i

[
X0i ×N i (I 3 − DNi)M

(s)T
i

N i 0

][
wq(X0i ×N i)

T wqN
T
i

wφM
(s)
i (I 3 − DNi) 0

]
(19.184)

=
1

2

¸
i

[
wqD(X0i ×N i) + wφ(I 3 − DNi)M

(s)T
i M

(s)
i (I 3 − DNi) (X0i ×N i)N

T
i

N i(X0i ×N i)
T wqD(N i)

]
=

1

2

¸
i

[
wqD(X0i ×N i) + wφ(qi1q

T
i1 + qi2q

T
i2) wq S(X0i)D(N i)

wq D(N)S(X0i) wqD(N i)

]
(19.185)

=
1

2

¸
i

wq

[
(X0i ×N i)(X0i ×N i)

T (X0i ×N i)N i

N i(X0i ×N i)
T N iN

T
i

]
+ wφ

[
qi1q

T
i1 + qi2q

T
i2 0

0 0

]
or generally

N =
1

2

¸
i

wqi

[
X0i ×N i

N i

]
[X0i ×N i , N i] + wφi

[
qi1
0

]
[qT
i1 , 0T] + wψi

[
qi2
0

]
[qT
i2 , 0T]

(19.186)
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Reducing the parameters to the translation yields the reduced normal equation matrix

NTT =
1

2

¸
i

(
wqiD(X0i ×N i) + wφi(qi1q

T
i1 + qi2q

T
i2)
)

(19.187)

−

(¸
i

wqi D(N)S(X0i)

)(¸
i

wqiD(N i)

)−1(¸
i

wqi S(X0i)D(N i)

)
(19.188)

which can be determined if ¸
i

wqiD(N i) =
¸
i

wqiN iN
T
i (19.189)

is regular: Therefore at least three planes with non-coplanar normals are necessary for a
solution.
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20 Planes from Points

We describe the statistically optimal estimation of a single and of multiple planes from
a point cloud, where the full covariance matrix of all scene coordinates is available, e.g.,
from bundle adjustment. This procedure might be used to derive ground truth data for
plane extraction or for homography estimation.

20.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
20.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
20.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

20.3.1 The incidence constraint . . . . . . . . . . . . . . . . . . . . . . . . . 283
20.3.2 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . 283
20.3.3 Conditioning and approximate values . . . . . . . . . . . . . . . . . 283
20.3.4 The algorithm for estimating the parameters . . . . . . . . . . . . . 284

20.4 Multiple planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
20.5 Outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

20.1 Preface

The note (2023) describes the statistically optimal estimation of a single and of multiple
planes from a point cloud, where the full covariance matrix of the scene coordinates is
available, e.g., from bundle adjustment. The solution for single planes di�ers from that
of Sect. 19.3.2 in Ch. 19: There the plane is Euclideanly normalized, here they are
spherically normalized, which leads to simpler expressions.

20.2 The Problem

Given areK sets {{Xi}, i = i, ..., I}k , k = 1, ...,K of 3D points together with their complete
covariance matrix Σ = [Σik,ik] the task is to �nde the best �tting planes Ak. We start
with the derivation for a single plane and then generalize to multiple planes.

The motivation is to derive reference data for homographies for identi�ed planes being
seen in pairs of images, whose poses and scene points have been determined by bundle
adjustment. Instead of including the plane constraints into the bundle adjustment, we
propose to use the coordinates of the estimated scene points together with their full co-
variance matrix and determine the best �tting plane parameters. This can be seen as
an estimation in steps (Kalman �ltering) where in the second step the plane constraints
are used to improve the estimates of the scene points, which in the �rst step have been
determined without these constraints.

Though it is possible to estimate the planes individually, the resulting parameters are
not optimal, since the mutual correlations between the scene points belonging to di�erent
planes are not taken into account.

We therefore just assume, the coordinates of the relevant scene points together with
their full covariance matrix is available, e.g., when using the Ceres solver.
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20.3 Formalization

We start with the case K = 1 and omit all indices referring tho the plane of interest.

20.3.1 The incidence constraint

We assume the points are given with their homogeneous coordinates Xi, i = 1, ..., I and
their joint covariance matrix

Σ = [ΣXiXj ] =

[[
ΣXiXj 0

0T 0

]]
, with i, j = 1, ..., I . (20.1)

and the plane A is represented by its spherically normalized homogeneous coordinates A
with

|A| = 1 . (20.2)

The a point Xi lies on the plane A if

XT
i A = 0 . (20.3)

20.3.2 The optimization problem

We now want to optimally estimate the plane parameters. The observations and unknown
parameters in a Gauss-Helmert model with constraints are

y
N×1

:= [Xi], , θ
4×1

:= A and y
N×1=4I×1

:= E(y) (20.4)

For achieving a ML-estimation we want minimize the residuals y− l squared and weighted
with the full weight matrix W

Ω(θ,y) = (y − y)TW (y − y) with W =

[[
Σ−1
XiXj

0

0T 0

]]
(20.5)

subject to the constraints

0 = g(θ,y) := [yT
i θ] ,

0 = h(θ) := 1
2 (|θ|2 − 1) .

(20.6)

20.3.3 Conditioning and approximate values

We assume the following:

• We have conditioned the given coordinates

Xc
i = MXi with M =

[
1
s I 3 − 1

sµX
0T 1

]
, (20.7)

and

s =

c
1

3
tr(Cov(Xi) , and µX =

1

I

¸
i

Xi (20.8)

since in non-homogeneous coordinates we have Xc
i = (Xi−µX)/s. Hence, we have

the conditioned covariance matrix

Σc = [MΣijM
T] (20.9)

Since we determine the plane parameters pθc = pAc in the conditioned coordinate
system where we can uncondition the estimated plane parameterspθ = Mpθc since Ac = M−1A . (20.10)

together with their covariance matrix

Σpθpθ = MΣpθc pθcM
T (20.11)
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• We have an approximate solution θc,a := Ac,a based on the conditioned 3D points
assuming all have the same covariance matrix I 3.

20.3.4 The algorithm for estimating the parameters

We refer to PCV Sect. 8.3.2 and the note on the Gauss-Helmert model, Sect. 4.1 aug-
mented by the constraints between the parameters. We omit all superscripts indicating
that we have conditioned the data.

We start from the correlated observed I scene points in homogeneous coordinates
{y,Σyy} := {[Xi], [Σij ]}, the constraints g(θ,y) := [yT

i A] = 0 and h(θ) = 1/2(|θ|2 − 1),
and the approximate values θa := Aa for the unknowns and ya := [Xi] for the mean
observations. We obtain the following algorithm for an iterative solution:

1. Iterate until convergence

(a) Determine the Jacobians X and Z at the current approximate values (θa,ya).
Here we have Jacobians at

current

approximationsX
I×4

=
∂g

∂θ
:= Y a = [yaT

i ] , ZT

I×4I
=
∂g

∂y
= I I ⊗ pθaT

and hT

1×4
=
∂h

∂θ
:= θa,T .

(20.12)
In the �rst iteration we have

[y
(0)
i ] := [Xi] . (20.13)

(b) Determine the contradictions cg and ch of the negative constraints at the ap-
proximate values θa and y of the unknown parameters together with their
weight matrix 1 contradictions of

constraints given

the parameterscg
I×1

:= −[lTi ]
I×4

θa
4×1

, W gg
I×I

= (ZTΣZ )−1 =
([
θa,TΣijθ

a
])−1

(20.14)

and
ch

1×1
=

1

2
(|θa|2 − 1) . (20.15)

(c) Solve the normal equation system for the corrections ∆θ and ∆y of the param-
eters normal equation

system
[
XTW ggX h

hT 0

]
looooooooooomooooooooooon

N

[
∆θ
µ

]
=

[
XTW gg cg

ch

]
loooooooomoooooooon

m

. (20.16)

(d) Update the approximate parameters

θa := N(θa + ∆θ) with N(x) =
x

|x|
. (20.17)

(e) Determine the corrections for the mean observations

∆y = y − ya − Σ(I I ⊗ θa,T)W ggg(pθay) . (20.18)

(f) Update the approximate mean observations update of

approximate mean

observationsya := [Ne(yi + ∆yi)] with Ne(X) =
X

X4
. (20.19)

2. Set the �nal estimates of the unknown parameters and of the mean observations, �nal estimates

sometimes called the �tted observation py := py
pθ := θa and py = ya . (20.20)

284



3. Determine the estimated variance factor estimated variance

factorpσ2
0 =

cT
gW cgcgcg

I − 4
. (20.21)

If the model holds its expectation is equal to 1.
Observe: Instead of minimizing the squared residuals y−l weighted withW in (20.5),
thus minimize ||y−y||W , we equivalently may minimize the weighted residuals of the
squared constraints cg = −g(θ,y) weighted with their weight matrix W cgcg , thus
minimizing ||g(θ,y)||Wcgcg

, in both cases taking the constraints (20.6) into account.

4. Determine the covariance matrix of the estimated parameters covariance matrix

of the estimated

parameters
[
XTW ggX h

hT 0

]−1

=

[
Σpθpθ .
. .

]
. (20.22)

Remark: If the observational noise is small and an approximate solution is acceptable, the steps

1.(e�f) can be omitted. Then the Jacobians X and Z are to be determined at (θa,y) instead of

at (θa,ya). �

The complete procedure is given in the algorithm below.

Algorithm 3: Plane from correlated points, assuming conditioned values.
[pA,Σ pA pA, pσ2

0 , R] = CorrelatedPoints2Plane_D([Xi], [Σij ],A
a, Tθ, maxiter)

Input: observed values y = [yi] := [Xi], full covariance matrix Σ = [Σij ]
approximate values Aa,
parameters Tθ, maxiter for controlling convergence.
Output: estimated parameters pA,Σ pA pA for plane, variance factor pσ2

0 , redundancy
R.
1 Redundancy R = I − 3 ;
2 if R < 0 then stop, not enough constraints;

3 Iteration ν = 0, approx. values pθa := Aa, ya := [Xi], stopping variable: s = 0;
4 repeat

5 Jacobians: : A = [ya,Ti ], h = pθa;
6 Constraints: cg = −[yT

i ]θa, ch = −1/2(|θa|2 − 1);
7 Weight matrix of constraints: W gg = [θa,TΣijθ

a]−1;
8 Build normal equation system: [N,m], see (20.16);
9 if N is singular then stop: normal equation matrix is singular;
10 Updates of parameter vector θa := N(θa + ∆θ);
11 Corrections for �tted observations: ∆y, see (20.18);
12 Update �tted observations ya = [Ne(yai + ∆yi)], see (20.19);
13 Set iteration: ν := ν + 1;

14 if maxu(|x∆θu|/σapθu) < Tθ or ν = maxiter then s = 2;

15 until s ≡ 2;

16 Estimated parameters pA := pθa and covariance matrix : Σ pA pA, see (20.22);
17 if R > 0 then variance factor pσ2

0 = cT
gW gg cg/R;

18 else pσ2
0 = 1;

20.4 Multiple planes

We generalize the solution to the case of simultaneously estimating a set of K planes, in
order to exploit all information for one bundle adjustment. This will yield di�erent results
due to the correlation between the scene points.

1We do not indicate, that cg depends on approximate values thus omit a superscript a.
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We consider K planes Πk, k = 1, ...,K with their Ik points Xik, (ik) ∈ Ik. We assume
the point sets for di�erent planes are disjunct. We collect the Ik homogeneous coordinates
of the observed scene points and their expectation for plane k in the Ik × 4 matrices

Xk
IK×4

= [XT
ik] and Y k = E(Xk) . (20.23)

Then we have the following
G =

¸
k

Ik (20.24)

constraints

g
G×1

= [gik] = [E(Xk)Ak] = [E(XT
ik)Ak] = 0 , hk =

1

2
(|Ak|2 − 1) = 0 k = 1, ...,K .

(20.25)
Witht the 4K unknown parameters, the 4G observations and their expectations

xloomoon
4K×1

= [xk] := [Ak] , yloomoon
°
k Ik

= [yik] = [Xik] and and y = vec(Y T) = [E(Xik)]

(20.26)
the Jacobians X and Z are the following using the approximate values for θ and Y

X =
∂g

∂x
= Diag([X k]) := Diag([Y k]) and ZT = Diag([ZT

ik]) := Diag([pθaT

k ]) (20.27)

The Jacobian for the constraints is

Figure 20.1: linearized constraints

H
4K×K

= Diag([θak]) (20.28)

Hence, with the approximate residuals

va = ya − y (20.29)
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we have the linearized optimization problem: Minimize

Ω(∆θ,∆y) = (ya + ∆y)TW+(ya + ∆y) with W =

[[
Σ−1
XiXj

0

0T 0

]]
(20.30)

subject to the constraints

0 = g(∆θ,∆y) := X∆θ + ZT∆y − g(θa,ya) ,

0 = h(∆θ) := HT∆θ − h(∆θa) .
(20.31)

The full weight matrix of the constraints is

W gg
G×G

=
([
θa,Tik Σik,i′k′θ

a
i′k′

])−1

with (ik) ∈ Ik, k = 1, ...,K (20.32)

hence, with the residual constraints

cg = −g(θa,y) = −[X k]θa and ch = −h(θa) (20.33)

the normal equation system is

[
XTW ggX H

HT 0

]
looooooooooomooooooooooon

N
5K×5K

 ∆θ
4K×1

µ
K×1

 =

[
XTW gg cg

ch

]
loooooooomoooooooon

m

. (20.34)

which, except for the block o�-diagonal matrix H, is full. The algorithm above requires
transparent adaptions.

Observe, the resulting plane parameters will be mutually correlated. But their in-
dividual 4 × 4 covariance matrix D(Ak) may be reported as uncertainty of the ground
truth.

20.5 Outlier detection

It may be useful to eliminate individual scene points before a �nal plane estimation. The
following test statistic can be used for outlier detection

Xik = cT
gik
W gik,gikcgik = wgik,gikX

T
ik
pθk . (20.35)

hence we explicitly need the weight matrix W gg in (20.32). If the given model is correct,
especially if the covariance matrix of the scene points is correct, then the test statistic Xik

follows a χ2
4-distribution.

In case, we normalize the test statistic by some estimate for the variance factor, its
distribution is not known.
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21 Direct Solutions for the Similarity

from Plane Pairs

We collect some direct solutions for determining the similarity (or motion) from corre-
sponding plane pairs, representing point clouds. Some of the solutions are able to handle
the case, where the sign of the normals are not consistent.

21.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
21.2 Minimal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

21.2.1 A one-step direct solution of a similarity from four plane pairs . . . 289
21.2.2 A two-step solution for a motion from three planes . . . . . . . . . . 289

21.3 Direct solutions the similarity from I ≥ 4 plane pairs . . . . . . . . . . . . . 290
21.3.1 One step procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
21.3.2 Two step procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

21.4 Stability of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

21.1 Problem

Given are plane pairs {Ai,A
′
i}i = 1, ..., I which are assumed to be related by the similarity

A′i = H−TAi . (21.1)

determine a good estimate of H

H =

[
λR T
0T 1

]
=

[
R T /λ
0T 1/λ

]
. (21.2)

We assume the planes to be Euclideanly normalized

A =

[
N
−S

]
, with |N | = 1. (21.3)

In addition, we assume the coordinates to be conditioned, i. e. the distances of the
planes to the origin should be less than 1. This can be achieved by a proper similarity
transformation of coordinate system, such that the origin is in the center of all points and
the distances Si have absolute coordinates less than 1.

As the normals may not be consistent, as A and −A represent the same plane, we can
distinguish two types of solutions, one which assumes the normals to be consistent, the
other assuming they are not consistent.

In the following we �rst discuss solutions which do not exploit the full covariance
structure or even do not refer to a statistical description of the uncertainty.

21.2 Minimal solutions

We discuss minimal a minimal solution for spatial similarity and for spatial motion.
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Sect. No. I of planes normals re�ection
21.2.1 I = 4 consistent allowed
21.2.2 I = 3 consistent allowed
21.3.1 I ≥ 4 not consistent allowed
21.3.2 I ≥ 4 consistent allowed

not consistent not allowed
Table 21.1: Direct solution for the similarity from plane pairs

21.2.1 A one-step direct solution of a similarity from four plane
pairs

The direct solution can be obtained from HTA′i = Ai or Ai
′TH = AT

i , or

A =


AT

1

AT
2

AT
2

AT
2

 =


A′

T
1

A′
T
2

A′
T
3

A′
T
4


[
R T /λ
0T 1/λ

]
= A′H (21.4)

Thus we directly obtain
H = (A′)−1A (21.5)

The matrix would be the correct result, if the data were noiseless. This is valid for both,
a similarity and a motion.

Therefore, in general we enforce the matrix to be a similarity by enforcing the upper
left 3× 3-matrix to be a rotation and the lack of a projective component. With

H(1 : 3, 1 : 3) = UDV T (21.6)

we therefore have the best estimate for a similarity

H =

[
|D|1/3UV T H(1 : 3, 4)

0T H(4, 4)

]
(21.7)

This solution assumes the normals of the planes to be consistent. It allows for a mirroring.

21.2.2 A two-step solution for a motion from three planes

The two-step solution �rst determines the rotation from the three normals and then the
translation from the intersection point.

Rotation. The rotation directly can be determined from the normals using

B ′ = [N ′1,N
′
2,N

′
3] = R[N1,N2,N3] = RB (21.8)

from
R = B−1B ′ (21.9)

which in case the data are noisy is no rotation. The best rotation is again obtained from
the SVD of R = UDV T from pR = UV T (21.10)

If the data are related by a re�ection, then det(pR) = −1.

Translation. The translation can easily be determined from the intersection point of
the three planes.

Also, this solution assumes the normals of the planes to be consistent. The result
allows the data to contain a re�ection.
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21.3 Direct solutions the similarity from I ≥ 4 plane

pairs

21.3.1 One step procedure

The basic constraint for each plane can be written as (see Heuel 2004, eq. (3.29) and sect.
3.3.1.6, tables 3.5 and 3.9)

Ai ≡ A ′i : Ai ∩ (HTA′i) = I I (Ai)H
TA′i = 0 , (21.11)

or
( I I (Ai)⊗AT

i )vecH !
= 0 (21.12)

with the matrix

I I (A)
6×4

=

[
S(N) 0
−SI 3 −N

]
(21.13)

containing the skew matrix S(N) of the 3-vector N . Observe, this constraint is indepen-
dent on the sign of the plane vectors.

This gives rise to the direct solution
I I (A1)⊗AT

1

. . .

I I (Ai)⊗AT
i

. . .

I I (AI)⊗AT
I


looooooooooomooooooooooon

B
6I×16

h
!
= 0 (21.14)

The best estimate for h is the right singular vector of the 6I × 16-matrix B belonging to
the smallest singular value.

As each plane gives rise to three constraints, we need at least �ve planes. As we know
that the elements H4,1:3 are zero, we can cancel the corresponding columns in the matrix
B, then being of size 6I × 12 and can do with four planes minimum.

The result is an a�nity

H =

[
A T
0T s

]
(21.15)

which needs to be enforced to become a similarity, with

A = UDV T (21.16)

leading to pH =

[
|D|1/3/sUV T T /s

0T 1

]
. (21.17)

Since only the deviation from the 0-constraints (21.14) is minimized, this solution
allows the normals to be inconsistent. Again, if the data contain a re�ection, the solution
will be a re�ection.

21.3.2 Two step procedure

We �rst determine the rotation, then rotate the planes and then determine translation
and scale. Thus we assume the similarity to be

pH =

[ pR pT /pλ
0 1/pλ

]
=

[
I 3 pT ′
0T pµ′

] [ pR 0
0T 1

]
(21.18)

with pT = pT ′/pµ′ , pλ = 1/pµ′ (21.19)
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21.3.2.1 Determining the rotation

Assuming consistency of the normals. For �nding the optimal rotation we minimize
the optimization function ¸

i

pi|N ′i − RN i|2 (21.20)

which is equivalent to maximize¸
i

piN
′
iRN i = tr(RH) , H =

¸
i

piN iN
′
i (21.21)

The weights pi can be approximated by

pi =
1

σ2
φi

+ σ2
φ′i

≈ N3
i N
′3
i

N3
i +N ′3i

. (21.22)

The approximation is valid in case the planes have been determined from Ni and N ′i points,
assuming the normals to have isotropic uncertainty. The solution can be found by using
the SVD (or equivalently using quaternions)

H = UDV T (21.23)

leading to the rotation
R = VUT . (21.24)

If the data contain a re�ection, then detR = −1.

Not assuming consistency of the normals. From the constraints

N ′i ≡ R (Ni) : N ′i × RN i = S(N ′i)RN i = (NT
i ⊗ S(N ′i))vecR

!
= 0 (21.25)

we obtain the joint constraints 
NT

1 ⊗ S(N ′1)
. . .

NT
i ⊗ S(N ′i)
. . .

NT
I ⊗ S(N ′I)

 r !
= 0 (21.26)

This yields an approximation for a rotation matrix, except for the sign. Hence, we are not
able to allow for re�ections. From R = UDV T we obtain an estimate for the rotation

pR = UV Tsign(|UV ′|) (21.27)

with det pR = 1.

21.3.2.2 Rotating the planes

We now rotate the planes, which just needs to be applied to the normals, therefore

Ai =

[
N i

−Si

]
=

[ pRN i

−Si

]
, A

′
i =

[
N
′
i

−S′i

]
=

[ pRN ′i
−S′i

]
(21.28)

These planes only di�er by scale and translation.
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21.3.2.3 Estimating translation and scale

Transforming planes by translation T ′ and scale µ′ is performed by

Ai =

[
I 3 0

T ′
T

µ′

]
A
′
i (21.29)

thus only refers to the distances Si and S′i. We have the constraint

ci = Si − [N i
′T − S′i]

[
T ′

µ

]
!
= 0 (21.30)

with an approximate weight

wi ≈
1

σ2
qi + σ2

q′i

≈ NiN
′
i

Ni +N ′i
(21.31)

for the uncertainty of the position across the planar patches (but see the critics below).
Therefore, we can determine the scale and the translation from

S =


S1

. . .
Si
. . .
SI

 !
=


A′

T
1

. . .

A′
T
i

. . .

A′
T
I


loooomoooon

B
I×4

[
T ′

µ′

]
(21.32)

The least squares solution for the translation and the scale is[ pT ′pµ′
]

= (BTWB)−1BW TS , W = Diag([w1, ..., wi, ..., wI ]) . (21.33)

which in the case of four planes reduces to[ pT ′pµ′
]

= B−1S (21.34)

The procedure cannot be based on some statistical model.

21.4 Stability of the solution

In case all planes are parallel the rotation cannot be determined.
In case the normals Ahi of the planes are coplanar, the translation cannot be deter-

mined.
In case the four planes intersect in one point the four plane vectors are linearly de-

pendent and the matrices A and A′ in (21.4) are singular or - in case of noise - close to
singular. Then the scale cannot be determined.

In case the normals are well distributed the condition numbers

κ =
λmax
λmin

(21.35)

of A and A′ should be signi�cantly less than the inverse standard deviation of the directions
measured in radiants.
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22 A Permutation Invariant Test Statis-

tic for the Circularity of Four Points

We propose a statistical test for evaluating whether four points are co-circular. The test
is invariant to the numbering of the points. It can be used to decide, whether an edge in
a Delaunay triangulation is certain or uncertain.

22.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
22.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
22.3 The Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
22.4 The Invariance of the Test Statistic . . . . . . . . . . . . . . . . . . . . . . . 294
22.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

22.1 Preface

This note (1998) provides a permutation invariant test statistic for four point lying on a
circle. It tests the imaginary part =(c(z1, z2, z3, z4)) of the cross ratio of the four points in
the complex plane, which needs to be real, due to a circle-preserving Möbius transformation
onto the real axis. The note was the basis for Förstner (1999)

22.2 The Problem

Checking the stability of the neighbourhoods of geometric features, especially points, de-
rived from a Voronoi diagram or a Delaunay-Triangulation (cf. Fig. 22.1) can use the
geometric con�guration of the four points causing the endpoints of each edge PQ: the
two points B and C of the two neighbouring Voronoi cells and the two points A and D
neighboured to these two points.

Figure 22.1: Two alternative Voronoi Diagrams for four nearly cocircular points

In case Point D is slightly shifted to D′ the edge PQ will disappear and change into
the edge P ′Q′, indicating A and D′ to be neighboured.

The transition appears when D passes the circle through (ABC). Therefore it is
reasonable to check the closeness of the four points to a circle.

The goal of this note is to develop a test statistic for testing the hypothesis four points
lying on a circle.
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22.3 The Test Statistic

Given the planar coordinates (xi, yi) of the four points Pi, i = 1, 2, 3, 4 collected in complex
numbers

zi = xi + jyi (22.1)

the four points ly on a circle in case the cross ratio

c(z1, z2, z3, z4) =
z1 − z4

z2 − z4
:
z1 − z3

z2 − z3
(22.2)

is real, or if
t = =(c(z1, z2, z3, z4)) = 0 (22.3)

The proof of this result uses the fact that a homography z′ = (a+ bz)/(c+ dz) of the
complex plane, the Möbius-Transformation, is circle preserving. Therefore, a homography
can be found which maps a circle to a straight line, say the real line, the cross ratio of any
four points on it is real.

Assuming the given points are uncertain with covariance matrix C which in the sim-
plest case could be C = σ2I one can derive the standard deviation σt of t and obtain the
test statistic

T =
t

σt
∼ N(0, 1) (22.4)

in case one can assume Gaussian distribution of the given points.

22.4 The Invariance of the Test Statistic

The independence of the distribution of the test statistic results in the invariance on the
numbering of the points.

22.5 Numerical example

Given the four equally distant points (0,0), (1,0), (2,0) and (3,0), the cross ratio is 3/4,
indicating them to be collinear.

If the fourth point has coordinates (3, s), the cross ratio is

c(z1, z2, z3, z4) =
1

2

3 + j s

2 + j s
(22.5)

its imaginary part is

t = =(c(z1, z2, z3, z4)) = −1

2

s

4 + s2
(22.6)

Assuming the points to be uncertain by σ in all coordinates, the variance of t is given
by:

σ2
t =

1

8

3 s4 + 29 s2 + 40

(4 + s2)
2 σ2 (22.7)
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as the Jacobian of t is

Jcx =

(
∂c

∂xi

)
=

1

4



s

4 + s2

2 + s2

4 + s2

−8
s

(4 + s2)
2

−2
12 + 9 s2 + s4

(4 + s2)
2

− s

4 + s2

s2 + 6

4 + s2

8
s

(4 + s2)
2

2
−4 + s2

(4 + s2)
2



(22.8)

The test statistic is

T (s) =
t

σt
=

t

σ
b
JTcxJcx

=
s

σ

−
`

2`
3 s4 + 29 s2 + 40

. (22.9)

For small values t the expression nearly is linear in t, see Fig. 22.2 Thus, for small s we

Figure 22.2: Test statistic T (s)

have:

T (s) =
t(s)

σt(s)
≈ −s/8
σ
a

5/16
= − s

σ
`

20
(22.10)

where −s/8 is the linear approximation of the imaginary part of the cross ratio (cf. eq.
22.6) and

σ2
t =

5

16
σ2 (22.11)

has been found by error propagation, as

Jcx =

(
∂c

∂xi

)
=

1

8



0
1
0
−3
0
3
0
−1


(22.12)

If we now exchange the second and the third point, thus {(0, 0), (2, 0), (1, 0), (3, s)}, we
obtain the cross ratio

c′(z1, z2, z3, z
′
4) = −3 + j s

1 + j s
(22.13)
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which is -3 for s = 0, compared to 3/4 before. The imaginary part is

t′ = 2
s

1 + s2
(22.14)

With the Jacobian

J ′cx =

(
∂c

∂xi

)
=

1

4



s

1 + s2

−2 + s2

1 + s2

s
(
7 + 3 s2

)
(1 + s2)

2

−3 s2 + s4 + 6

(1 + s2)
2

4
s

1 + s2

2
s2 + 3

1 + s2

−4
s

(1 + s2)
2

−2
−1 + s2

(1 + s2)
2



s=0
=



0
−2
0
−6
0
6
0
2


(22.15)

we obtain the variance of t′

σ′2t = 2
3 s4 + 29 s2 + 40

(1 + s2)
2 (22.16)

which is di�erent than before exchanging points 2 and 3. We no have � except for the sign
� the same test statistic

T ′(s) =
t′

σ′t
=

t′

σ
b
JTcxJcx

=
s

σ

`
2`

3 s4 + 29 s2 + 40
(22.17)

specializing to

T (s) =
t′(s)

σ′t(s)
≈ 2s

σ
`

80
=

s

σ
`

20
(22.18)

for small s.
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23 Uncertain Ellipses

We discuss various representations for uncertain ellipses, since they regularly occur as
perspective images of 3D circles. We treat them as special conics, and provide some of
their relations. Especially we propose two minimal representations for ellipses.

23.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
23.2 Task and problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
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23.3.2 Transformation from ch to cs . . . . . . . . . . . . . . . . . . . . . . 300
23.3.3 Transformation from ch to cσ . . . . . . . . . . . . . . . . . . . . . . 300
23.3.4 Transformation between cσ and cm . . . . . . . . . . . . . . . . . . . 301

23.4 Open Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

23.1 Preface

The note (2014) discusses various representations for ellipses, as special conics, and pro-
vides some of their relations. Especially it contains two minimal representations. We
discuss how to represent their uncertainty using a covariance matrix of the parameters.

23.2 Task and problem

There are several possibilities to represent uncertain ellipses:

1. The centroid form �xes the centre, the semiaxes and the direction of the major
semi-axis:

e = [x0, y0, a, b, φ] , with a > 0, b > 0 , Σee . (23.1)

It indicates, that an ellipse has 5 degrees of freedom.
This representation is useful for plotting. In case a = b, when the ellipse is a circle,
the angle φ is not required.

2. The homogeneous 3× 3-matrix

C =

 a b d
b c e
d e f

 =

[
Chh ch0

c0h c00

]
. (23.2)

together with its partitioning into homogeneous and non-homogeneous part. This
representation does not enforce the curve qxTCx = 0 to be an ellipse. It is used for
geometric reasoning. Its uncertainty is represented using its vector:

3. The 9-vector
c = vecC (23.3)

is used for representing the matrix as vector. It allows to give the 9 × 9-covariance
matrix Σcc of the elements of C, which ideally should have rank 5.
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4. The non-normalized 6-vector c = vechC

ch = [a, b, c, d, e, f ]T , Σchch (23.4)

is a minimal homogeneous representation. Again, the covariance matrix should have
the rank 5.

5. The spherically normalized 6-vector cs

cs =
c

|c|
, Σcscs (23.5)

using the constraint |cs| = 1 or

gs(cs) =
1

2
(|cs|2 − 1) = 0 . (23.6)

It often is the basic result of some algebraic estimation. Due to the constraint, the
covariance matrix has rank 5.
Still, the representation does not enforce the conic to be an ellipse.

6. The spectrally normalized 6-vector cσ

cσ =
ca
|Chh|

= [aσ, bσ, cσ, dσ, eσ, fσ]T , Σcσcσ . (23.7)

using the constraint
gσ(cσ) = aσcσ − (bσ)2 − 1 = 0 . (23.8)

It often is the basic result of an algebraic solution. Again, due to the constraint, the
covariance matrix has rank 5.
Only conics with |Chh| > 0, thus ellipses, can be normalized this way. During
estimation the constraint enforces the conic to be an ellipse.
It scales the conic matrix di�erently than the spherical normalization: for small
positive |Chh| the elements of C may become large, indicating the distinction from
a parabola is di�cult.
The constraint does not �x the sign of the conic. A similar constraint aσcσ− (bσ)2 +
1 = 0 could be used to enforce hyperbolae.

7. The reduced 5-vector cr

cr = JT
r cs with Jr(c) = null(cT) , Σcrcr (23.9)

lying in the tangent space of cs allowing a ML-estimation without constraints. The
Jacobian Jr is the null space of the Jacobian ∂gs/∂cs of the constraint (23.6).
It is a minimal representation, why Σcrcr in general has full rank.
This representation is valid for general conics, not only for ellipses. Therefore, given
some approximate values an iterative estimation procedure may change the type of
conic, unless care is taken when updating the parameters during the iteration, e.g.,
enforcing the update to keep the constraint using the exponential map of Chh.
This is the reason to possibly use the following representation if ellipses are of con-
cern.

8. The 5-vector cm with minimal parametrization

cm = [bσ, cm, dσ, eσ, fσ]T with cm =
1− (aσ)2 + (bσ)2

2aσ
, Σcmcm (23.10)

can be used to generate a spectrally normalized conic matrix such that

Cσ =

 a1 + (bσ)2 + (cm)2 − cm bσ dσ

bσ
a

1 + (bσ)2 + (cm)2 + cm eσ

dσ eσ fσ

 (23.11)
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and determinant

|Cσhh| =
∣∣∣∣ a1 + (bσ)2 + (cm)2 − cm bσ

bσ
a

1 + (bσ)2 + (cm)2 + cm

∣∣∣∣ = 1 . (23.12)

It can be used for ML-estimation without additional constraints. In contrast to the
minimal representation with reduced coordinates cr it can only be used for ellipses.
The normalization of the parameters leads to large elements if the ellipse is close to
a parabola.
A similar construction can be developed for hyperbola.

In the following we collects some relations.

23.3 Selected relations

23.3.1 Transformation between c and ch

The vector ch is derived from the vector c by selection. We explicitly have

ch =


a
b
c
d
e
f

 = S69



a
b
d
b
c
e
d
e
f


= S69c (23.13)

with

S69 =
∂ch

∂c
=


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

 (23.14)

with
S69S

T
69 = I 6 and ST

69S69 = Diag ([1, 1, 1, 0, 1, 1, 0, 0, 1]) . (23.15)

The inverse relation is the �lling of c

c =



a
b
d
b
c
e
d
e
f


= S96


a
b
c
d
e
f

 = S96c
h (23.16)
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with

S96 =
∂c

∂ch
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(23.17)

with
S96S

T
96 = I 9 and ST

96S96 = Diag ([1, 2, 1, 2, 2, 1]) . (23.18)

We have the relation between the two Jacobians

S69S96 = I 6 , S96S69 = I 9 (23.19)

23.3.2 Transformation from ch to cs

The spherical normalization has the Jacobian

Jsh =
∂cs

∂ch
=

1

|ch|
(I 6 − cscsT) . (23.20)

The �rst factor re�ects the scaling, the second factor re�ects the constraint. Therefore

Jshc = 0 and JshJsh =
1

|ch|
Jsh . (23.21)

Thus, because of cTJT
sh = 0, the Jacobian Jsh = null(cT) is the null space of cT, and,

except for a factor, is idempotent.
As cσ is a special case of ch, the Jacobian Jsh can also be used for a transformation

from cσ to cs:

Jsσ =
∂cs

∂cσ
=

1

|cσ|
(I 6 − cscsT) . (23.22)

The inverse relation, i.e., the derivation of ch can be simpli�ed to be the identity.

23.3.3 Transformation from ch to cσ

Given ch the Jacobian

Jσh =
∂cσ

∂ch
(23.23)

results from (23.7). With D = ahch − (bh)2 have`
D cσ = ch (23.24)

d
`
D cσ +

`
D dcσ = dch (23.25)

cσ
1

2

1`
D
dD +

`
D dcσ = dch (23.26)

Now
dD = [ch,−2bh, ah, 0, 0, 0]dch . (23.27)

Therefore

cσ
1

2

1`
D

[ch,−2bh, ah, 0, 0, 0]dch +
`
D dcσ = dch (23.28)
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Solving for dcσ

dcσ =
1`
D
dch − 1

2
`
D

cσ[ch,−2bh, ah, 0, 0, 0]dch (23.29)

dcσ =
1`
D

[
I 6 −

1

2
cσ[ch,−2bh, ah, 0, 0, 0]

]
dch (23.30)

Thus

Jσh =
∂cσ

∂ch
=

1`
D

[
I 6 −

1

2
`
D

ch[ch,−2bh, ah, 0, 0, 0]

]
. (23.31)

In case the homogeneous vector already is spectrally normalized, such that D = 1, then

Jσh =
∂cσ

∂ch
=

[
I 6 −

1

2
ch[ch,−2bh, ah, 0, 0, 0]

]
. (23.32)

23.3.4 Transformation between cσ and cm

The two vectors have the last three elements in common. Therefore we only need to
address the �rst elements. Let

dσ =

 aσ

bσ

cσ

 and dm =

[
bm

cm

]
. (23.33)

The we have the relation

dσ =

 a1 + (bm)2 + (cm)2 − cm
bma

1 + (bm)2 + (cm)2 + cm

 and dm =

 bσ

1− (aσ)2 + (bσ)2

2aσ

 (23.34)

This yields the Jacobians

Jdσdm
3×2

=
∂dσ

∂dm
=


bma

1 + (bm)2 + (cm)2

cma
1 + (bm)2 + (cm)2

− 1

1 0
bma

1 + (bm)2 + (cm)2

cma
1 + (bm)2 + (cm)2

+ 1

 (23.35)

and

Jdmdσ
2×3

=
∂dm

∂dσ
=

 0 1 0

−1 + (aσ)2 + (bσ)2

2(aσ)2

bσ

aσ
0

 (23.36)

with

JdmdσJdσdm = I 2 and JdσdmJdmdσ =

 I 2 0[
− c

σ

aσ
,− b

σ

aσ

]
0

 (23.37)

Thus we have the Jacobians

Jcσcm
6×5

=
∂cσ

∂cm
=

[
Jdσdm 0

0 I 3

]
and Jcmcσ

5×6
=
∂cm

∂cσ
=

[
Jdmdσ 0

0 I 3

]
(23.38)

Observe, we have the Jacobian of the constraint (23.8)

Jgσcσ =
∂gσ

∂cσ
= [cσ,−2bσ, aσ, 0, 0, 0] . (23.39)

and
JgσcσJcσcm = 05×1 . (23.40)

Therefore the covariance matrix

Σcσcσ = JcσcmΣcmcmJ
T
cσcm (23.41)

is singular and has null space JT
gσcσ , as to be expected.
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23.4 Open Problem

Though the uncertainty might be represented by a covariance matrix, this representation
is only valid for relatively small standard deviations, since for larger deviations the pa-
rameters may represent a hyperbola. Fig. 23.1. The con�dence regions are determined by
simulating a large sample of 2D points, accumulating the resulting conics and thresholding
the empirical density. The visualization of the uncertainty of ellipses is an open problem.

Figure 23.1: Ellipses with con�dence regions. A slight change, here the vertical coordinate
of the right most point, may lead to a dramatic change if the critical region
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24 Minimal homography and its uncer-

tainty from point pairs

The note provides an example for the uncertainty of minimal solutions, namely the de-
termination of a homography from four corresponding points. It provides the covariance
matrix of the resulting homography for both cases, where only one set of coordinates is
uncertain and where both sets of coordinates are uncertain. An algorithm including the
conditioning of the points is given.

[code]

24.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
24.2 Covariance matrix for the result of minimal problems . . . . . . . . . . . . . 303
24.3 Only x is uncertain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
24.4 Both sets of coordinates are uncertain . . . . . . . . . . . . . . . . . . . . . 306

24.1 Goal

We want to construct a 2D homography from a minimal set of point correspondences, i. e.
a homography H from four corresponding 2D points (pi,qi), i = 1, 2, 3, 4 ful�lling:

qi = Hpi . (24.1)

This is a special case for a minimal geometric problem.
We �rst provide a general method to derive the uncertainty of the derived parameters,

following Barath et al. (2020b). For the example of a minimal solution for a homography
from point pairs, we �rst discuss the case, where only one of the two sets of coordinates
is uncertain and then generalize to the case where both sets of coordinates are uncertain.

24.2 Covariance matrix for the result of minimal prob-

lems

The task is to derive the U unkown parameters θ from N observations y based on two
sets of constraints: (1) a set of G constraints g between the unknown parameters θ and
(2) a set of U − G constraints h only between the parameters, together collected in the
form

k(θ,y) =

[
g(θ,y)
h(θ)

]
=

[
0
0

]
. (24.2)

The task is to solve for the parameters. The solution may be as simple as in our example,
namely determining the nullspace of a matrix or arbitrarily complex, as for minimal solu-
tions involving the essential matrix, generally leading to a set of T parameters θt ful�lling
the constraints.

We assume the observations are a sample from a multivariate distribution with second
moments Σyy. Since the solutions are T functions

θt = f t(y) (24.3)

303

https://www.ipb.uni-bonn.de/html/staff/WolfgangFoerstner/collectednotes_v2/Matlab/demo_homography.zip


the uncertainty of the observations transfers to the uncertainty of the parameters θt.
In case, especially, if the relative accuracy of the observations is high, as in many

geometric task, we may use variance propagation, neglecting higher order terms in a Taylor
series of the function f t. In most cases this variance propagation is cumbersome. However,
the derivation of the covariance matrices Σθtθt may use implicit variance propagation, just
based on the linearizations of the constraints, aas shown in the following.

The total di�erential of the constraints is given by

Atdθt+B
T
t dy = 0 , with At

U×U
=
∂k(θt,y)

∂θt

∣∣∣∣
θt,y

and BT
t

U×N
=
∂k(θt,y)

∂y

∣∣∣∣
θt,y

. (24.4)

If we assume small random perturbations in θ and y we can solve for the perturbations
∆θ as a function of the perturbations ∆y:

∆θt = −A−1
t BT

t ∆y . (24.5)

Hence we directly obtain the covariance matrix of the parameters

Σθtθt = A−1
t BT

t ΣyyBtA
−T
t . (24.6)

We demonstrate this result for the task of homography estimation from four point
correspondences. We discuss the case, where only the transformed points are uncertain,
and then generalize to the case where both point sets are uncertain and possibly correlated.

24.3 Only x is uncertain

We collect the unknown parameters in the vector

h = vec(H) . (24.7)

We assume the homogeneous coordinates pi to be given and only the homogeneous coor-
dinates qi of the transformed four points, collected in the 12-vector

q =


q1

q2

q3

q4

 , (24.8)

to be uncertain. Their covariance matrix is given by a 12× 12 matrix Σqq.
In case, we only have given the non-homogeneous coordinates, then we use e.g.,

qi =

[
qi
1

]
and Σqiqi =

[
Σqiqi 0
0T 0

]
. (24.9)

Then, we can rewrite the mapping (24.1) as three constraints

0 = qi × Hpi = S(qi)H pi = −S(Hpi) qi =
(
pT
i ⊗ S(qi)

)
h = , (24.10)

where the skew matrix S(q) = q[×] of the 3-vector q induces the cross product. The three
constraints containing a skew matrix implicitely provide the Jadobians of the constraints
w.r.t. the given points, the observed points annd the un known parameters.

Due to the rank two of the skew symmetric matrix, only two of the three constriants
are independent. For the practical solution, one exploits the fact, that the constraints are
trilinear, i.e., linear in all elements. If the we exclude points at in�nity, we can reduce the
three constraints by selecting only the �rst two, and arrive at the constrains betwen the
parameters and the observations

gi(h, q) = S(l)(qi) H pi = −S(l)(Hpi) qi = (pT
i ⊗ S(l)(qi) h = 0 with i = 1, 2, 3, 4 ,

(24.11)
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with:
S(l)(x) = [I 1 | 0] S(x) . (24.12)

In addition we have the length constraint for the homogeneous vector h

h(h) =
1

2
(hTh− 1) = 0 . (24.13)

The total di�erential of the gi w. r. t. qi and h is given by

AT
i dh + BT

i dpi = 0 (24.14)

with the two Jacobians

AT
i =

∂gi
∂h

= (pT
i ⊗ S(l)(qi)looooooomooooooon

2×9

BT
i =

∂gi
∂qi

= −S(l)(Hpi)looooomooooon
2×2

(24.15)

Similarly, whe have the Jacobian of the length constraint

∂h(h)

∂hT
= hT . (24.16)

The Jacobians for all constraints k are given by

A
9×9

=

[
[AT
i ]

hT

]
=


AT

1

AT
2

AT
3

AT
4

hT

 (24.17)

BT

9×12
=

[
Diag({BT

i })
0T

]
=


BT

1 0T 0T 0T

0T BT
2 0 0T

0T 0T BT
3 0T

0T 0T 0T BT
4

0T 0T 0T 0T

 (24.18)

If there are no singularities, the matrix A is regular, and we can determine random
perturbation ∆h of the parameters h as a function of random perturbations ∆q of the
observations q by

∆h = −A−1BT∆q (24.19)

We �nally obtain the covariance matrix of h

Σhh = A−1BTΣxxBA
−T . (24.20)

In this case the solution is unique.
Remark: (1) As to be expected the covariance matrix has rank 8, since the matrix B has

rank 8. (2) We assumed the transformed points are given with their homogeneous coordinates.

In case the homogeneous coordinates are Euclideanly normalized, thus qi = [xi, yi, 1]T, the third

coordinate is �xed, thus has variance 0 and has correlations 0 with all other coordinates. Then

the 12× 12 covariance matrix Σqq is singular with rank 8, which is to be expected. However, we

need not invert in our application. �

The complete algorithm for determining the homography from four point pairs and the
uncertainty of the transformation parameters is given in the following. The two matrices
M1 and M2 are used to condition the coordinates, thus centre and scale them.
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Algorithm 4: Uncertain homography qi = Hpi from four uncertain points
Input: (p1,p2,p3,p4), (q1,q2,q3,q4), Σqq

Assume: Σpp = 0 , det(H) > 0
Output: H, Σhh

1 for all four points do
2 condition coordinates: pi := M1pi, qi := M2qi, i = 1, 2, 3, 4;

3 coe�cient matrices: Ai = ([pT
i ⊗ S(l)(qi)])

T ;
4 end

5 condition covariance matrix: Σxx := (I 4 ⊗M2)Σxx)(I 4 ⊗MT
2 );

6 Design matrix: A0 := [Ai];
7 parameters: h = null(A0);
8 transformation: H := vec−1(h);
9 enforce determinant > 0: s := sign(det(H)), h := sh, H := sH;

10 Jacobians of all constraints: A = [A0; hT], BT = −[Diag(S(l)(Hpi)); 0
T];

11 Jacobian od solution: J := A−1BT;
12 covariance matrix of parameters: Σhh := JΣxxJ

T;
13 uncondition transformation matrix: H := M−1

2 HM1;
14 transformation of h: M := MT

1 ⊗M
−1
2 ;

15 uncondition covariance matrix: Σhh := MΣhhM
T;

24.4 Both sets of coordinates are uncertain

We now have the complete oobservation vector with its, possibly full covariance matrix

z
24×1

=

[
x
y

]
with D(z)

24×24
= Σzz , (24.21)

for the altogether 24 homogeneous coordinates z of the four point pairs.
We have the same constraints as above

gi(pi,qi,h) = S(l)(qi) H pi = −S(l)(Hpi) qi = (pT
i ⊗S

(l)(qi) h = 0 with i = 1, 2, 3, 4 .
(24.22)

but now also depending on the observations x = [pi]. The total di�erential is

AT
i ∆h+ [BT

pi | B
T
qi]loooomoooon

BT

pi

[
∆pi
∆qi

]
∆z

= 0 (24.23)

with

AT
i

2×9
=
∂gi
∂h

= (pT
i ⊗ S(l)(qi)looooooomooooooon

2×9

(24.24)

and

BT
pi

2×3

=
∂gi
∂pi

=
(
S(l)(qi)H

)T

BT
qi

2×3

=
∂gi
∂qi

= −S(l)(Hpi) . (24.25)

For all constraints we have
A∆h+ B∆z = 0 (24.26)

with the matrices

A
9×9

=

[
[AT
i ]

hT

]
=


AT

1

AT
2

AT
3

AT
4

hT

 (24.27)
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and

BT

9×24
=

[
BT
p BT

q

0T 0T

]
:=

[
Diag({BT

pi}) Diag({BT
qi})

0T 0T

]
(24.28)

=


BT

1 0T 0T 0T BT
1 0T 0T 0T

0T BT
2 0 0T 0T BT

2 0 0T

0T 0T BT
3 0T 0T 0T BT

3 0T

0T 0T 0T BT
4 0T 0T 0T BT

4

0T 0T 0T 0T 0T 0T 0T 0T

 (24.29)

similar to above.
We now can determine the covariance matrix. We discuss two cases.

1. As we in most cases can assume the x are independent of the y the covariance matrix
of h reads as

Σhh = A−1BTΣzzBA
−T . (24.30)

2. Otherwise, we have more explicitely

Σhh = A−1[BT
p | B

T
q ]

[
Σpp Σpq

Σqp Σqq

] [
Bp
Bq

]
A−T . (24.31)

Observe, the covariance matrices here refer to the homogeneous coordinates.
This might be relevant, if the corresponding points (pi, qi), now in non-homogeneous
coordinates, are determined using a key point detector in one image, leading to pi
and an intensity based method for measuring the parallaxes di = qi − pi e.g., using
the Lucas-Kanade method or Least squares matching. Then the 16 × 16 covari-
ance matrix of the 16 non-homogeneous coordinates of the four point pairs has the
structure [

Σpp Σpq

Σqp Σqq

]
=

[
Diag(Σpipi) Diag(Σpiqi)
Diag(Σqipi) Diag(Σqiqi)

]
(24.32)

with the covariance matrices Σpipi of the keypoints. Due to[
pi
qi

]
=

[
I 2 02

I 2 I 2

] [
pi
di

]
(24.33)

we have
Σpiqi = Σqipi = Σpipi (24.34)

and
Σqiqi = Σpipi + Σdidi . (24.35)
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25 Uncertainty of Areas and Volumes

We give an explicit expression for the standard deviation of the area of a polygonal region
determined by n points of homogeneous uncertainty. For regularly spaced points it essen-
tially depends on the length of the circumference of the polygon.The result is generalized
to the standard deviation of volumes of spatial regions, which essentially depend on the
surface of the region.

25.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
25.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
25.3 Accuracy of the area of a polygon . . . . . . . . . . . . . . . . . . . . . . . . 308

25.3.1 Area of a polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
25.3.2 Accuracy of the area . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
25.3.3 Approximation for densely sampled boundaries . . . . . . . . . . . . 309
25.3.4 Accuracy of a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . 310

25.4 Generalization to Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

25.1 Preface

The note (1999) was the written in the context of a lecture on Uncertainty in GIS. It has
been extended to the uncertainty of surfaces of 3D regions.

25.2 The Problem

Areas and volumes are basic features of planar and spatial regions. Their accuracy often
is required for subsequent tasks. This note gives simple expressions for the standard
deviation of closed polygons and closed spatial regions.

25.3 Accuracy of the area of a polygon

25.3.1 Area of a polygon

The are of a polygon given by n points pi(xi, yi), i = 1, ..., n can be determined via

A =
1

2

n−1̧

i=0

(xi + xi+1)(yi+1 − yi) (25.1)

=
1

2

n−1̧

i=0

(yi + yi+1)(xi+1 − xi) (25.2)

=
1

2

n−1̧

i=0

xi(yi+1 − yi−1) (25.3)

=
1

2

n−1̧

i=0

yi(xi+1 − xi−1) , (25.4)
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where the indices are to be taken modulo n, i.e., setting (x0, y0) := (xn, yn) and (x−1, y−1) :=
(xn−1, yn−1).

Eq (25.2) results from (25.1) by exchanging x and y. Eq. (25.3) results from (25.1) by
collecting corresponding terms¸

(xi + xi+1)(yi+1 − yi) =
¸
xi(yi+1 − yi) +

¸
xi+1(yi+1 − yi) (25.5)

=
¸
xi(yi+1 − yi) +

¸
xi(yi − yi−1) (25.6)

Eq. (25.4) again results from (25.3) by exchanging x and y.

25.3.2 Accuracy of the area

We assume all coordinates have the same standard deviation σxi = σyi = σ and are
mutually independent.

The partial derivatives of the area w.r.t. coordinates are, using (25.3) and (25.4)

∂A

∂xi
=

1

2
(yi+1 − yi−1) (25.7)

∂A

∂yi
=

1

2
(xi+1 − xi−1) (25.8)

Via variance propagation, therefore, we �rst obtain

σ2
A =

[
1

4

¸
(xi+1 − xi−1)2 + (yi+1 − yi−1)2

]
σ2 (25.9)

With the length di of the i-th cord (pi−1pi+1) of the polygon we obtain

σ2
A =

1

4

n−1̧

i=0

d2
i σ

2 (25.10)

The standard deviation of the area therefore is

σA =
1

2

gffen−1̧

i=0

d2
i σ . (25.11)

This equation is rigorous for arbitrary polygons.

25.3.3 Approximation for densely sampled boundaries

In case the points of the polygon are equally spaced and su�ciently dense, e.g., when
digitizing curved boundaries or when analysing (not too small) regions in raster images,
we may approximate the length of the cord. With the length C of the circumference and
the number of points n we assume

di = 2
C

n
(25.12)

Then (25.10) simpli�es to

σ2
A =

C2

n
σ2 (25.13)

Thus, the standard deviation of the area is approximately

σA =
C`
n
σ . (25.14)

As can be seen, the standard deviation of the area depends on

1. the length C of the region,

2. the number n of points, and

3. the standard deviation σ of the coordinates.

see Fig. . Especially, it does not depend on the area of the region.
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Figure 25.1: The uncertainty of the area of a region, whose boundary is densely sampled,
dependes on the uncertainty of the points and on the circumference of the region, not its
area

25.3.4 Accuracy of a rectangle

The expressions simplify for a rectangle. For the four points we always have the same
chord length di = d, being the diagonal of the rectangle. Hence the standard deviation is
given by aus Gl. (25.10)

σA = d σ (25.15)

The standard deviation of the area of a rectangle thus only depends, among the uncertainty
σ of the coordinates, from the length d of the diagonal.

25.4 Generalization to Volumes

We follow the argumentation of (25.10) to (25.14). We partition the surface into n surface
elements si, of approximately the same size, and assume an uncertain point pi in each of
them. This may be visualized by triangulation, where around (nearly) each point we �nd
a hexagonal region. Using the volume established by this surface element si and a change
of the point pi along the normal on the surface by ∆ni the spatial element, which has the
form of a pyramid, has volume

∆V =
1

3
si∆ni . (25.16)

If we no assume homogeneous uncertainty of the surface points, i.e., assume ∆ni ∼
M (0, σ2), then the i-th volume element has uncertainty

σ2
i =

(si
3

)2

σ2 . (25.17)

Therefore, the variance of the complete volume is,

σ2
V =

1

9

¸
i

s2
iσ

2 , (25.18)

see (25.10), replacing di by si. Hence, similar to the 2D case, where the elements di cover
double the complete boundary, now the elements si cover three times the complete surface,
if the surface is triangulated. Again, we assume the surface elements have similar size, �
on an average, i.e., for large n, a hexagon �

si =
3S

n
, (25.19)

since the number of hexagons is approximately identical to the number of points and cover
each tringle three times.
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Then the variance simpli�es to

σ2
V =

1

9

(
3S2

n2

)( ņ

i=1

1

)
σ2 =

S2

n2
nσ2 =

S2

n
σ2 . (25.20)

This, �nally, leads to the standard deviation of the volume V

σV =
S`
n
σ . (25.21)

As to be expected: the standard deviation of the volume of a spatial region, given by
surface points of homogeneous uncertainty, increases with the surface of the region.
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26 Checking of Least Squares Matching

Using Image Triplets

We discuss how to statistically check the accuracy of least squares matching, which esti-
mates a�ne geometric and radiometric transformations of image pairs, using the circular
closure of the three transformations in an image triplet.

26.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
26.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
26.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

26.3.1 The radiometric constraint . . . . . . . . . . . . . . . . . . . . . . . 314
26.3.2 The geometric constraint . . . . . . . . . . . . . . . . . . . . . . . . 315

26.4 The joint constraint and the statistical test . . . . . . . . . . . . . . . . . . 316
26.4.1 The constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
26.4.2 The covariance matrix of the parameters . . . . . . . . . . . . . . . . 316
26.4.3 The statistical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

26.1 Preface

The note (2014) together with the following notes addresses the task of least squares
matching. We start with constraints for checking LSM results using image triples, by
requiring the product of the geometric and the radiometric transformations are the unit
transformation.

26.2 Goal

Let the pairwise geometric and radiometric transformations between three images be cap-
tured by {θi,Σii}, i ∈ [1, 2, 3] with the partitioning

θi =

[
θG
θR

]
i

=




θ1

θ2

θ3

θ4

θ5

θ6


[
θ7

θ8

]


i

. (26.1)

The index indicates an image pair (i, i + 1), thus stands for the �rst of one of the three
images, and assumes the indices are taken cyclically, see Fig. 26.1.

The geometric and the radiometric transformations are given by the homogeneous
matrices

Gi(θGi) =

[
A p
0T 1

]
i

=

 θ1 θ3 θ5

θ2 θ4 θ6

0 0 1


i

(26.2)
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Figure 26.1: Checking matching results using image triplets

and

Ri(θRi) =

[
s t
0 1

]
i

=

[
θ7 θ8

0 1

]
i

(26.3)

referring to the multiplicative parts A and s and the additive parts p and t.1

The covariance matrices refers to additive corrections, i.e., to the corrections ∆θi:

G = Ga + ∆G and R = Ra + ∆R (26.4)

with

∆G =

 ∆θ1 ∆θ3 ∆θ5

∆θ2 ∆θ4 ∆θ6

0 0 0

 and ∆R =

[
∆θ1 ∆θ2

0 0

]
. (26.5)

The task is to check the consistency using the constraints

3¹
i=1

Gi = I 3 and
3¹
i=1

Ri = I 2 . (26.6)

26.3 Setup

Since the parameters of the geometric and the radiometric transformations are correlated
we concatenate the two transformations to

M(θi) =

[
G(θGi) 0

0 R(θRi)

]
(26.7)

and check the constraint

θ1 ◦ θ2 ◦ θ3 = 1 :
3¹
i=1

Mi = I 5 with 1 =

[
e

[6]
1

e
[2]
1

]
. (26.8)

Observe, due to the special structure this constraint only contains 8 individual constraints
depending on the 24 parameters of the three transformations.

26.3.1 The radiometric constraint

We collect all given parameters in the 24-vector

θ = [θu]u=1,...,24 =

 θ1

θ2

θ3

 . (26.9)

Using the transformation matrices, the radiometric constraint reads as

0 = R1R2R3 − I 2 . (26.10)

1Observe, the matrix R in this note refers to the radiometric transformation between two images and
not to a rotation matrix.
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The two linearized constraints, see (26.5), right, for the elements of the �rst row are:

0 = cR =

[
θ7 θ15 θ23 − 1

θ8 + θ7 θ16 + θ7 θ15 θ24

]
(26.11)

The Jacobian w.r.t. the 6 parameters θR are

JT
R

6×2
=


JT
R1

2×2

JT
R2

2×2

JT
R3

2×2

 =

[
∂cR
∂θR

]T

= [Js Jt]



θ15 θ23 θ16 + θ15 θ24

0 1

θ7 θ23 θ7 θ24

0 θ7

θ7 θ15 0
0 θ7 θ15

 (26.12)

26.3.2 The geometric constraint

The geometric constraint reads as

0 = G1G2G3 − I 3 . (26.13)

The six linearized constraints, see (26.5), left, for the elements of the �rst two rows are:

0 = cG =


θ17 (θ1 θ9 + θ3 θ10) + θ18 (θ1 θ11 + θ3 θ12)
θ17 (θ2 θ9 + θ4 θ10) + θ18 (θ2 θ11 + θ4 θ12)
θ19 (θ1 θ9 + θ3 θ10) + θ20 (θ1 θ11 + θ3 θ12)
θ19 (θ2 θ9 + θ4 θ10) + θ20 (θ2 θ11 + θ4 θ12)

θ5 + θ1 θ13 + θ3 θ14 + θ21 (θ1 θ9 + θ3 θ10) + θ22 (θ1 θ11 + θ3 θ12)
θ6 + θ2 θ13 + θ4 θ14 + θ21 (θ2 θ9 + θ4 θ10) + θ22 (θ2 θ11 + θ4 θ12)

 (26.14)

The transposed Jacobian is

JT
G

18×6
=


JT
G1

6×6

JT
G2

6×6

JT
G3

6×6

 =

[
∂cG
∂θG

]T

= [JT
a , J

T
p ] (26.15)

with

JT
a =



θ9 θ17 + θ11 θ18 0 θ9 θ19 + θ11 θ20 0
0 θ9 θ17 + θ11 θ18 0 θ9 θ19 + θ11 θ20

θ10 θ17 + θ12 θ18 0 θ10 θ19 + θ12 θ20 0
0 θ10 θ17 + θ12 θ18 0 θ10 θ19 + θ12 θ20

0 0 0 0
0 0 0 0

θ1 θ17 θ2 θ17 θ1 θ19 θ2 θ19

θ3 θ17 θ4 θ17 θ3 θ19 θ4 θ19

θ1 θ18 θ2 θ18 θ1 θ20 θ2 θ20

θ3 θ18 θ4 θ18 θ3 θ20 θ4 θ20

0 0 0 0
0 0 0 0

θ1 θ9 + θ3 θ10 θ2 θ9 + θ4 θ10 0 0
θ1 θ11 + θ3 θ12 θ2 θ11 + θ4 θ12 0 0

0 0 θ1 θ9 + θ3 θ10 θ2 θ9 + θ4 θ10

0 0 θ1 θ11 + θ3 θ12 θ2 θ11 + θ4 θ12

0 0 0 0
0 0 0 0


(26.16)
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and

JT
p =



θ13 + θ9 θ21 + θ11 θ22 0
0 θ13 + θ9 θ21 + θ11 θ22

θ14 + θ10 θ21 + θ12 θ22 0
0 θ14 + θ10 θ21 + θ12 θ22

1 0
0 1

θ1 θ21 θ2 θ21

θ3 θ21 θ4 θ21

θ1 θ22 θ2 θ22

θ3 θ22 θ4 θ22

θ1 θ2

θ3 θ4

0 0
0 0
0 0
0 0

θ1 θ9 + θ3 θ10 θ2 θ9 + θ4 θ10

θ1 θ11 + θ3 θ12 θ2 θ11 + θ4 θ12



(26.17)

Observe the equivalence in the structure of the two Jacobians for the radiometric and the
geometric constraints: scalar values in JR correspond to 2× 2 and 4× 2 matrices in JG.

26.4 The joint constraint and the statistical test

26.4.1 The constraint

The joint constraint for the geometric and the radiometric parameters is

0 = c =

[
cg
cr

]
(26.18)

Its Jacobian is

Jcθ =
∂c

∂θ
8×24

=

[
JG1

0 JG2
0 JG3

0

0 JR1
0 JR2

0 JR3

]
. (26.19)

26.4.2 The covariance matrix of the parameters

The covariance matrices refer to the transformations, which themselves depend on the
used intensities. Since the same intensities are used in neighbouring transformations the
resultant parameter vectors are not uncorrelated. The correlation depends on the number
of common pixels used and � at least � on the gradients at these pixels. A rigorous
derivation of the correlations appears prohibitive.

We therefore derive a correlation structure which re�ects the mutual dependencies
assuming the transformations themselves are close to a unit transformation. We derive
the correlation structure using a substitute problem.

Let the three intensities in the three images at a certain position be g = [gi], i = 1, 2, 3.
Then the three intensity di�erences correspond to the transformations and are ∆g1

∆g2

∆g3

 :=

 ∆g12

∆g23

∆g31

 =

 g2 − g1

g3 − g2

g1 − g3

 = Dg (26.20)

with

D =

 −1 1 0
0 −1 1
1 0 −1

 . (26.21)
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Hence, if the covariance matrix of the intensities is D(g) = σgI 3, then the di�erences have
the covariance matrix

Σ∆g∆g = σ2
gDD

T = σ2
g

 2 −1 −1
−1 2 −1
−1 −1 2

 , (26.22)

which is singular, since Σ∆g∆g1 = 0. The correlation matrix is

Corr(∆g) =
1

2

 2 −1 −1
−1 2 −1
−1 −1 2

 (26.23)

We use this correlation structure and transfer it to the covariance matrix of all param-
eters θ. Let the matrix square roots of the three covariance matrices be

S i =
a

Σi . (26.24)

Then we use as covariance matrix for the parameters

Σθθ =
1

2

 2Σ1 −S1S2 −S1S3

−S2S1 2Σ2 −S2S3

−S3S1 −S3S2 2Σ3

 . (26.25)

26.4.3 The statistical test

The covariance matrix of the constraints now is

Σcc = JcθΣθθJ
T
cθ (26.26)

The test statistics therefore is
X = cTΣ−1

cc c ∼ χ2
8 . (26.27)
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27 Asymmetric and Symmetric Match-

ing with experiments

The note addresses template matching and least squares matching of one- and two-
dimensional signals useful for high precision image matching. We derive the method for
linear geometric and radiometric transformations and for an asymmetric and a symmetric
setup. The goal is to arrive at methods which provide reliable results not only for the esti-
mated transformation parameters, but also for their covariance matrix and the estimated
variance factor. This requires to also take the e�ects of interpolation and smoothing into
account. We provide preliminary experimental results.

27.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
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27.4 Examples for models together with their realization . . . . . . . . . . . . . . 328
27.4.1 One-dimensional template matching . . . . . . . . . . . . . . . . . . 328
27.4.2 One-dimensional asymmetric image matching with shift . . . . . . . 329
27.4.3 One-dimensional symmetric image matching with shift and scale . . 330
27.4.4 Two-dimensional template matching . . . . . . . . . . . . . . . . . . 334
27.4.5 Two-dimensional asymmetric image matching with shift only . . . . 334
27.4.6 Two-dimensional symmetric image matching with a�nity . . . . . . 336

27.5 Generating approximate values with a prespeci�ed distance to the true values337
27.6 Generating true functions having a certain roughness . . . . . . . . . . . . . 338

27.6.1 Generating 1D functions . . . . . . . . . . . . . . . . . . . . . . . . . 338
27.6.2 Generating 2D functions . . . . . . . . . . . . . . . . . . . . . . . . . 339

27.7 Smoothing and Interpolating . . . . . . . . . . . . . . . . . . . . . . . . . . 340
27.7.1 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
27.7.2 Cubic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
27.7.3 Quadratic smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
27.7.4 Smoothing cubic B-splines . . . . . . . . . . . . . . . . . . . . . . . . 348

27.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
27.8.1 Veri�cation of correctness . . . . . . . . . . . . . . . . . . . . . . . . 349
27.8.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
27.8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

27.1 Summary

The report addresses least squares matching (LSM) of one- and two-dimensional scalar
valued signals useful for high precision image matching.

The main results are the following:

1. LSM can be realized such that � for sets of simulated data � the three tests on the
correctness of the implementation do not �re:
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(a) The estimated variance factor does signi�cantly di�er from 1. This indicates
that model and (simulated) data are consistent.

(b) The empirical covariance matrix derived from samples does not signi�cantly
di�er from the theoretical covariance matrix, which is the Cramer-Rao bound.
This suggests, that the theoretical covariance matrix can be used as reliable
uncertainty indicator.

(c) The estimates show no signi�cant bias.

2. LSM can be realized symmetrically. Then exchanging the two signals leads to iden-
tical results, i.e., mutually inverse geometric and radiometric transformations.

3. Individual variances for all observations can be taken into account, especially, posi-
tion or signal depending variances. Covariances are neglected.

4. Interpolation of the observed signals may be necessary:

• Template matching, where one of the two signals is known as continuous func-
tion, does not require any interpolation of observed data.

• Asymmetric LSM requires interpolation of one of the two observed signals.
The e�ect of interpolation onto the noise properties can be predicted and thus
taken into account. This especially holds for interpolation schemes where the
interpolation is a linear function of the given signal, such as linear or cubic
interpolation.

• Symmetric LSM of two observed signals partially requires interpolation of ob-
served data:

� The observation equations are built on the observed data, thus no interpo-
lation is necessary..

� The estimation of the underlying true signal requires interpolation/smoothing
of the observed data.

5. For a�ne geometric transformations the similarity transformation derivable from
corresponding Lowe-keypoints can be used as approximate transformation. This
allows to derive a�ne matches with a covariance matrix of the parameters of the
a�nity, which can be used for estimating the relative pose of two calibrated or
partially calibrated cameras, i.e., with or without focal length based on pairs of
a�ne matches.

27.2 Goals

This report addresses least-squares matching (LSM) of one- and two-dimensional scalar
valued signals. Given are two signals g and h and a parametric transformation for geometry
and intensity: The task is to optimally determine the parameters and their quality.

The following observations indicate that this task is challenging:

• Exchanging g and h may not lead to the same result, i.e., the inverse transformation.
Often, exchanging the two signals is used to check the quality of the match. However,
there should be a solution which is invariant to the exchange of the two signals.

• The predicted quality, namely the variance or the covariance matrix, often is far too
optimistic. Though the Cramer-Rao bound, derivable from the estimation process,
is known to be a lower bound for the variance, at least when using simulated data
which ful�l the estimation model, the bound should be reachable.

• The noise characteristics of the two signals often signi�cantly deviates from the
assumptions made in the estimation model. This may be caused by simply and erro-
neously assuming the given signal values are independent and identically distributed
(i.i.d.). Or it may result from interpolation e�ects. Therefore, among other indica-
tors, the estimated variance factor signi�cantly deviates from 1. Again, at least if
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the signals are simulated, these e�ects should be tractable and lead to an unbiased
estimate for the variance factor.

• The two signals can be seen as a discrete noisy versions of an unknown continuous
underlying true signal f . This leads to two problems which may hinder an optimal
solution:

� the discrete values do not refer to the same position of f . This requires adequate
interpolation, hence, implicitly relies on some model for f .

� the method needs to estimate f together with the geometric and intensity
parameters.

Depending on the realization, this may lead to biases in the parameters and the
estimated variance factor.

• The computational complexity mainly depends on the size of the image patches.
Even with a hierarchical approach the computation time may not be acceptable for
a speci�c (time critical) application.

The report addresses these aspects and tries to answer the following questions:

1. Does template matching, where one of the two signals is perfectly known, show the
above mentioned e�ects w.r.t. bias of estimated variance, variance of estimated
parameters, and estimated parameters?

2. Is there a symmetric solution, which is invariant to the exchange of the two signals?
How far do the results di�er from an asymmetric solution?

3. What is the e�ect of possible interpolation schemes?

4. How should the unknown signal f be estimated and how does this choice e�ect the
quality of the result?

5. How could the computational complexity of the estimation process be reduced?

On Notation. Signals are one- or two-dimensional function. The function names taken
from the middle of the alphabet, e.g., f , g; and h. Coordinate names are taken from the
end of the alphabet: so e.g., f(x), g(y), and h(z). Sometimes, we use the convention
x = [x, y]T. Discrete functions depend on coordinates xi or xi, where the index range
is a set of integers ∈ ZZ. With the grid spacing ∆x we generally have xi = i∆x; mostly,
we assume the spacing ∆x = 1, hence we simply have xi = i. If a coordinate x has no
index, the context tells whether it is a real or an integer. If two coordinates, say xi and
yi have the same index they refer to corresponding points. Homogeneous coordinates and
matrices are boldface upright, e.g., coordinates x or transformation A. The dimension
depends on the context. Stochastical variables are underscored, e.g., the discrete noise
function is m(xi).

27.3 Image Matching

27.3.1 Models

We �rst discuss template matching and asymmetric and symmetric image matching, with-
out specifying the meaning of the transformation parameters. Then we will discuss several
transformation and noise models.

27.3.1.1 Template matching

We assume a template f(x) is given as a continuous function. The observed signal h is
a geometrically and radiometrically distorted and noisy version of the template, speci�ed
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by the geometric parameters θG and θR and parameters θn characterizing the noise. The
intensity transformation is

f 7→ h : h = TR(f,θR) . (27.1)

The geometric transformation is

x 7→ z : z = TG(x,θG) . (27.2)

Hence we have the observed signal

h(zi) = h(zi) +m(zi,θn) , i = 1, ..., I , (27.3)

or compound:

h(zi) = TR(f(T −1
G (zi,θG)),θR) +m(zi,θn) , i = 1, ..., I , (27.4)

assuming the noise components are uncorrelated, i.e., Cov(mi,mj) = σijδi,j .

zh
xf

T

Figure 27.1: Model of template matching: given template f , observed signal g, intensity
transformation TR : f 7→ h, geometric transformation TG : x 7→ z

Example 27.3.29: Template matching with geometric shift and radiometric a�n-
ity. Let the geometric transformation be a translation

TG : z = x+ u (27.5)

and the radiometric transformation be an a�nity, compensating for brightness and contrast

TR : h = s f + t (27.6)

then we have the compound model

h(zi) = s f(zi − u) + t+m(zi) , i = 1, ..., I . (27.7)

This model also is assumed when determining the shift u via the normalized cross-correlation:

pu = argmaxu ρ(f(x), h(z − u)) = argmaxu
Cov(f(x), h(z − u))a
V(f(x))V(h(z − u))

. (27.8)

where the operators Cov(.) and V(.) determine the empirical covariance and variance, which are
invariant to (brightness) shifts. If the variances V(h(z − u)) are independent of u, then we �nd
that u which maximizes the un-normalized correlation

u = argmaxu c(u) = argmaxu f(u) ∗ h(−u) , (27.9)

where '∗' denotes convolution. �

Observe the following special properties and limitations motivating image matching:

• Whereas the radiometric mapping TR is a forward mapping, from the given template
to the observable signal, the geometric mapping TG is used as backward mapping,
corresponding to using the inverse transformation in image warping.

• We assume f is continuous, though in reality we will have a discrete sequence f(xi)
and some interpolation scheme. We will require, that f is C1 continuous, i.e., the
function has unique �rst derivatives.
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• The number I of observations depends on whether the function is known in IR2,
then all pixels of h can be used, or only in a limited region, as depicted in the �gure.
Then, only those pixels in h can be used, which map into the region, where f is
known. We discuss boundary e�ects later.

• The noise component refers to the observed signal h(zi). Therefore, no interpolation
of the noisy observed signal is necessary.

• One easily can criticize the above radiometric model. Physically brightness changes
may have many causes, e.g., change in illumination. The resulting image is perceived
as brighter, but actually the contrast is increased. Based on this view, the above
meaning attributed to s and t appears to be not correct. This is the reason why
Koenderink and Doorn (2002) proposed to model the logarithms of the intensities.
Replacing the signals by their logarithm leads to the model (neglecting the spatial
dependency of the brightness)

T ′R : log h = γ log f + ζ + µ′ (27.10)

or taking exponents on both sides

T ′R : h = s fγ m′ with s = exp ζ and m′ = expµ′ . (27.11)

The factor s can be related to the physical change of brightness1 and the exponent
γ represents what is known as γ correction, used for modelling the perception of
the human eye. Of course, the statistics of the noise component then changes: it is
multiplicative.
In the following, we leave open whether we choose the intensities f or the log-
intensities log(f) for image matching and only derive the equations for the intensities.

27.3.1.2 The asymmetric image matching model

In case two images are given, we have the asymmetric model

g(yi) = f(xi) + n(yi) , i = 1, ..., I (27.12)

h(zj) = TR(f(T −1
G (zj ,θG)),θI) +m(zj ,θn) , j = 1, ..., J . (27.13)

The model is name asymmetric, since the radiometric and geometric transformations are
only a�ecting the second image h. The number N = I+J of observed intensities depends
on the geometric transformation: If we assume that all pixels from g map into the region
of h, as in the �gure, then only those J pixels in h which map to the region of g are useful.
Otherwise we need to identify the common overlap and also take only I pixels in g which
map into the region of h and only the function f within the common regions needs to be
estimated. Of course, only a rectangular region within g may be taken, as indicated by
the dashed boundary in the right part of the Fig. 27.2.

Here we assume an identity transformation

y = x (27.14)

between the coordinates of the unknown template f(x) and the observable image g(y),
the noise components n(yi) and m(zj), and the intensity transformation

h = TR(f,θI) (27.15)

and the geometric transformation

z = TG(y,θG) (27.16)

1Koenderink and Doorn (2002) model γ = exp δ to ensure positivity of γ and obtaining an exponent
γ = 1 for δ = 0.
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Figure 27.2: Model of asymmetric image matching: unknown template f , observed signals
g and h, intensity transformation TR : g 7→ h, geometric transformation TG : y 7→ z. Left:
region g is contained in region h. Right: The regions g and h overlap

with their unknown parameters θI and θG respectively. In addition to the parameters θT ,
θI , and θn, also the function C1-continuous f is unknown.

Observe, that the model only simpli�es to template matching if the noise of g(xi)
is zero and the discrete values f(xi) ≡ g(xi) rigorously allow to derive the continuous
function f(x), e.g., by proper interpolation. Otherwise we will encounter interpolation
errors.

27.3.1.3 The symmetric model

Sometimes it appears more intuitive to make the model symmetric, as suggested by G.
Vosselman.

Symmetric image matching assumes a transformation from the unknown template to
each observed image, see Fig. 27.3.

We have three signals given in their own coordinate system

• The unknown signal f(x). It can be treated as a stochastic signal, without specifying
its stochastic properties at the moment.

• Two observed signals g(y) and h(z), whose true values g̃ and h̃ are related to the
unknown signal by some geometric and intensity transformation.

The relation between these signals is the following

• The geometric model: We have correspondent positions(
x (x), y(y), z(z)

)
(27.17)

We thus have the geometric mappings

y 7→ x : x = A1(y) (27.18)

x 7→ z : z = A2(x ) (27.19)

Thus the mapping between the two images is

y 7→ z : z = B(y) with B = A2 ◦ A1 (27.20)

Of course, only the parameters of the compound mapping are estimable. This can
be achieved, by either setting A1 or A2 to the unit matrix, as in the previous section
where A1 = I or to impose a constraint between A1 and A2. A similar argument
holds for the intensity mappings, hence, TR = S2S1.
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In order to achieve symmetry of the transformations, we partition the intensity and
geometry transformations into two parts, each performing half of the transformation.
In order to keep the model simple, we explicitly model half of the transformations
and then determine the combined transformation, being the product of these trans-
formations, instead of modelling the total transformations and then needing to their
square root. We assume the compound geometric mapping to be TG = A2 := A ◦A ,

G
T   = G

R

2T   = R

GG
R
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Figure 27.3: Relations between two given image patches g : g(y) (blue) and h : h(h)
(green) and the mean patch f : f(x) (which is the black within the red region). The two
image patches g and h are related by a geometric (not named here) and a radiometric
a�nity S , respectively. The correspondence is established by the patch f . Geometrically
and radiometrically it lies in the middle between g and h . Only a region in the overlap of
the two patches g and h mapped to f can be used. We choose the maximum square (black).
The observations are all pixels in g and h which map into the black square of the reference

image f . We assume the reference image pf is a restored version of the weighted mean of the
two projected images g and h

implicitly saying the coordinate system of x to be in the middle of the coordinate
systems of y and z. This reads as

y 7→ x : x = A(y ,θG) (27.21)

x 7→ z : z = A(x ,θG) (27.22)

with the unknown geometric parameters θG.

• The radiometric model: The observed intensities g and h are given at discrete points{
{g(yj)}, j = 1, . . . , J, {h(zj}, k = 1, . . . ,K

}
(27.23)

not necessarily corresponding.
We again use a symmetric set-up leading to the relations valid at corresponding
points

g 7→ f : f = R (g ,θI) (27.24)

f 7→ h : h = R (f ,θI) (27.25)

with the unknown intensity parameters θI .

324



Integrating the geometry and intensity transformation we arrive at the following model,
which is generative, i.e., allows to simulate observed images

g(yj) = R −1
(
f
(
A(yj ,θG

)
,θI
)

+ n(yj) , j = 1, . . . , J (27.26)

h(zk) = R
(
f
(
A−1(zk,θG)

)
,θI
)

+m(yj) , k = 1, . . . ,K (27.27)

The task is to estimate the parameters θ = (θG,θI) for the geometric and the radio-
metric transformation and the unknown true signal f from the observed values g(yj) and
h(zk).

Symmetric matching referring to the window centres. Often the two windows
are approximately aligned, i.e., the centres of the windows approximately match. This is
the case if the two windows are chosen around two corresponding keypoints. Then the
coordinates y and z refer to the centres of the two windows. Then it also is useful to
choose the coordinate system of the unknown signal such that the window is symmetric
w.r.t. its centre.

27.3.2 Classical models

27.3.2.1 Stochastical models

The noise model The statistical properties of the noise need to be speci�ed, e.g.,
assuming the variance to be signal dependent, thus e.g.,

σ2
n(y) = Tv(g̃(y),θV ) σ2

m(z) = Tv(h̃(z),θV ) (27.28)

Only for industrial cameras we can expect a linear relation

σ2
n(y) = a+ bg̃(y) σ2

n(z) = a+ bh̃(z) (27.29)

resulting from the Poisson distribution of the photon noise.

Prior for the signal f As an example, we might assume the signal to be smooth, i.e.,
the second derivatives to have expectation 0 and some, possibly inhomogeneous variance.
In the simplest case one would have with the local 2 × 2 Hessian matrix H = H(f(x)) =
[Hst(f(x))]: E(Hst) = 0 ,D(Hst(f)) = σ2

st , s, t,∈ {x, y}

27.3.2.2 Radiometric models

A classical model for the intensities is an a�ne one

h = af + b . (27.30)

A quite general model would assume a monotonic relation

h = h(f) , with
dh
df

> 0 . (27.31)

27.3.2.3 Geometrical models

For describing the classical models for the geometry, we use

y =

[
x′

y′

]
z =

[
x′′

y′′

]
(27.32)

suggesting the coordinates refer two images.
They are
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1. a pure shift with U = 2 unknown parameters

y = z − u
[
x′

y′

]
=

[
x′′

y′′

]
−
[
u
v

]
(27.33)

as the zero-order approximation of all more general geometric transformations.
This model holds rigorously only, in case the two images are taken with identical
cameras, show no rotation and the base direction is parallel to the images and the
surface is fronto-parallel to the images.

2. an a�nity with U = 6 unknown parameters

y = Az + a

[
x′

y′

]
=

[
a1 a3

a2 a4

] [
x′′

y′′

]
+

[
a5

a6

]
(27.34)

as the �rst order approximation of all more general smooth (di�erentiable) geometric
transformations.
In addition, this model is rigorous only, in case the scene surface is planar in a �nite
region.

3. an homography with U = 8 unknown parameters

y = Hz

[
x′

y′

]
=

1

h7x′′ + h8y′′ + h9

[
h1x

′′ + h2 + y′′ + h3

h4x
′′ + h5y

′′ + h6

]
with |H| = 1 .

(27.35)
This model is rigorous in case the scene is planar within the depicted region.

The next two models result from the assumption that the two images are recti�ed
to epipolar geometry, thus ful�l y′ = y′′.

4. a shift only in the direction of the �rst coordinate[
x′

y′

]
=

[
x′′ − u
y′′

]
(27.36)

This model is rigorous if the scene (the image line) is fronto-parallel to the recti�ed
images.

5. an a�ne transformation in the direction of the �rst coordinate[
x′

y′

]
=

[
a0 + a1x

′′ + a2y
′′

y′′

]
(27.37)

This model is rigorous in case the scene is locally planar in a small region.
The three parameters a, b and c correspond to the slopes A1 and A2 of the plane in
X- and Y -direction and the depth A0.

In case two cameras have projection matrices

P′ = K[I 3 | 0] , P′′ = K[I 3 | −B] (27.38)

with identical Euclidean cameras and basis in X-direction

K =

 c
c

1

 , B =

 BX
0
0

 (27.39)

and plane

Z = A0 +A1X +A2Y , A =


A1

A2

−1
A0

 (27.40)
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we have

a0 = −cBX
A0

, a1 =
A0 +BXA1

A0
, a2 =

BXA2

A0
(27.41)

and inversely

A0 = − c

a0
BX , A1 = − c

a0
(a1 − 1) , A2 = − c

a0
a2 (27.42)

which can be proven using the homography between the two images

x′′ = P′′ I I T(A)Q′x′ =

 A0 +BXA1 BXA2 −cBX
0 A0 0
0 0 A0

x′ (27.43)

where the image coordinates refer to the principle point.

For testing certain properties or when restricting to one-dimensional signals, e.g., in case
we only match epipolar lines, we have the following one-dimensional variants, using the
coordinates y and z for the two signals

• Pure shift
z = y − u . (27.44)

• Scale and shift
z = a1y + a2 . (27.45)

These models may be applied in conjunction with the linear model for the intensities.
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27.4 Examples for models together with their realization

In this section we derive a set of basic models which then are used to evaluate the esti-
mation schemes in detail. In all cases we assume the radiometric model to be an a�ne
transformation with two parameters for contrast and brightness.

These are:

• One-dimensional template matching with a shift only. This will be compared to
classical cross-correlation.

• One-dimensional asymmetric image matching with shift and scale.

• One-dimensional symmetric image matching with shift and scale.

• Two-dimensional asymmetric image matching with a shift only.

• Two-dimensional symmetric image matching with an a�nity.

27.4.1 One-dimensional template matching

We assume the function f(x) is given analytically. Actually we represent it as a sum of
cos-functions, see Sect. 27.6, p.338.

27.4.1.1 The model

At corresponding points we assume the intensity model

g = sf + r , (27.46)

and the geometric model
y = x+ u . (27.47)

The observed function then is given by g(yi) = sf(xi) + r + n(yi), or

E
(
g(yi)

)
= sf(yi − u) + r , D

(
g(yi)

)
∼ N (0, σ2

n) . (27.48)

The range of the observations best is taken symmetrically

yj ∈ [−J, . . . ,+J ] . (27.49)

Equation (27.48) is a non-linear Gauss�Markov-model with the N observations y and the
U = 3 unknown parameters θ:

N := 2J + 1 , y := g , θ :=

 u
s
r

 , Σyy := σ2
nI 2J+1 . (27.50)

27.4.1.2 The Jacobians

We start from approximate values θ0. Then the linearized model reads as

∆yj := g(yi)− (s0f(yi − u0) + r0) = −s0f ′(yi − u0)∆u+ f(yi − u0)∆s+ ∆r . (27.51)

Hence, the (2M + 1)× 3 Jacobian is

∂y

∂θ
=: A = [aT

j ] with aT
j = [−s0f ′(yi − u0) , f(yi − u0) , 1] . (27.52)
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27.4.2 One-dimensional asymmetric image matching with shift

27.4.2.1 The functional model

For corresponding points, the geometric model is

y = x and z = y + u . (27.53)

The radiometric model is
g = f and h = af + b (27.54)

We start from the two noisy pro�les

g(yj) = f(yj) + ng(yj) with D(g(yj)) = σ2
gi (27.55)

h(zk) = af(zk − u) + b+ nh(zk) with D(h(zk)) = σ2
hk
. (27.56)

Since u in general will not be integral, the two sets of observations will not correspond.
Following Förstner (1993), given the K observations hk, k = 1, . . . ,K based on some
estimate for u we may generate K corresponding interpolated observations g(zk − u). We
also can use these interpolated observations to obtain estimates for f(zk − u).

We thus start from the two pro�les

g(yi) = f(yi) + ng(yi) (27.57)

h(zk) = af(zk − u) + b+ nh(zk) . (27.58)

With approximate values u0, a0, and b0 from (27.55) we can derive interpolated values
g(zk − u0) which ful�ll

a0g(zk − u0) + b0 = a0f(zk − u0) + b0 + a0ng(zk − u0) , (27.59)

and linearize (27.56)

h(zk) = h0(zk) +
∂h(zk)

∂θ
∆θ + nh(yi) (27.60)

=
(
a0f(zk − u0) + b0

)
+
∂h(zk)

∂θ
∆θ + nh(zk) (27.61)

=
(
a0g(zk − u0) + b0 − a0ng(zk − u0)

)
+ (27.62)(

−a0f ′(zk − u0)∆u+ f(zk − u0)∆a+ ∆b
)

+ nh(zk)

=
(
a0g(zk − u0) + b0

)
+ (27.63)(

−a0f ′(zk − u0)∆u+ f(zk − u0)∆a+ ∆b
)

+ (27.64)(
nh(yi)− a0ng(zk − u0)

)
The di�erence of (27.60) and (27.59) can be simpli�ed using the abbreviations

∆gk := h(zk)− (a0g(zk − u0) + b0) , (27.65)

f ′k := f ′(zk − u0) , (27.66)

∆nk := nh(zk)− a0ng(zk − u0) (27.67)

we obtain the linearized model

E
(

∆g
k

)
= −a0 pf ′k∆u+ pfk∆a+ ∆b , k = 1, . . . ,K . (27.68)

by using estimates for the Jacobi-coe�cients fk and f ′k, e.g.,

pfk =
1

2

(
g(zk − u0) +

1

a0
(h(zk)− b0)

)
(27.69)

pf ′k =
1

2

(
gx(zk − u0) +

1

a0
hx(zk)

)
. (27.70)
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For determining the linearized observations ∆gk interpolation of g is necessary. We im-
plemented cubic and linear interpolation, which often is su�cient.

Remark: Observe, the last two equations may be simpli�ed, which can be done in many ways.
On possibility is to only refer to one of the two signals, i.e.,

pfk = g(zk − u0) and pf ′k = gx(zk − u0) or pfk =
1

a0
h(zk) and pf ′k =

1

a0
hx(zk) (27.71)

In the second case, often it is recommended to use the central di�erences

pf ′k =
1

a0
1

2∆x
(h(zk+1)− h(zk−1)) . (27.72)

�

27.4.2.2 The e�ect of interpolation onto the stochastical model

The Covariance matrix requires some detailed discussion, since the second part (a0g(zk −
u0) + b0) of the linearized observation refers to an interpolated point of the sequence
g(zk − u0) as u0 generally is no integer.

Any interpolation of g(zk − u0) has two e�ects:

1. The variance of the interpolated value changes.

2. Neighbouring interpolated values are correlated.

Both e�ects depend on the type of interpolation and on the non-integer part of the argu-
ments, see Sect. 27.7. With the remainder r := x− bxc ∈ [0, 1] we obtain

σn(x) = q σn , (27.73)

where the factor q depends on the type of interpolation. For linear and cubic interpolation,
we have

q2
linear(r) = 1− 2r + 2r2 ∈

[
1

2
, 1

]
q2
cubic(r) =

1

2

[
1− 9 r2 + 8 r3 + 21 r4 − 30 r5 + 10 r6

]
∈
[

9

64
,

1

2

]
≈ [0.14, 0.5] .

The correlation between two interpolated signals is less than 50%. For practical reasons
we will therefore neglect the correlations, which will lead to suboptimal results, especially
to unbiased but less accurate estimation results.

Therefore we use the variances of (27.67)

D
(

∆g
k

)
= σ2

hk
+ (a0)2 q2(r) σ2

gk
, (27.74)

where the variance σ2
gk

is taken from the intensity at position zk − u0.

27.4.3 One-dimensional symmetric image matching with shift and
scale

27.4.3.1 The model

We assume the following model.

1. We assume the compound geometric mapping is

z = By or
[
z
1

]
=

[
b1 b2
0 1

] [
y
1

]
(27.75)

The compound mapping is partitioned

B = A2 . (27.76)
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This reads as (27.21) with

A =

[
θ1 θ2

0 1

]
(27.77)

In Euclidean coordinates we have

x = θ1y + θ2 , z = θ1x+ θ2 (27.78)

z = b1y + b2 = θ2
1y + (1 + θ1)θ2 (27.79)

as θ1(θ1y + θ2) + θ2 = θ2
1y + (1 + θ1)θ2. Thus, we have the relations[

b1
b2

]
=

[
θ2

1

(1 + θ1)θ2

]
and

[
θ1

θ2

]
=

[ `
b1

b2/(1 + θ1)

]
(27.80)

2. We assume the observed images g and h to be transformed and noisy version the
unknown signal f .
We again use a symmetric set-up leading to the linear relations valid at corresponding
points

g̃ 7→ f̃ : f̃(xi) = θ3g̃(yj) + θ4 or g̃(yj) =
f̃(xi)− θ4

θ3
(27.81)

f̃ 7→ h̃ : h̃(zk) = θ3f̃(xk) + θ4 or f̃(xk) =
h̃(zk)− θ4

θ3
(27.82)

and therefore the mapping from g to h is h̃ = θ3(θ3g + θ4) + θ4, hence

g̃ 7→ h̃ : h̃ = s1g̃ + s2 = θ2
3 g̃ + (1 + θ3)θ4 . (27.83)

Thus, we have the same similar relations between the parameters s and (θ3, θ4)[
s1

s2

]
=

[
θ2

3

(1 + θ3)θ4

]
and

[
θ3

θ4

]
=

[ `
s1

s2/(1 + θ3)

]
. (27.84)

Integrating the geometry and intensity transformation we arrive at the following model,
which is generative, i.e., allows to simulate observed images

g(yj) = θ−1
3

(
f̃(θ1yj + θ2)− θ4

)
+ n(yj) (27.85)

h(zk) = θ3f̃
(
θ−1

1 (zk − θ2))
)

+ θ4 +m(zk) (27.86)

The task is to estimate the parameters θ for the geometric and the radiometric trans-
formation for describing the signal together with the underlying signal f̃ from the observed
values g(yj) and h(zk).

27.4.3.2 The Jacobians

We need the Jacobians of g and h w.r.t. the four parameters θ.
We explicitly have

g(yj) = θ−1
3

(
f̃(θ1yj + θ2)− θ4

)
+ n(yj) (27.87)

≈ 1

θa3

(
f̃(θa1yj + θa2)− θa4

)
(27.88)

+
1

θa3
fx(θa1yj + θa2)yj∆θ1 (27.89)

+
1

θa3
fx(θa1yj + θa2)∆θ2 (27.90)

− 1

θa,23

(f(θ1yj + θ2)− θ4)∆θ3 (27.91)

− 1

θa3
∆θ4 (27.92)

+n(yj) (27.93)
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or with
fj := f(θ1yj + θ2) and fxj := fx(θa1yj + θa2) (27.94)

the corresponding Jacobian

∂gj
∂θ

=

[
1

θa3
fxjyj |

1

θa3
fxj | −

1

θa,23

(fj − θ4) | − 1

θa3

]
(27.95)

or
∂gj
∂θ

=
1

θa,23

[θa3fxjyj | θa3fxj | −(fj − θ4) | −θa3 ] (27.96)

Similarly we have

h(zk) = θ3f̃
(
θ−1

1 (zk − θ2))
)

+ θ4 +m(zk) (27.97)

≈ θa3 f̃

(
1

θa1
(zk − θa2))

)
+ θa4 (27.98)

−θa3fx
(

1

θa1
(zk − θa2)

)
zk − θ2

θa,21

∆θ1 (27.99)

−θa3fx
(

1

θa1
(zk − θa2))

)
1

θa1
∆θ2 (27.100)

+f̃
(
θ−1

1 (zk − θ2))
)

∆θ3 (27.101)

+∆θ4 (27.102)

+m(zk) (27.103)

With
fk := f

(
θ−1

1 (zk − θ2))
)

and fxk := fx
(
θ−1

1 (zk − θ2))
)

(27.104)

the corresponding Jacobian are

∂hk
∂θ

=

[
−θa3fxk

zk − θa2
θa,21

| −θa3fxk
1

θa1
| fk | 1

]
(27.105)

In order to obtain analogy to the 2D solution we use the substitutions

x′k =
(zk − θa2)

θa1
and φxk =

fxk
θa1

(27.106)

and obtain
∂hk
∂θ

= [−θa3φxkx′k | −θa3φxk | fk | 1] (27.107)

27.4.3.3 Estimating the signal f

The signal f can be estimated as weighted sum of

fg(xi) = pθ3g

(
xi − pθ2pθ1

)
+ pθ4 and fh(xi) =

h(pθ1xi + pθ2)− pθ4pθ3

(27.108)

This requires interpolation of the original observations, which needs to be taken into
account. The variances therefore are

D(fg(xi)) = pθ2
3 q

2(rg) σ2
gi and D(fh(xi)) =

1pθ2
3

q2(rh) σ2
hi , (27.109)

where the variances (σ2
gi and σ

2
hi
) and the remainders,

rg =
xi − pθ2pθ1

−

⌊
xi − pθ2pθ1

⌋
and rh = pθ1xi + pθ2 −

⌊pθ1xi + pθ2

⌋
, (27.110)
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are to be taken at the corresponding position. Using the inverse variances as weights,
leads to unbiased estimates for f(xi).

If the noise variances in g and h are the same, and the di�erence of the factors q is
neglected we arrive at the estimated signal

pf(xi) =
fg(xi) + pθ4

3f
h(xi)

1 + pθ4
3

. (27.111)

27.4.3.4 On the covariance matrix of the estimates

The theoretical covariance matrix derived from the symmetric matching procedure assumes
the signal is known, thus in general will be too optimistic. Förstner (1998) provides a
rigorous analysis of multi-image matching with unknown shift, however, with identical
weights for all images. The normal equation system contains three blocks, (1) for the K
sets of shifts [p1; ...;pK ] , (2) for the unknown signal, and (3) for the Lagrangian multipliers
which �x the gauge, namely requiring the sum of all shifts is zero.

For two images with W 1 = w1I and W 2 = w2I the general normal equation matrix
specializes to 

w1N0 0 w1A
T w1I 2

0 w2N0 w2A
T w2I 2

w1A w2A w1 + w2 0

w1I 2 w2I 2 0T 0

 (27.112)

where
N0 =

¸
i

(∇fi∇Tfi) . (27.113)

The inverse is

1

w1 + w2


w2/w1N

−1
0 −N−1

0 0 I 2
−N−1

0 w1/w2N
−1
0 0 I 2

0 0 I I −A
I 2 I 2 −AT 0

 (27.114)

Which can be checked by NN−1 = I , or

=
1

w1 + w2


w2I + w1I −w2I + w2I 0 + 0 w2N

−1
0 − w2N

−1
0

− w1I + w2I −w1A
TN−1

0 + w1A
TN−1

0 −w2N
−1
0 + w2N

−1
0

− − (w1 + w2)I I 0

− − − (w1 + w2)I 2


(27.115)

Therefore, the precision of the shift is

Σy∆py∆p := D(pp2 − pp1) =
w1 + w2

w1w2
N−1

0 (27.116)

If the signal is not estimated simultaneously but taken to be �xed and we solve the
normal equation system in a symmetric manner

(w1 + w2)N0

x∆p
2

= h (27.117)

and obtain the covariance matrix for the di�erence x∆p
Σ∗y∆py∆p =

4

w1 + w2
N−1

0 (27.118)

Hence, the true covariance matrix Σy∆py∆p is a factor

k =
trΣy∆py∆p
trΣ∗y∆py∆p

=
(w1 + w2)2

4w1w2
(27.119)
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larger than the too optimistic covariance matrix Σ∗y∆py∆p from the simpli�ed model. How-
ever, if the two weights are equal w1 = w2, the covariance matrix derived from the ap-
proximate model is identical to the covariance matrix from the rigorous model.

It is an open question, whether this factor also holds if more than the shift parameters
are estimated. It certainly is di�cult to generalize it to the case where the individual
pixels have di�erent noise standard deviations.

We will use this factor by replacing the weights w1 and w2 by the average weight in
the two images.

27.4.4 Two-dimensional template matching

We assume the geometric model

z = Ax or z = Ax+ a (27.120)

with the parametrization

A =

[
A a
0T 1

]
=

 θ1 θ3 θ5

θ2 θ4 θ6

0 0 1

 . (27.121)

Similarly, we have the a�ne intensity model for the observed signal h

h = θ7f + θ8 . (27.122)

� in order to be consistent with the symmetric image matching model later. This model
thus has 8 unknown parameters. Thus we explicitly have

hk = θ7 f(xk) + θ8 with xk = A−1zk + a . (27.123)

27.4.5 Two-dimensional asymmetric image matching with shift
only

Similarly to Sect. 27.4.2, we start from the two noisy pro�les

g(xj) = f(xj) + ng(yj) (27.124)

h(zk) = f(zk − u) + nh(zk) (27.125)

where

xi =

[
x
y

]
i

and u =

[
u
v

]
. (27.126)

Using approximate values u0 and the abbreviations

∆gk := h(zk)− g(zk − u0) , (27.127)

f ′k := f ′(zk − u0) , (27.128)

nk := nh(zk)− ng(zk − u0) (27.129)

we arrive at the linearized model

∆gk = − pfxkx∆u− pfykx∆v + nk (27.130)

with the estimates

pfk =
1

2

(
g(zk − u0) + h(zk)

)
(27.131)

pfxk =
1

2

(
gx(zk − u0) + hx(zk)

)
(27.132)

pfyk =
1

2

(
gy(zk − u0) + hy(zk)

)
. (27.133)
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Obviously, we need to interpolate g and its partial derivatives if u0 is not integer.
The variance of the observations is

σ2
nk

= D
(
ng(zk − u0)

)
+D (nh(zk)) . (27.134)

Again, we need to perform variance propagation for the interpolated values. We the
reminder for arbitrary x := zk − u0[

r
s

]
=

[
x− bxc
y − byc

]
(27.135)

and have

g(x, y) = (1− r)(1− s) g(bxc , byc) + (27.136)

(1− r)s g(bxc , byc+ 1) + (27.137)

(r(1− s) g(bxc+ 1, byc) + (27.138)

rs g(bxc+ 1, byc+ 1) . (27.139)

Assuming the intensities have the same variance σ2
g we obtain the variance of the interpo-

lated value
D
(
ng(zk − u0)

)
= ((1− r)2 + r2)((1− s)2 + s2)σ2

g . (27.140)

On an average we obtain a variance of

D (ng) =
4

9
σ2
g . (27.141)

Hence, we either can use the individual value using (27.140) hence

σ2
nk

= ((1− r)2 + r2)((1− s)2 + s2)D(ng(zk − u0)) +D(nh(zk)) (27.142)

or the average value

σ2
nk

=

» 1

r=0

» 1

s=0

σ2
nk
drds+D(nh(zk)) =

4

9
D(ng(zk − u0)) +D(nh(zk)) (27.143)

in both cases assuming the neighbouring pixels have the same noise variance. If the noise
is homogeneous in both images, the noise variance σ2

n also is constant, since the reminders
(r, s) are the same for all pixels.

The normal equations read as
Nx∆θ = n (27.144)

with the weights
wk = σ−2

nk
, (27.145)

the unknown vector x∆θ =

[ x∆ux∆v
]

(27.146)

the normal equation matrix

N =

[ °
k wk

pf2
xk

°
k wk

pfxk pfyk°
k wk

pfxk pfyk °
k wk

pf2
yk

]
(27.147)

and the right hand side

n = −

[ °
k wk

pfxk∆gk°
k wk

pfyk∆gk

]
. (27.148)

If the noise variance in both images is assumed to be homogeneous, the weights can
be replaced by a constant value w = 1/σ2

n. Furthermore, for the �nal evaluation it is of
advantage to use the variance σ2

n from (27.142), since it is the same for all pixels.
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27.4.6 Two-dimensional symmetric image matching with a�nity

We now address the symmetric matching of two two-dimensional signals geometrically
related by an a�ne transformation. Hence, we have the geometric model

y 7→ x : x = Ay (27.149)

x 7→ z : z = Ax (27.150)

or

y 7→ x : x = Ay + a (27.151)

x 7→ z : z = Ax+ a (27.152)

We use the parametrization

A =

[
A a
0T 1

]
=

 θ1 θ3 θ5

θ2 θ4 θ6

0 0 1

 . (27.153)

Similarly, we have the a�ne intensity model

g 7→ f : f = θ7g + θ8 (27.154)

f 7→ h : h = θ7f + θ8 , (27.155)

as in (27.81). This model thus has 8 unknown parameters.

27.4.6.1 Jacobians of g

We start with the di�erential for

gj = θ−1
7 (f(xj)− θ8) with xj = Ayj + a (27.156)

w.r.t. to the unknown parameters θ. We explicitly have

gj = θ−1
7 (f(θ1xj + θ3yj + θ5, θ2xj + θ4yj + θ6)− θ8) . (27.157)

Due to d(1/x) = −1/x2dx we explicitly have

gj =

θ−1
7

f(Ayj + a)looooomooooon
fj

− θ8



a

(27.158)

+θ−1
7 fx,jxj dθ1 (27.159)

+θ−1
7 fy,jxj dθ2 (27.160)

+θ−1
7 fx,jyj dθ3 (27.161)

+θ−1
7 fy,jyj dθ4 (27.162)

+θ−1
7 fx,j dθ5 (27.163)

+θ−1
7 fy,j dθ6 (27.164)

−θ−2
7 (fj − θ8) dθ7 (27.165)

−θ−1
7 dθ8 (27.166)

27.4.6.2 Jacobians of h

For the derivatives of

hk = θ7f(xk)loomoon
fk

+ θ8 with xk = A−1(zk − a) (27.167)
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w.r.t. θ we need some preparation. The Jacobian of the inverse is

dA−1 = −A−1(dA)A−1 with A−1 =
1

D

[
a4 −a2

−a3 a1

]
and D := |A| . (27.168)

We in addition use the substitution

xk = A−1(zk − a) . (27.169)

These are the coordinates of the point in f corresponding to zk. Hence, with [αij ] = A−1

we have

d(A−1(zk − a)) = −A−1(dA)A−1(zk − a) (27.170)

= −A−1(dA)z′k (27.171)

= −(z′
T
k ⊗ A

−1)d(vecA) (27.172)

= −
[
α11x

′
k α12x

′
k α11y

′
k α12y

′
k

α21x
′
k α22x

′
k α21x

′
k α22x

′
k

]
. (27.173)

We �nally have

∂f(z′k)

∂θ
=

∂f(z′k)

∂x′k

∂x′k
∂θ

+
∂f(z′k)

∂y′k

∂y′k
∂θ

(27.174)

= − ∇Tf (z′
T
k ⊗ A

−1) (27.175)

= −(1⊗∇Tf)(z′
T
k ⊗ A

−1) (27.176)

= −z′Tk ⊗∇TfA−1 (27.177)

Therefore with

∇φ =

[
φx
φy

]
= A−T∇f (27.178)

we obtain

∂f(z′k)

∂θ
= −z′Tk ⊗∇Tφk = −[x′kφx,k x′kφy,k y′kφx,k y′kφy,k] . (27.179)

Finally, the di�erential of h is

hk =

θ7f(A−1(zk − a))loooooooomoooooooon
fk

+ θ8


a

(27.180)

−θ7φx,kx
′
k dθ1 (27.181)

−θ7φy,kx
′
k dθ2 (27.182)

−θ7φx,ky
′
k dθ3 (27.183)

−θ7φy,ky
′
k dθ4 (27.184)

−θ7φx,k dθ5 (27.185)

−θ7φy,k dθ6 (27.186)

+fk dθ7 (27.187)

+1 dθ8 (27.188)

27.5 Generating approximate values with a prespeci�ed

distance to the true values

When generating arti�cial data, we need to generate parameter values with certain prop-
erties:
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• The symmetry of the algorithms likely depends on the deviation of the parameters
from the unit transformation.

• The convergence of the algorithms depends on the deviations of the approximate
values from the true values of the parameters.

In both cases we want to generate parameters θ which di�er from some reference parame-
ters θ0 by a speci�ed amount. Since, the units of the parameters are di�erent we measure
the di�erence between θ and θ0 by the Mahalanobis distance:

d(θ,θ0) = ||θ − θ0||Σ =
b

(θ − θ0)TΣ−1
θθ (θ − θ0) . (27.189)

Using this distance, we now are able to generate random deviations ∆θ with a pre-
speci�ed distance ds, which now is measured in units of standard deviations and taking
the correlations into account. With a random 8-vector

e ∼ N (0,Σθθ) , (27.190)

we obtain for a speci�c sample e:

∆θ =
ds

d(e,0)
e , (27.191)

such that
d(∆θ,0) = ds . (27.192)

Starting from some reference parameter vector θ0 we, in order to ensure that the resulting
vector θ represents a valid transformation we apply the change ∆θ multiplicatively:

A(θ) = exp(KA(∆θ)) A(θ0) with KA(∆θ) =

 ∆θ1 ∆θ3 ∆θ5

∆θ2 ∆θ4 ∆θ6

0 0 0

 (27.193)

and similarly

R(θ) = exp(KR(∆θ)) R(θ0) with KR(∆θ) =

[
∆θ7 ∆θ8

0 0

]
. (27.194)

The covariance matrix Σθθ can be taken from the generated true image.
Sometimes we might to change the geometric and the radiometric a�nity separately,

specifying individual distances dsA and dsR. Then we replace (27.191) by

∆θ =


dsA

d(eA,0)
eA

dsR
d(eR,0)

eR

 , (27.195)

where the indices A and R refer to the �rst 6 and the last 2 elements of the 8-vectors.

27.6 Generating true functions having a certain rough-

ness

27.6.1 Generating 1D functions

For testing we need a smooth function f . In order to be able to vary its roughness we
assume its power spectrum is a central Gaussian with a prespeci�ed standard deviation b.

Hence, we represent the smooth function as

f(x) =

» +∞

u=−∞
qf(u; b) e+i2πuxdu . (27.196)
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and assume the amplitude spectrum qf := F (f) with random phase

qf(u; b) = G(0, b2)ei2πeu =
1`

2πb2
e
−1

2

(u
b

)2

ei2πeu . (27.197)

with
eu ∼ U(0, 1) . (27.198)

The standard deviation b can be called the (e�ective) bandwidth, see McGillem and Sved-
low (1976): The signal on an average will show wavelengths 1/b.

We replace the integral by a �nite sum taken over a random K-sample qfk(uk) with
(u1, u2, ..., uK) of frequencies uk with u1 = 0 and

uk ∼ N (0, b2) , k = 2, . . . ,K . (27.199)

In order to achieve a prespeci�ed mean µf and a prespeci�ed standard deviation σf ,
and obtain a real valued function f we

• choose the value qf(0) := qf1(0) = µf

• choose the norm of the other values is σf :

Ķ

k=2

|| qfk||2 = σ2
f ; (27.200)

• eliminate the imaginary parts by taking the mean of the signal and its conjugate.

Therefore we determine the real valued signal with standard deviation b using the random
frequencies from (27.199)

f(x) =
1

2

Ķ

k=1

( qfk e+i2πukx + qf∗k e−i2πukx
)
. (27.201)

For an N -vector of positions x we realize it by determining the transposed vector of the
matrix F ,

fT = f(x) =
1

2
1T
K

(
(qf 1T

N )� e+i2πuxT
+ (qf∗ 1T

N )� e−i2πuxT
)

(27.202)

where eM = [emij ] is the elementwise exponential.

27.6.2 Generating 2D functions

Here we represent the smooth function as

f(x) =

» +∞

u=−∞
qf(u; b) e+i2πuTxdu . (27.203)

and assume the amplitude spectrum with random phase

qf(u; b) = G(0; b2)ei2πeu =
1`

2πb2
e
−1

2

||u||2

b2 ei2πeu . (27.204)

with
eu ∼ U(0, 1) except for u = 0 . (27.205)

Again we generate the K-vector qf = [ qf(uk)] by choosing K − 1 random values uk ∼
N (0, b2), k = 2, ...,K, and normalize qf such that

°
k || qfk||2 = σ2

f and choose qf(u1) = µf
for u1 = [0, 0]. The we obtain the signal from

f(x) =
1

2

Ķ

k=1

( qfk e+i2πuT
kx + qf∗k e−i2πuT

kx
)
. (27.206)
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For two N ×N -matrices X and Y of positions with N2-vectors x = vecX and y = vecY ,
the K × 2-matrix U = [ux,uy] we realize it by

vec(F )T = f(x,y) =
1

2
1T
K

(
(qf 1T

N2)� e+i2π(uxx
T + uyy

T) (27.207)

+(qf∗ 1T
N2)� e−i2π(uxx

T + uyy
T)
)

(27.208)

27.7 Smoothing and Interpolating

The function f(x, y) needs to be C1-smooth, i.e., the function values and the �rst deriva-
tives should be continuous. Otherwise, the iteration process might lead to jumps, which
themselves might lead to oscillations.

This can be achieved in various ways. We discuss

• Bilinear interpolation, due to its simplicity, which, however, is not C1-smooth.

• Quadratic interpolation

• Cubic interpolation

• B-splines

We also discuss the 2D case.
In all cases we provide a compact representation and derive the e�ect on noisy data,

especially the reduction of the noise variance caused by smoothing and interpolation. This
is straight forward, since all methods are linear operators.

27.7.1 Linear interpolation

27.7.1.1 1D linear interpolation

Compact Representation. Let the signal be given by a sequence bm. Let us assume
the function values are f(m) = bm. Hence, we assume the pixel distance is ∆x = 1. Linear
interpolation at position x refers to the reference point

i = bxc , (27.209)

and its neighbour i+ 1. It is a linear function of

u = u(x) = x− i . (27.210)

We explicitly have

f(x) = (1− u)f(i) + uf(i+ 1) = f(i) + uf(i) + uf(i+ 1) . (27.211)

This can be written as

f(x) = [1 | u]

[
1 0
−1 1

] [
f(i)

f(i+ 1)

]
. (27.212)

or with the substitutions

u =

[
1
u

]
, M0 =

[
1 0
−1 1

]
, and b =

[
bi
bi+1

]
(27.213)

as
f(x) = uT(x)M0b . (27.214)

This compact notation can be transferred to higher order polynomials and also to the
determination of derivatives, where we will use matrices Md, where d indicates the deriva-
tive.
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Variance and covariance of linear interpolation. We �rst derive variances of lin-
early interpolated values.

Linear interpolation at x ∈ [xi, xi + 1] uses the partitioning

x = xi + r with xi = bxc and r = x− xi . (27.215)

We then have, with gi := g(xi)

g(x) = (1− r)gi + rgi+1 (27.216)

If the variance of the observed values is homogeneous, hence V(g
i
) = σ2

n, then the variance
of the interpolated value is

σ2
n(x) = ((1− r)2 + r2)σ2

n = (1− 2r + 2r2)σ2
n with r ∈ [0, 1] . (27.217)

Hence, assuming homogeneous noise variance, we obtain the variance due to linear inter-
polation

σ2
n̄(r) = q2

linear(r) σ
2
n (27.218)

with
q2
linear(r) = 1− 2r + 2r2 . (27.219)

The minimum is achieved for r = 1/2, namely σ2
n(i+ 1/2) = 1/2 σ2

n.
The average variance is given by

σ2
n =

» 1

r=0

σ2
xdr =

2

3
σ2
n . (27.220)

The correlation can easily be determined if if the value of g is determined in neigh-
bouring intervals, say x = xi + r and y = xi − 1 + s, with r, s ∈ [0, 1]. Then we have

g(y) = (1− s)gi−1 + sgi . (27.221)

Hence the correlation of the interpolated values is

ρxy =
s(1− r)a

((1− r)2 + r2)((1− s)2 + s2)
. (27.222)

It depends on both values x and y. For r = s, i.e., x = y + 1 we obtain

ρx,x+1 =
r(1− r)

1− 2r + 2r2
∈ [0, 1/2] . (27.223)

The maximum correlation is achieved if r = s = 1/2, as to be expected. The maximum
correlation is 50%. For s = 1− r we obtain

ρx,x+1 =
(1− r)2

1− 2r + 2r2
∈ [0, 1] , (27.224)

where the minimum is achieved for r = s = 0 and the minimum ρ = 0 is achieved for
r = s = 1.

Therefore, we may derive individual variance depending on the interpolation point x.

27.7.1.2 2D linear interpolation

If the signal is given by the elements bnm we have the function values f(m,n) = bmn. The
bilinear interpolation refers to the integer coordinates

i = bxc and j = byc , (27.225)
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and depends on the coordinates

u = u(x) = x− i and v = v(y) = y − j . (27.226)

and with the substitutions

u =

[
1
u

]
, v =

[
1
v

]
, M0 =

[
1 0
−1 1

]
, and B =

[
bi,j bi,j+1

bi+1,j bi+1,j+1

]
(27.227)

compactly can be written as

f(x, y) = uT(x)M0BM
T
0v(y) . (27.228)

The variance of interpolated values g(x, y) at [x, y] uses the remainders [r, s] and is
given by

σn(x, y) = (1− 2r + 2r2)(1− 2s+ 2s2) , σ2
n , (27.229)

see (27.142).

27.7.2 Cubic interpolation

27.7.2.1 1D cubic interpolation

Compact representation. Here we follow Xiao Shu, Bicubic interpolation, March
20132. For each value x in the interval [i, i+ 1] the function is a cubic polynomial which
satis�es the following conditions

1. The function at i has the values f(i) = bi

2. The function at i+ 1 has the value f(i+ 1) = bi+1.

3. The derivative at i is f ′(i) = (bi+1 − bi−1)/2.

4. The derivative at i+ 1 is f ′(i) = (bi+2 − bi)/2.

Hence, we need the four neighbouring values collected in

b =


bi−1

bi
bi+1

bi+2

 . (27.230)

We use the substitutions

u =


1

(u− i)
(u− i)2

(u− i)3

 and M0 =
1

2


0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 . (27.231)

Then the interpolated value is

f(x) = uT(x)M0b , (27.232)

as above.
Proof: We use

a =


a0
a1
a2
a3

 . (27.233)

Then cubic function in the i-th interval [i, i+ 1] can be written as

f (i)(u) = a0 + a1(u− i) + a2(u− i)2 + a3(u− i)3 = uTa (27.234)

2https://www.ece.mcmaster.ca/∼xwu/3sk3/interpolation.pdf
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The derivative is

f (i)
u (u) = a1 + 2a2(u− i) + 3a3(u− i)2 = u


a1
2a2
3a23
0

 = uT
Da (27.235)

with the di�erentiation matrix

D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 . (27.236)

The four conditions then can be written as
f (i)(i)

f (i)(i+ 1)

f
(i)
u (i)

f
(i)
u (i+ 1)

 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0

0 −1/2 0 1/2


loooooooooooooooooooomoooooooooooooooooooon

U


bi−1

bi
bi+1

bi+2

 =


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3


loooooooooomoooooooooon

V


a0
a1
a2
a3


(27.237)

or compactly
c = Ub = Va . (27.238)

Therefore
a = V

−1
U = M0b , (27.239)

which holds since

U = VM0 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0

0 −1/2 0 1/2

 =
1

2


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3




0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 .
(27.240)

�
Remark: This de�nition of interpolating cubic splines does not minimize the total curvature

of the interpolating function, thus di�ers from the classical de�nition. In contrast to the classical

de�nition, the function values f(u) only depend on four neighbouring points bi linearly, not on

all values of the pro�le. �
Since, with a = M0b the �rst derivative of the polynomial from (27.235) we obtain the

compact expression for the derivative

f ′(x) = uT(x)M1b (27.241)

with

M1 = DM =
1

2


−1 0 1 0
4 −10 8 −2
−3 9 −9 3
0 0 0 0

 . (27.242)

Variance of cubic interpolation. We now give the variances of cubic interpolation.
Cubic interpolation at r ∈ [0, 1] requires the vales of g at [−1, 0, 1, 2]. Speci�cally, we
obtain the interpolated value

g(r) =
1

2

[(
−r + 2 r2 − r3

)
g−1 (27.243)

+
(
2− 5 r2 + 3 r3

)
g0 (27.244)

+
(
r + 4 r2 − 3 r3

)
g1 (27.245)

+
(
−r2 + r3

)
g2

]
, (27.246)

see (28.86). Assuming homogeneous noise variance, we obtain the variance

σ2
n(r) = q2

cubic(r)σ
2
n (27.247)
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with
with q2

cubic(r) =
1

2

[
1− 9 r2 + 8 r3 + 21 r4 − 30 r5 + 10 r6

]
. (27.248)

It is symmetric w.r.t. r = 1/2. It reaches its maximum σ2
x(0) = σ2

n at r = 0 and r = 1
and its minimum at r = 1/2 min

σ2
n(r = 1/2) =

41

64
σ2
n ≈ 0.641σ2

n . (27.249)

Observe, that this is only the e�ect of noise onto the interpolation, assuming a quite �at
function f .

As in the case of linear interpolation, we may derive an individual variance as a function
of the remainder r = x− bxc. We also can use the average variance, which is

σ2
n =

» 1

r=0

σ2
xdr =

57

70
σ2
n ≈ 0.814σ2

n . (27.250)

On an average we then have an error of approximately 13%.

27.7.2.2 2D cubic interpolation

We thus obtain bi-cubic interpolation using the substitution

v =


1
v
v2

v3

 (27.251)

and the collection of the 4× 4 neighbouring values in the cell [i, i+ 1]× [j, j + 1]

B =


bi−1,j−1 bi−1,j bi−1,j+1 bi−1,j+2

bi,j−1 bi,j bi,j+1 bi,j+2

bi+1,j−1 bi+1,j bi+1,j+1 bi+1,j+2

bi+2,j−1 bi+2,j bi+2,j+1 bi+2,j+2

 , (27.252)

We obtain
f(x, y) = uT(x)M0BM

T
0v(y) . (27.253)

The partial derivatives then are

fx(x, y) = uT(x)M1BM
T
0v(y) and fy(x, y) = uT(x)M0BM

T
1v(y) (27.254)

The variance of bi-cubic interpolated noise values is

σ2
n(x, y) = q2

bi-cubic(r, s)σ
2
n with q2

bi-cubic(r, s) = q2
cubic(r)q

2
cubic(s) . (27.255)

The average variance is

σ2
n =

» 1

r=0

» 1

s=0

σ2
n(x, y)dxdy =

57

70

2

σ2
n ≈ 0.663σ2

n . (27.256)

Interpolation error. We want to determine the interpolation error of a function f(x, y)
by

1. Interpolating the function f at the grid at [i+ 1/2, j + 1/2]:

g(x, y) = fB(x+ 1/2, y + 1/2) . (27.257)

2. Interpolating the the function g at the grid at [i− 1/2, j − 1/2]:

h(x, y) = gB(x− 1/2, y − 1/2) . (27.258)
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3. Determining the error induced by the two interpolations

σ2 = D(h(x, y)− f(x, y)) . (27.259)

We start from (27.253) using

u = u(x)− i and v = v(x)− j , (27.260)

with the special choice for x = +1/2

u+ = x− bxc = +1/2− 0 = 1/2 and v+ = 1/2 . (27.261)

Hence, we have

u =


1

1/2
1/4
1/8

 and v =


1

1/2
1/4
1/8

 (27.262)

We refer to the 49 values of F (1 : 7, 1 : 7), see Fig. 27.4

1

7

1 7

1

4

1 4

4

4

Figure 27.4: Interpolation error. The black 7× 7 grid of f is used to interpolate the green
4 × 4 grid of g. This is used to obtain the interpolated value h at the position of f(4, 4).
The di�erence is an indication for double the interpolation error.

This allows to derive G (1 : 4, 1 : 4) via

g(i, j) = uTM0F (i : i+ 3, j : j + 3)MT
0v . (27.263)

Similarly, starting from the interpolated signal g, we can derive the back shifted value

h = uTM0GM
T
0v . (27.264)

The di�erence
δ(F ) = h(F )− f(4, 4) (27.265)

is a function of the 49 values of F . The Jacobian J = ∂δ/∂F is given by

J =
1

216



1 −18 63 164 63 −18 1
−18 324 −1134 −2952 −1134 324 −18
63 −1134 3969 10332 3969 −1134 63
164 −2952 10332 −38640 10332 −2952 164
63 −1134 3969 10332 3969 −1134 63
−18 324 −1134 −2952 −1134 324 −18

1 −18 63 164 63 −18 1


(27.266)

We now assume that the signal values f are correlated, depending on the underlying
power-spectrum. We assume three di�erent cases
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1. Gaussian power spectrum. Then the covariance function is

C(d) = exp(−(d/d0)2/2) . (27.267)

2. Laplacian power spectrum. Then the covariance function is

C(d) =
1

1 + (d/d0)2
. (27.268)

3. The powers spectrum follows the power law P (u) ∝ f−2, or P (u) = 1/(1 + u2)/π.
Then the covariance function has the form

C(d) = exp(−d/d0) . (27.269)

The value d0 controls the smoothness of the signal, larger d0 leads to smoother functions.
Via variance propagation we obtain V(δ(f)). Since this di�erence results from two inter-
polation we report σδ =

a
V(δ)/2 in the table. We observe: (1) the larger d0, i.e., the

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.1855 0.2888 0.3499
1.5000 0.0643 0.1860 0.2947
2.0000 0.0249 0.1180 0.2583
2.5000 0.0112 0.0754 0.2323
3.0000 0.0056 0.0491 0.2128
3.5000 0.0031 0.0327 0.1974
4.0000 0.0019 0.0222 0.1849

Table 27.1: Standard deviation of bi-cubic interpolation error

smoother the signal, the smaller the interpolation error is. (2) As to be expected, signals
with Laplacian power spectrum are rougher than those with Gaussian, and smoother than
those with thepower spectrum following the power law.

These results refer to the shift [1/2, 1/2] and depend on the assumed stochastical model
for the signal. For the use in LSM, we do not want a dependency on the stochastical model
for the unknown image function. Since J = ∂δ/∂F , we can use the matrix J as �lter for
deriving δ from f :

δ = J ∗ f . (27.270)

Obviously, the matrix J represents a highpass �lter. Hence, we can determine the indi-
vidual interpolation errors due to forward and backward shifting with interpolation from
any signal. This allows us to derive the variance of the maximal interpolation error from

pσ2
δ,max =

1

|R |
¸
r∈R

δ2
r . (27.271)

Since we are interested in the average interpolation error within the region of one pixel,
we determine the mean of the expected variance σ2

δ for all forward and backward shifts
[x, y], x, y ∈ [0, 1]. Hence, we can determine the interpolation variance for a speci�c window
f from x

σ2
δ = k pσ2

δ,max with k =
σ2
δ

σ2
δ,max

. (27.272)

As an example we have the variances of the interpolation error for d0 = 1 and Gaussian
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covariance function at the grid points [i, j]/8, i, j ∈ {1, ..., 9} of the unit interval:

[σ2
ij ] =

1

1000



0 9 93 247 327 247 93 9 0
9 22 111 267 349 267 111 22 9
93 111 208 368 449 368 208 111 93
247 267 368 527 608 527 368 267 247
327 349 449 608 688 608 449 349 327
247 267 368 527 608 527 368 267 247
93 111 208 368 449 368 208 111 93
9 22 111 267 349 267 111 22 9
0 9 93 247 327 247 93 9 0


(27.273)

As to be expected, the interpolation error is zero in the corners of the square, thus for
integer coordinates.

Interestingly, the factor k does not vary much for di�erent stochastical models of f , as
Tab. 27.2 shows. Therefore, we can use the following variances of the model error of the

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.3482 0.3710 0.3803
1.5000 0.3425 0.3608 0.3793
2.0000 0.3432 0.3536 0.3789
2.5000 0.3446 0.3490 0.3787
3.0000 0.3459 0.3462 0.3786
3.5000 0.3468 0.3445 0.3785
4.0000 0.3476 0.3437 0.3785

Table 27.2: Ratio k of mean and maximal bicubic interpolation error variance for di�erent
stochastical models for a signal.

given data, e.g., for g in grey levels [0, ..., 255]

σ2
n′j

= σ2
nj + k pV(J ∗ f) with k = 0.37 . (27.274)

depending on the empirical noise variance σ2
nj of the intensities of gi and the interpolation

error derived from the image window f .

27.7.3 Quadratic smoothing

27.7.3.1 1D quadratic smoothing

Here, the quadratic function f(x) is valid for points x in the interval [i−1/2, i+1/2]. The
slopes at the boundary points are

f ′(i− 1/2) = bi − bi−1 and f ′(i+ 1/2) = bi+1 − bi . (27.275)

However, the function at i does not have the value bi, but a smoothed value. Then with
the substitutions

u =

 1
u
u2

 , b =

 bi−1

bi
bi+1

 , (27.276)

and

M0 =
1

8

 1 6 1
−4 0 4
4 −8 4

 ,M1 =
1

2

 −1 0 1
1 −2 1
0 0 0

 (27.277)

we obtain the interpolated value and the corresponding derivative as

f(x) = uT(x)M0b and f ′(x) = uT(x)M1b (27.278)
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27.7.4 Smoothing cubic B-splines

Cubic B-splines also do not pass through the given points (m,n, bmn). But can be rep-
resented in the same way as cubic interpolation, see see http://ps-2.kev009.com/tl/

techlib/manuals/adoclib/aixprggd/gl32prgd/drawwfcv.htm.
With the 4× 4 values collected in the matrix B the vectors

u(u) =


1
u
u2

u3

 , v(v) =


1
v
v2

v3

 (27.279)

and the matrices

M0 =
1

6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

 and M1 =
1

2


−1 0 1 0
2 −4 2 0
−1 3 −3 1
0 0 0 0

 (27.280)

we obtain the surface and its derivatives by (27.253) and (27.254).

27.8 Experiments

Remark: The following experiments are incomplete. �
We assume we have the following routines, all minimizing the sum of squared residuals.

• TEMM = template matching:

� the template is a known continuous function,

� no interpolation is required.

• ALSM = asymmetric image matching:

� using pixels in the observed template which are reachable in the observed image,

� taking a mean gradient,

� applying cubic interpolation.

• CLSM = classical asymmetric image matching:

� using pixels in the observed template which are reachable in the observed image

� taking the simple gradient with [−1, 0, 1]/2 only in the template

� applying linear interpolation.

• SLSM = symmetric image matching:

� using pixels in the observed images which map to a mean unknown image,

� taking a mean gradient,

� applying cubic interpolation.

We add the dimension d and the number of geometric and radiometric parameters in
brackets. E.g. the symbol TEMM1(1,2) refers to 1D template matching with 1 geometric
parameter (shift) and 2 radiometric parameters (a�nity).

We did not realize models for all methods, see table

List of experiments/Questions:

• Is the implementation correct using the three tests?

• Are the results di�erent, when using the generated real valued intensities or the
rounded intensities?

• Demonstrate the need for changing the model variance due to bicubic interpolation.
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method 1(1,2) 1(2,2) 2(4,2)
TEMM x

x
ALSM x x

x
CLSM x
SLSM x

x
Table 27.3: Realized methods

• Demonstrate the di�erences when using pyramids, especially the number of iterations
(todo).

• What is the radius of convergence? How does it depend on the size of the windows,
the texture and the use of pyramids (todo).

• Are the parameters of Lowe-points su�cient for convergence? How far are they
apart? How is the distribution of the scale and direction information?

• How large is the di�erence to asymmetric image matching?

• How large is the di�erence to classical image matching?

• Do triplet-closure tests reveal di�erences? (todo)

• How large is the di�erence to using only pixels with gradient? (todo)

27.8.1 Veri�cation of correctness

We �rst check the correctness of the implementation, i.e., the consistency between theory
and implementation based on simulated data. We present results for 1D for all four
methods. We report tests on repeated trials. For each test we specify

1. model

2. number of parameters

3. redundancy

4. number of trials

5. normalized outcome of statistical tests for

(a) variance factor pσ2
0 ,

(b) covariance matrix Σpθpθ, and

(c) bias b = pµpθ − θ̃
We normalize the output such that the test statistic is in the range [−1,+1]. Hence,
if the test statistic is T and the two-sided interval is [l, h] we provide

p(T ; l, h) =
log T̀

lh

log
b

h
l

with p(l; l, h) = −1 and p(h; l, h) = +1 . (27.281)

Hence, the test statistic is in the con�dence interval if p ∈ [−1,+1].

6. We give the tests for both, all parameters (p(·)), only the geometric ones (pg(·)), and
only the radiometric ones (pr(·)).

We generate the data with the following parameters

• signal with Gaussian spectrum with e�ective bandwidth σ = be� and random phase
from L frequencies with

µa = 128 [gr] , σa = 40 [gr] , be� = 0.05 , L = 40 . (27.282)
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• true parameters, if applicable:

� 1D matching

s = 1.0 , u = 4.6 , a = 1.05 , b = 10 [gr] (27.283)

We choose s = 1.0 in order to be able to compare the solutions with 3 and 4
parameters.

• approximate values identical to true values.

• noise standard deviation σn = 1 [gr].

• starting seed for random generation: 1.

Table 27.4: Tests on the correctness of the estimations of 1D signals , the ideal tem-
plate matching (TEMM) with and without rounding (r.) and asymmetric and symmetric
matching, ALSM and SLSM, respectively. Number of geometric and radiometric unknowns
(Ug, Ur), redundancy R, number of samples K, normalized test statistics p for variance fac-
tor, for covariance matrix Σ, and bias b, for all and only geometric parameters p and pg,
respectively.

dim round Ug + Ur R K p(σ0) p(Σ) p(b) pg(Σ) pg(b)

1 TEMM1 − 1+2 22 1000 0.3436 0.3280 0.4447 - -
2 TEMM1 + 1+2 22 1000 0.6480 0.3102 0.2786 - -
3 ALSM1 + 1+2 26 1000 -4.7756 0.4630 0.8395 0.4219 0.9374
4 ALSM1 + 2+2 25 1000 -4.7883 0.3571 0.7303 0.5696 0.8072
5 SLSM1 + 2+2 34 1000 1.0760 -0.5966 0.9015 0.0694 0.8826

We can draw the following conclusions from the table:

• There is no reason to doubt the estimated variance factor for template match-
ing. Asymmetric least squares matching severely underestimates the variance factor,
while symmetric least squares matching slightly overestimates the variance factor.

• In all cases the estimates appear to have no bias, referring to all parameters or
referring only to the geometric parameters.

• In all cases, except one, the predicted covariance matrix of the estimated parameters
appears to re�ect their uncertainty. An exception is the underestimation of the co-
variance matrix for symmetric least squares matching (SLMS1, with p(Σ) = −0.6).
However, if we take the covariance matrix of the parameters corrected by the esti-
mated variance factor, thus pσ2

0Σpθpθ (27.284)

this corrected covariance matrix is acceptable, since the p-values in the table � due
to their logarithmic character, see (27.281) � add.

Hence, in all cases we can rely on the estimates and on the internal prediction of their
uncertainty. Only the estimated variance factor, i.e., the estimate of the noise variance
appears unreliable for asymmetric least squares matching.

27.8.2 Convergence

The example shows 1D asymmetric matching ALSM1(1,2) with geometric shift and ra-
diometric a�nity, i.e., 3 unknown parameters. It shows the adaptation of the template to
the observed signal. The true parameters are

u = −2.3 , a = 1.0432 , b = 1.8841/256 ≈ 0.0074 . (27.285)
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The brightness parameter b refers to the signal range [0, 1] and corresponds to 30 [gr]. The
noise is assumed to be

σg = σh = 2/256 . (27.286)

We start from approximate values

u = −5.9 , a = 1.4432 , b = −0.1098 . (27.287)

Figure 27.6 shows how the signal g (blue) is adapting to the signal h (red). Again, due
to the large deviation between approximate and true values 5 iterations are necessary, to
ful�l the convergence criterium. However, visually already 3 iterations appear su�cient.

Figure 27.5: Example for template matching TEMM1(1,2). Convergence of parameters

ν ∆pu ∆pa ∆pb N pu pa pb pσ0

0 −5.9000 1.4432 −0.1098
1 4.2926 −0.8707 0.3242 28 −1.6074 0.5725 0.2144 3.8060
2 −0.6618 0.3259 −0.1429 32 −2.2692 0.8984 0.0716 0.9904
3 −0.0330 0.1091 −0.0471 31 −2.3022 1.0076 0.0245 1.0865
4 0.0012 0.0069 −0.0029 31 −2.3010 1.0144 0.0215 1.1062
5 ∗0.0000 ∗0.0000 ∗0.0000 31 −2.3010 1.0145 0.0215 1.1064

θ̃ −2.3000 1.0432 0.0074pθ − θ̃ −0.0010 0.0237 0.0141
σ 0.0418 0.0165 0.0081

Table 27.5: Classical 1D-LSM, i.e., TEMM1(1,2), with geometric shift and two radiometric
parameters. Parameters as a function of the iteration ν. Observe, the number N of obser-
vations changes, depending on the estimated shift u. The di�erences between the estimated
parameters pθ and the true parameters θ̃ is in the range of the standard deviations. ∗ The
0-values are less than 10−5

27.8.3 Examples

27.8.3.1 1D Template matching

The example shows 1D template matching TEMM1(1,2) with geometric shift and radio-
metric a�nity, i.e., 3 unknown parameters. It shows the adaptation of the template to
the observed signal. The true parameters are

u = −4.6 , a = 1.3 , b = 30/256 ≈ 0.1172 . (27.288)
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Figure 27.6: Asymmetric LSM, ALSM1(1,2), with geometric shift and two radiometric
parameters. Evolution of adaptation of g (blue) w.r.t. h (red)

The brightness parameter b refers to the signal range [0, 1] and corresponds to 30 [gr]. The
noise is assumed to be

σn = 1/256 . (27.289)

We start from approximate values

u = −1.6 , a = 1.0 , b = 0 . (27.290)

Fig. 27.7 shows how the template (red) is adapting to the observed signal (blue). Due
to the large deviation between approximate and true values 5 iterations are necessary.
Iterations are terminated if the change of a parameter is less than 10% of its standard
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deviation. Table 27.6 shows the change of the parameters and of the estimated σ0. This
is visualized in Fig. 27.5.

Figure 27.7: Template matching TEMM1(1,2). Adaptation of f (red) to g (blue) over �ve
iterations

ν ∆pu ∆pa ∆pb pu pa pb pσ0

0 −1.5000 1.0000 0.0000
1 −2.3308 −0.4809 0.4257 −3.8308 0.5191 0.4257 15.245
2 −1.8167 0.7214 −0.2851 −5.6476 1.2405 0.1407 1.745
3 1.0527 −0.0642 0.0265 −4.5948 1.1763 0.1672 3.155
4 −0.0023 0.1274 −0.0517 −4.5972 1.3037 0.1154 0.871
5 0.0002 ∗0.0000 ∗0.0000 −4.5970 1.3037 0.1154 0.871

θ̃ −4.6000 1.3000 0.1172pθ − θ̃ −0.0030 0.0037 −0.0018
σ 0.0153 0.0088 0.0035

Table 27.6: Template matching TEMM1(1,2). Parameters as a function of the iteration

ν. The di�erences between the estimated parameters pθ and the true parameters θ̃ is in the
range of the standard deviations. ∗ The 0-values are less than 10−7

27.8.3.2 1D LSM methods with shift and scale

We now compare the e�ect of exchanging the two signals onto the estimated parameters
for three methods

1. Symmetric LSM (SLSM1): expecting zero in�uence

2. Asymmetric LSM (ALSM1): expecting small in�uence due to the rigour of all steps,
and

3. Classical LSM (CLSM1): expecting larger in�uences, due to the simplicity of the
observed intensity di�erences and the gradient computation.

In all cases we apply the following procedure

• the model contains four parameters, two geometric and two radiometric a�nities.

• use the same type of signal as above (mean, standard deviation and roughness)
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• perform K = 1000 repetitions with random variation of the shift in the range
[−0.5,+0.5] [pel] and varying noise.

• Performing the three checks on the correctness of the implementation.

• Determining the di�erences du

du = pu,backward − pu,forward (27.291)

of the four parameters pu ∈ {s, u; a, b}, characterizing them by their normalized
mean and standard deviation

m =
xdu
σpu

and s =
pσdu
σpu

, u = 1, 2, 3, 4 , (27.292)

and providing a histogram.

• to some degree vary the noise variance
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Figure 27.8: Sample. Case σn = 1 [gr], geometric scale s = 1.1

Figure 27.9: E�ect. Case σn = 1 [gr], , geometric scale s = 1.1
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Figure 27.10: Sample for the true (black) and the observed signals (blue and red). Case
σn = 1.5 [gr], geometric scale s = 1.1

Figure 27.11: E�ect of exchanging the two signals on the four parameters. Case σn = 1.5,
, geometric scale s = 1.1
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Figure 27.12: E�ect. Case σn = 1, geometric scale s = 1.25

Figure 27.13: E�ect. Case σn = 1 [gr], geoemtric scale s = 1

27.8.3.3 1D symmetric LSM with shift and scale

tbd.

27.8.3.4 2D asymmetric LSM with shift only

tbd.

27.8.3.5 2D symmetric LSM with a�nity

tbd
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Figure 27.14: E�ect. Case σn = 1 [gr], geometric scale s = 1.25

Figure 27.15: E�ect. Case σn = 1, geometric scale s = 1.5
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28 Symmetric Least Squares Matching

� Sym-LSM

The note is a report which describes the basics of symmetric least squares matching (Sym-
LSM) which is useful for high-precision image matching and realized in Matlab.

28.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
28.2 Image Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

28.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
28.2.2 The estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
28.2.3 Re�ned correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 365

28.3 Realization of symmetric least squares matching . . . . . . . . . . . . . . . 366
28.3.1 Jacobians of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
28.3.2 Jacobians of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
28.3.3 Jacobian X and the linearized observations ∆y . . . . . . . . . . . . 368
28.3.4 The accuracy potential of LSM . . . . . . . . . . . . . . . . . . . . . 368
28.3.5 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
28.3.6 Realizing image warpings . . . . . . . . . . . . . . . . . . . . . . . . 371

28.4 Checking the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 371
28.5 Noise variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
28.6 Demo routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

28.6.1 Demo demo_LSM_small.m . . . . . . . . . . . . . . . . . . . . . . . . 373
28.6.2 Demo demo_LSM_medium.m . . . . . . . . . . . . . . . . . . . . . . . 373
28.6.3 Demo demo_LSM_simulated.m . . . . . . . . . . . . . . . . . . . . . 373
28.6.4 Demo demo_LSM_image_pairs.m . . . . . . . . . . . . . . . . . . . . 375
28.6.5 Error messages and convergence . . . . . . . . . . . . . . . . . . . . 375

28.7 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
28.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

28.8.1 Bi-cubic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 376
28.8.2 Noise Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 382
28.8.3 Checking the Implementation of the Estimation . . . . . . . . . . . . 384

28.1 Summary

The report describes the basics of symmetric least squares matching (Sym-LSM) which
is useful for highprecision image matching and realized in Matlab.

The principle of Sym-LSM is to minimize the weighted sum of the squares of the
residuals of the intensity of two images g and h and this way obtains statistically optimal
estimates for the parametrized geometric and radiometric distortions between two over-
lapping images. The estimated geometric transformation may be used in the context of
relative image orientation for re�ning the coordinates of corresponding keypoints or for
tracking keypoints within a video sequence. We assume images are grey-level images.

The main properties of the method are the following:
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1. In contrast to classical approaches, exchanging the two signals leads to identical
results, i.e., mutually inverse geometric and radiometric transformations.

2. LSM can be realized such that � for sets of simulated data � the three statistical
tests on the correctness of the implementation generally do not �re:

(a) The estimated variance factor does not di�er from 1 too much. This indicates
that model and (simulated) data are consistent.

(b) The empirical covariance matrix derived from samples does not signi�cantly
di�er from the theoretical covariance matrix, which is the Cramer-Rao bound.
This suggests, that the theoretical covariance matrix can be used as reliable
uncertainty indicator.

(c) The estimates show no signi�cant bias.

Therefore, we can rely on the estimated parameters and their covariance matrix in
real cases if convergence is achieved and the variance factor does not di�er from 1
too much. If pσ0 is not close to 1, this indicates, the assumed model does not �t to
the observations. The cause of this e�ect cannot be given: it may be, that the scene
is not �at, the windows are too large, the estimated noise variance deviates from the
noise variance in the windows, the shadow situation in both images is di�erent, and
so on.

3. Individual variances for all observations can be taken into account, especially, posi-
tion or signal depending variances. Covariances are neglected. The signal dependent
noise variances can be derived from given images without needing any control pa-
rameters.

4. Interpolation of the observed signals is necessary for reconstructing the unknown
signal. This causes some � generally negligible � approximations in the method.

5. For a�ne geometric transformations the similarity transformation derivable from
corresponding Lowe-keypoints can be used as approximate transformation.

6. From the estimated parameters and their covariance matrix one can derive re�ned
point correspondences of a�ne correspondences. The a�ne parameters on an average
have a relative accuracy a few percent, and the estimated shifts/parallaxes a standard
deviation below 0.1 pixels.
The a�ne correspondences can be used for estimating the relative pose of two cal-
ibrated or partially calibrated cameras, i.e., with or without focal length based on
pairs of a�ne matches.

The Matlab software provided consists of a core routine
LSM_62_sym_main.m

and several demo routines

• demo_LSM_small.m for showing the use of the main routine,

• demo_LSM_medium.m for showing the use of keypoints and the noise variance estima-
tion,

• demo_LSM_simulated.m for checking the implementation with simulated data, and

• demo_LSM_image_pairs.m for manually providing keypoints in real data.

On Notation. Signals are two-dimensional function. The function names taken from
the middle of the alphabet, e.g., f , g, and h. Coordinate names are taken from the
end of the alphabet: so e.g., f(x), g(y), and h(z). Sometimes, we use the convention
x = [x, y]T. Functions depend on coordinates xi, where the index range is a set of
integers ∈ ZZ. If a coordinate x has no index, the context tells whether it is a real or an
integer. If two coordinates, say xi and yi have the same index they refer to corresponding
points. Homogeneous coordinates and matrices are boldface upright, e.g., coordinates x
or transformation A. The dimension depends on the context. Stochastical variables are
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underscored, e.g., the discrete noise function is m(xi). Sets and names are written with
calligraphic letters, e.g., the set of all pixels in the �rst image is g = {(x, y, g)i, i = 1, ..., I}.
We denote the two images g and h as left and right image or �rst and second image,
depending on the context.

28.2 Image Matching

This section describes the details of the model underlying the matching approach and the
method for estimating the unknown parameters and their uncertainty.

The pipeline for using the matching procedure Sym-LSM is shown in Fig. 28.1.

Sym-LSM

variance of image noise

point/affine correspondence

approximate transformation

A(                       )

original images

keypoints (position, scale, direction)

image windows

undistorted windows(iterations)

y  ,  z  ,     ,
0 0

Σ

Figure 28.1: Pipeline for image matching. Starting from two images and measured key-
points with position, scale and direction, two corresponding windows are determined as input
to the matching procedure Sym-LSM. Given approximate values and variances for the im-
age noise it iteratively mutually undistorts the two image windows. After convergence it
provides best estimates for the geometric and radiometric transformation between the two
image windows, which allow to derive a point or an a�ne correspondence together with its
covariance matrix

28.2.1 Model

Let the two square image windows g(y) and h(z) be given, see Fig. 28.2. The coordinates
refer to the centre of the windows. We assume, both windows are noisy observations of an
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unknown true underlying signal f(x), with individual geometric distortion, brightness, and
contrast. We want to determine the geometric distortion z = A(y) and the radiometric
distortion h = R(g) = pg + q. Classical matching methods, assume the geometric and
radiometric distortion of one of the two windows is zero, e.g., assuming the reference image
is identical to the �rst image g(y) = f(x), with y = x.
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Figure 28.2: Relations between two given square image patches g(y) (blue) and h(h)
(green) and the mean patch f(x) (which is the black within the red region). The two image
patches g and h are related by geometric and radiometric a�nities B and S , respectively.
The correspondence is established by the patch f . Geometrically and radiometrically it lies
in the middle between g and h. Only a region in the overlap of the two patches g and h
mapped to f can be used. We choose the maximum square (black). The observations are all
pixels in g and h which map into the black square of the reference image f . We assume the
reference image f is a restored version of the weighted mean of the two projected images g
and h. The patches g and h may have di�erent sizes. The size of the unknown signal (black,
textured) depends on the sizes of g and h, the approximate a�ne transformation A = B2 and
a border to allow bi-cubic interpolation, and is adapted in each iteration. The large image in
the x -frame is used for generating arti�cial images. The radiometric transformation R = S2

is splitted in the same way (not shown here). The size of the windows is given by the ranges
of the pixels, e.g., for image f the range is −Ni : Ni := −Ni, ..., Ni

We break this asymmetry by placing the unknown signal f(x) in the middle between
the observed signals between g and h:

g(y)
B,S−→ f(x)

B,S−→ h(z) such that A = B2 ,R = S2 . (28.1)

The geometric and the radiometric transformations A and R are split into the sequence
of two identical geometric and radiometric transformations B and S , with the signal f(x)
having the same distortion w.r.t. g(y) as the signal h(z) has w.r.t. f(x). Therefore the
complete geometric transformations A and R result from two times applying B and S to
g(y): hence, we have z = B(B(y)) = B2(y) and h = S(S(g)) = S2(g).

Assuming a�nities for the geometric and the radiometric distortion, we have the fol-
lowing generative model. The geometric and the radiometric models for the two images
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are

y 7→ x : x = By + b and x 7→ z : z = Bx+ b (28.2)

g 7→ f : f = sg + t and f 7→ h : h = sf + t (28.3)

with

B =

[
b1 b3
b2 b4

]
and b =

[
b5
b6

]
(28.4)

In the following we collect the eight unknown parameters of the a�nities in the vector

θ =

[
θG
θI

]
with θG = [b1, b2, b3, b4, b5, b6]T and θI = [s, t]T . (28.5)

Hence, we have the relation of the geometric transformations B to the compound trans-
formation A with the six parameters in a

A =

[
A c
0T 1

]
= B2 with A =

[
a1 a3

a2 a4

]
and c =

[
a5

a6

]
(28.6)

This model is rigorous only, if

1. the scene surface is planar in a di�erentiable region, and

2. the intensity di�erences result from brightness or contrast changes only.

Hence, the geometric model is adequate, if the surface is smooth and the window size is
not too large. Usually we have window sizes between 15 × 15 and 100 × 100 pixels, but
larger windows may be �ne in special cases. The radiometric model is adequate if there are
no occlusions or local illumination di�erences, e.g., caused by shadows, when the images
are not taken simultaneously.

We now assume the intensities g and h are noisy and distorted versions of an underlying
true signal f with standard deviations σn(g) and σm(h) depending on g and h. Integrating
the geometry and intensity transformation we arrive at the following model, which is
generative, i.e., allows to simulate observed images. Using the radiometric transformations
(28.3) we �rst obtain for all pixels j and k in the �rst and the second image and the
corresponding pixels in the reference image f

g(yj) = 1/s · (f (xj)− t) + n(yj) , j = 1, . . . , J (28.7)

h(zk) = (s f (xk)) + t) +m(zk) , k = 1, . . . ,K (28.8)

With the geometric transformations (28.2) we thus explicitly have

g(yj) = 1/s ·
(
f
(
Byj + b

)
− t
)

+ n(yj) , j = 1, . . . , J (28.9)

h(zk) =
(
s f
(
B−1(zk − b)

)
+ t
)

+m(zk) , k = 1, . . . ,K . (28.10)

The reference image f is assumed to be a smooth function. We represent it using a regular
grid with bi-cubic interpolation, which is necessary, since the coordinates xj = Byj + b

and xk = B−1(zk − b) are real valued and generally do not fall on the grid.

28.2.2 The estimation

The task is to estimate the eight parameters θ = (θG,θI) for the geometric and the
radiometric transformation and the unknown true signal f from the observed values g(yj)
and h(zk).

The explicit modeling in (28.9) and (28.10) allows us to write the problem as nonlinear
Gauss-Markov model with the residuals

nj(θ, f) = gj − 1/s ·
(
f
(
Byj + b

)
− t
)

, D(nj) = σ2
nj , j = 1, ..., J (28.11)

mk(θ, f) = hk −
(
s f
(
B−1(zk − b)

)
+ t
)
, D(mk) = σ2

mk
, k = 1, ...,K(28.12)
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for all pixels gj := g(yj) of g and all pixels hk := h(zk) of h falling into the common
region in f . Maximum likelihood (ML) estimates result from minimizing the weighted
sum of the residuals

Ω(θ, f) =
¸
j

wjn
2
j (θ, f) +

¸
k

wkm
2
k(θ, f) (28.13)

w.r.t. the unknown distortion parameters θ and the unknown signal f , using proper
weights

wj =
1

σ2
nj

and wk =
1

σ2
nk

(28.14)

The statistical properties of the noise need to be speci�ed, e.g., assuming the variance to
be signal dependent, thus e.g.,

σ2
n(y) = Vg(g̃(y)) σ2

m(z) = Vh(h̃(z)) . (28.15)

We prior to the optimization estimate the signal dependent variance functions of the two
images, see Förstner (2000). In addition we take the e�ect of bi-linear interpolation into
account, see (28.18).

Since, due to the size of f , the number of unknowns is comparably large, say, in the
range between 200 and 10000. Therefore, we solve this problem by alternatively �xing one
group of the parameters and solving for the other:

pθ | pf = argminθΩ(θ, pf) , (28.16)pf | pθ = argminfΩ(pθ, f) , (28.17)

in a block Gauss-Seidel fashion.
Especially, the estimated unknown function f is the weighted mean of the functions g

and h transformed into the coordinate system x of f , which can be calculated pixel wise
as a weighted sum of the two image windows warped into f :

pfi | pθ =
w

(g)
fi

f
(g)
i + w

(h)
fi

f
(h)
i

w
(g)
fi

+ w
(h)
fi

, (28.18)

with the warped image windows

f
(g)
i := f

(g)
i (xi) = s · g(yi) + t and f

(h)
i := f

(h)
i (xi) = 1/s · (h(zi)− t) (28.19)

from (28.3) and
yi = B−1(xi − b)) and zi = Bxi + b (28.20)

from (28.2). The weights are

w
(g)
fi

=
1

s2 · Vg(g(yi))
and w

(h)
fi

=
s2

Vg(h(zi))
. (28.21)

Bi-cubic interpolation is used to transfer g(yi) and h(zi) to f(xi), see (28.19). Observe,
the individual pixels fi of the estimated function generally do not lie in the middle of
corresponding pixels f (g)

i and f (h)
i .

Bi-cubic interpolation induces additional errors, which we interpret as additional noise
of the observations. Hence, the variances of the observations are assumed to have two
components, one from the imaging process and one, the variances σ2

δg
and σ2

δh
, from the

interpolation process:

σ2
n(y) = Vg(g̃(y)) + 1/s · σ2

δg σ2
m(z) = Vh(h̃(z)) + s σ2

δh
. (28.22)

For details for the interpolation error see the Appendix, Eq. (28.129).
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As a result of the ML-estimation we obtain: (1) the parameters pθ, (2) their Σpθpθ, and
(3) the variance factor ,

pσ2
0 =

Ω(pθ, pf)

R
, (28.23)

where R is the redundancy of the system, i.e., the e�cient number of observations1 Kg+Kh

minus the number of unknown parameters 8 + Kf , where we take the approximation
Kf =

a
KgKh for the number of parameters of the grid de�ning f :

R = Kg +Kh − (8 +
a
KgKh) . (28.24)

If the model holds, the variance factor is Fisher distributed with F (R,∞), thus should
be close to 1. Therefore, it is reasonable to multiply the covariance matrix Σpθpθ with the
variance factor to arrive at a realistic characterization

pΣpθpθ = pσ2
0 Σpθpθ (28.25)

of the uncertainty of the estimated parameters.
The covariance matrix pΣ pψ pψ of the sought a�nities �nally are derived by variance

propagation from

A(ψ1..6) =

 ψ1 ψ3 ψ5

ψ2 ψ4 ψ6

0 0 1

 = B(θ1..6)2 =

 θ2
1 + θ2θ3 θ1θ3 + θ3θ4 θ5 + θ1θ5 + θ3θ6

θ1θ2 + θ2θ4 θ2
4 + θ2θ3 θ6 + θ2θ5 + θ4θ6

0 0 1


(28.26)

and

R(ψ7,8) =

[
ψ7 ψ8

0 1

]
= S(θ7,8)2 =

[
θ2

7 θ8 + θ7θ8

0 1

]
(28.27)

with the Jacobian

Jψθ =



2 θ1 θ3 θ2 0 0 0 0 0
θ2 θ1 + θ4 0 θ2 0 0 0 0
θ3 0 θ1 + θ4 θ3 0 0 0 0
0 θ3 θ2 2 θ4 0 0 0 0
θ5 0 θ6 0 θ1 + 1 θ3 0 0
0 θ5 0 θ6 θ2 θ4 + 1 0 0
0 0 0 0 0 0 2 θ7 0
0 0 0 0 0 0 θ8 θ7 + 1


, (28.28)

hence pΣ pψ pψ = pσ2
0 Jψθ Σpθpθ J

T
ψθ . (28.29)

28.2.3 Re�ned correspondences

The result of the LSM can be used to provide re�ned correspondences.

28.2.3.1 Point and a�ne correspondences

Point correspondences follow from (28.26). For some arbitrary point y0 in the left image
we obtain its correspondent coordinates in the right image from

z = pA y0 + pc (28.30)

with pA =

[ pψ1
pψ3pψ2
pψ4

]
and pc =

[ pψ5pψ6

]
. (28.31)

1We set Kg := J and Kh := K.
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Thus, we have the corresponding point pair

{y0, z} with z = pA y0 + pc . (28.32)

If the centre point in the left image is taken, we have y00 = 0 and the corresponding
point pair is

{y00, z} with y00 = 0 and z = pc . (28.33)

A�ne correspondences are de�ned as a pair {y0, z0} of corresponding keypoints to-
gether with the a�ne transform pA in (28.26) which � as seen above, see (28.30) � can be
used to re�ne the position of z0 as in (28.30) together with the local distortion:{

y0, z0, pA} . (28.34)

28.2.3.2 Uncertain point correspondences

The covariance matrix of the estimated parameters can be used to derive a pair of corre-
sponding points together with their uncertainty. In case we choose the centre y00 = 0 of
the left window as point to be matched we have the following uncertain correspondence

{y00, z,Σzz} (28.35)

with

y00 = 0 , z = pc =

[ pψ5pψ6

]
and Σzz = Σpcpc =

[
σ2
pψ5

σ pψ5
σ pψ6

σ pψ6
σ pψ5

σ2
pψ6

]
(28.36)

Observe, the point in the left image is assumed to be certain, while the point in the
right image carries all uncertainty. The covariance matrix Σpapa therefore also provides the
uncertainty of the parallaxes p = z − y00 = c:

Σpp = Σpcpc . (28.37)

28.3 Realization of symmetric least squares matching

In this section we derive the Jacobians in detail.

28.3.1 Jacobians of g

We start with the di�erential for

gj = 1/θ7 · (f(xj)− θ8) with xj = Byj + b (28.38)

w.r.t. to the unknown parameters θ. We explicitly have

gj = 1/θ7 · (f(θ1xj + θ3yj + θ5, θ2xj + θ4yj + θ6)− θ8) . (28.39)

Assuming approximate values θa for the parameters, we have

gj = gaj + dgj = gaj +
∂gj
∂θ

∣∣∣∣
θa

dθ , (28.40)

with
gaj = 1/θa7 ·

(
f(Bayj + ba)− θa8

)
, (28.41)

and

∂gj
∂θ

= 1/θ7 · [fx,jxj | fy,jxj | fx,jyj | fy,jyj | fx,j | fy,j | −(fj − θ8)/θ7 | −1] , (28.42)
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evaluated at the approximate values. This is due to d(1/x) = −1/x2 dx, which yields

dgj = +1/θ7 · fx,j · xj · dθ1 (28.43)

+1/θ7 · fy,j · xj · dθ2 (28.44)

+1/θ7 · fx,j · yj · dθ3 (28.45)

+1/θ7 · fy,j · yj · dθ4 (28.46)

+1/θ7 · fx,j · dθ5 (28.47)

+1/θ7 · fy,j · dθ6 (28.48)

−1/θ2
7 · (fj − θ8) · dθ7 (28.49)

−1/θ7 · dθ8 . (28.50)

28.3.2 Jacobians of h

For the derivatives of

hk = θ7f(xk)loomoon
fk

+ θ8 with xk = B−1(zk − b) (28.51)

w.r.t. θ we need some preparation. The Jacobian of the inverse is

dB−1 = −B−1(dB)B−1 with B−1 =
1

D

[
a4 −a2

−a3 a1

]
and D := |B| . (28.52)

We in addition use the substitution

x′k = B−1(zk − b) . (28.53)

These are the coordinates of the point in f corresponding to zk. Hence, we have � only
referring to the �rst four parameters

d(B−1(zk − b)) = −B−1(dB)B−1(zk − b) (28.54)

= −B−1(dB)x′k (28.55)

= −(x′
T
k ⊗ B

−1)dθ . (28.56)

We �nally have

∂f(z′k)

∂θ
=

∂f(z′k)

∂x′k

∂x′k
∂θ

+
∂f(z′k)

∂y′k

∂y′k
∂θ

(28.57)

= − ∇Tf (x′
T
k ⊗ B

−1) (28.58)

= −(1⊗∇Tf)(x′
T
k ⊗ B

−1) (28.59)

= −x′Tk ⊗∇TfB−1 (28.60)

Therefore with

∇α =

[
αx
αy

]
= B−T∇f (28.61)

we obtain

∂f(z′k)

∂θ
= −x′Tk ⊗∇Tαk = −[x′kαx,k x′kαy,k y′kαx,k y′kαy,k] . (28.62)
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Finally, the di�erential of h is

dhk = −θ7αx,kx
′
k dθ1 (28.63)

−θ7αy,kx
′
k dθ2 (28.64)

−θ7αx,ky
′
k dθ3 (28.65)

−θ7αy,ky
′
k dθ4 (28.66)

−θ7αx,k dθ5 (28.67)

−θ7αy,k dθ6 (28.68)

+fk dθ7 (28.69)

+1 dθ8 (28.70)

Hene we have the compact form

hk = hak + dhk = hak +
∂hk
∂θ

dθ (28.71)

with

∂hk
∂θ

= −θ7

[
αx,kxk | αy,kxk | αx,kyk | αy,kyk | αx,k | αy,k | −fkθ−1

7 | −1
]
, (28.72)

evaluated at the approximate values θa and

hak = θa7f
(
(Ba)−1(zk − ba)

)
+ θa8 . (28.73)

28.3.3 Jacobian X and the linearized observations ∆y

With the abbreviations

xT
gjθ =

∂gj
∂θ

and xT
hkθ

=
∂hk
∂θ

(28.74)

the design matrix X = ∂y/∂θ is given by

X =
∂y

∂θ
=

[
X g
Xh

]
with X g =


xT
g1θ

. . .
xT
gjθ

. . .
xT
gJθ

 and Xh =


xT
h1θ

. . .
xT
hkθ

. . .
xT
hKθ

 (28.75)

Similarly, we have the residuals or the negative linearized observation

v = −∆y = −
[

∆yg
∆yh

]
=

[
[gaj − gj ]
[hak − hk]

]
. (28.76)

This leads to the normal equation system

Nx∆θ = n with N = XTWX and n = XTW∆y , (28.77)

and the updates in the ν-th iteration

pθ(ν+1)
= pθ(ν)

+ x∆θ(ν)
. (28.78)

28.3.4 The accuracy potential of LSM

The potential of the re�nement of the a�nity using LSM, namely the expected precision
of the a�nity for ideal cases, can be easily derived, see Barath et al. (2020a). This is
based on the part of the normal equation matrix N related to the 6 parameters of the
geometric a�nity: N = σ−2

n

°
ij ∇fθ(i, j)∇fT

θ (i, j), where the sum is over all pixels in an
N × N window. If we assume the distortion is zero and f is known, then the gradient
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is ∇f = [xfx, yfx, xfy, yfy, fx, fy], see (28.43) �. Observe, the 2 × 2 matrix referring to
the translation parameters is proportional to the structure tensor of the patch. We now
assume that the gradients in the window have the same variance σ2

f ′ and are mutually
uncorrelated. Then the normal equation matrix will be diagonal leading to the covariance
matrix

Σαα =

[
σ2
aI 4 0

0 σ2
pI 3

]
with σa =

`
12

N2

σn
σf ′

and σp =
1

N

σn
σf ′

. (28.79)

Hence, the standard deviations of the estimated a�nity pA and shift pc are below 1% and 0.1
pixels, except for very small scales. Moreover, for the window size M ×M , the standard
deviations decrease with on average withM2 andM , respectively, see Barath et al. (2020b)

28.3.5 The algorithm

The algorithm LSM_62_sym_main.m is given below.

Algorithm 5: Symmetric Least Squares Matching.
[pθ,Σpθpθ, pσ2

0 , R] = {Sym_LSM}(g, h, Vg, Vh,A
a,Ra, σs,maxν)

Input: observed image patches {g, h}, must be square with odd width
variance functions Vg, Vh
approximate transformations Aa,Ra

smoothing parameter σs
maximum number of iterations maxν .
Output: estimated parameters {pθ,Σpθpθ};
variance factor pσ2

0 ;
redundancy R.

1 Initial approximate transformations/parameters: Ba = (Aa)1/2, Sa = (Ra)1/2;

2 set iterations ν = 0, approximate parameters pθ0
:= pθa;

3 repeat

4 iteration ν := ν + 1;
5 �nd overlap Nf and observing pixels Y , Z with weights w;

6 determine estimate pf of true signal, possibly smoothed with G(σs);

7 determine derivatives pfx and pfy;
8 foreach i = {g, h} do
9 warp [ pf, pfx, pfy] into i;

10 forall p ∈ i do
11 determine pf(p), pfx(p), pfx(p);
12 determine ∆y and xiθ;
13 end

14 end

15 build system N∆θ = n with N = XTWX , n = XTW∆y;

16 determine estimates x∆θ and new approximate values pθν+1
;

17 determine covariance matrix Σpθpθ = N−1;
18 determine the redundancy R and the variance factor pσ2

0 ;

19 until maxu(||x∆θu||/σpθu) < 0.1 or ν = maxν ;

20 derive transformations pA and pR and parameters pψ with Σ pψ pψ

The input, the output and the algorithmic steps are the following:

• The two image windows must be square and have values in the range [0, 255]. They
have sizes Mg ×Mg and Mh ×Mh, where the widths Mg and Mh are odd numbers.
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Their centres are at [Ng + 1, Ng + 1] and [Nh + 1, Nh + 1] with

Ng =
Mg − 1

2
and Nh =

Mh − 1

2
. (28.80)

The centres of the image windows � with coordinates x0 and y0 in the image � are
assumed to be given by some keypoint detector, possibly with rounded coordinates.
The a�nity refers to a coordinate systems Sy and Sz parallel to the image coordinate
system located at these centres. The coordinate systems are right handed, with
x =rows and y =columns � in contrast to the Matlab-image convention.

• The geometric a�nity must not change the sign or the chirality of the coordinate
system, i.e., must not contain a mirroring or an exchange of the two axes. This is
checked internally. In case the a�nity between the two images is not sign preserving,
one of the images needs to be mirrored before calling the matching routine.

• The variance functions Vg = Vg(g) and Vh = Vh(h) provide the variances as a func-
tion of the intensities. These functions may be derived by some, blindÂ� noise es-
timation procedure, e.g. noise_standard_deviation_estimation.m, which yields
the noise standard deviation as a function of the intensity without requiring ground
truth. Interpolation errors can be taken into account in this function.

• The approximate a�nities for the geometric and the radiometric transformation are
to be given as 3× 3 matrix and 1× 2 vector.

line 1 Internally half of the approximate transformations is used.

line 2 The eight parameters in θ refer to the six geometric parameters column wise and
the two radiometric parameters.

line 5 LSM_62_sym_par_find_observation_positions.m: The overlap of the two images
yields a square image f with size Mf × Mf (odd) with centre at [Nf + 1, Nf +
1] being the origin of the coordinate system Sx, where the geometric coordinate
transformations refer to. Again, the half size is Nf = (Mf − 1)/2. Only those
pixels in g and h which fall into the common overlap after transformation into the
coordinate system of f are used. Their coordinates are stored in Y (yi) and Z(zi).
In order to obtain stable results and avoid oscillations, the overlap is not changed if
the parameters change less than 50% of their standard deviations.

line 6 LSM_62_sym_par_estimate_f.m: The estimated signal pf in a �rst instance is the
weighted average of g and h, transformed into the coordinate system Sx. It may be
smoothed with a Gaussian having smoothing kernel σs.

7�18 LSM_62_sym_par_estimate_parameters.m.

lines 7 The derivatives pfx and pfy are realized by convolutions with Scharr's improved Sobel
operator, see Jähne (1999, Vol. II, p. 223 )

dx =
1

32

 1
0
−1

 [3 10 3] and dy = dT
x . (28.81)

(see also https://en.wikipedia.org/wiki/Sobel_operator, Alternative opera-
tors).

line 9 The three images [ pf, pfx, pfy] are simultaneously warped into the images g and h to
directly access the values in the coordinate systems Sy and Sz.

line 11 All function values and their derivatives are interpolated at the observing pixels,
stored in Y and Z.

line 12 The linearized observation x∆y refers to the original pixels in g and h and the inter-
polated pixels in f . This allows to determine the Jacobian X for all pixels stored in
Y and Z.
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line 16 The parameters are corrected additively.

line 18 The redundancy needs an explanation. We haveKg = |Y | andKh = |Z observations
in g and h. The unknowns are the eight parameters θ and the unknown function
f . We assume, that the function f can be represented by the geometric mean of Kg

and Kh parameters, which re�ects the fact that if the a�nity is a pure scaling, say
by s, the numbers Kg and Kh di�er by s2. Therefore, we determine the redundancy
by

R = (Kg +Kh)− (8 +
a
KgKh) . (28.82)

line 20 The full transformations are determined by squaring the estimated transformations
together with their covariance matrix.

28.3.6 Realizing image warpings

Two steps in the algorithm require to warp images:

1. the warping of g and h into f in order to determine the estimate pf .
2. the warping of f and its derivatives for building the design matrix X and the lien-

arized observations ∆y.

We provide two realizations. They di�er in speed:

1. The �rst realization2 performs the warping in a loop over all pixels. Due to the
interpreter-characteristics of Matlab this is slow.

2. The second realization3 performs the warping using the function imtransform.m,
see the blue and green boxes in Fig. 1. The Matlab function imtransform.m is
optimized which leads to lower CPU-times.

A transfer to a language which allows to compile the code, like C, preferably uses the �rst
realization, since only the necessary pixels are handled. Furthermore, the set of pixels
used for matching could be restricted to those, where the gradient is above a, possibly
local, threshold in order to further speed up the algorithm.

28.4 Checking the implementation

We can check the coherence of the assumed model and the implementation using simulated
data. For this purpose, we start from some ideal, true observation, i.e., image windows,
and add noise according to the assumed model to all pixels. Varying the noise, we obtain
K samples for the observations, and consequently k = 1, ...,K samples for the estimates.4

We then can perform three checks, which can be realized as statistical tests:

1. TheK estimated variance factors pσ2
0,k should on an average be 1, since if the observed

images are noisy a�nely distorted versions of the true image, the expectation of the
variance factors is 1. Deviations of the mean variance factor from 1 indicates, that the
assumed model may not hold. If the variance factors do not di�er from 1 too much,
there is no reason to doubt the underlying model. The mean estimated variance
factor follows a F -distributed test statistic F .

2. The K samples lead to K estimates θk of the unknown parameters. The variation of
these parameters, captured in their empirical covariance matrix should be close to the
theoretical covariance matrix derived from estimation process, which is determined
by variance propagation. The di�erence between the empirical and the theoretical
covariance matrix is measured by a χ2-distributed test statistic X. If this test
statistic is not in the rejection region, we have no reason not to use the theoretical
covariance matrix as substitute for the empirical covariance matrix.

2in LSM_62_sym_estimate_f and LSM_62_sym_estimate_parameters
3in LSM_62_sym_warp_estimate_f and LSM_62_sym_warp_estimate_parameters
4In this context the number K is not to be confused with the number of pixels in the image h.
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3. The K estimates θk of the unknown parameters should on an average be close to
the given/true parameters speci�ed by the simulation. The bias, i.e., the di�erence
between the mean of the parameters and the true values, leads to a χ2-distributed
test statistic X. If this test statistic is not in the rejection region, we have no reason
to assume the estimates are biased.

The interpretation of the three test statistics assumes the model underlying the esti-
mation procedure does not contain any approximations and the software implementation
of the estimation model is perfect. Hence, if the tests to not �re, i.e., the test statistics
are not in the rejection reason, we can assume both, possible approximations in the model
are small and the implementation does not contain (severe) errors. This is the value of
these tests.

If, however, the test statistics are in the rejection region, this indicates either the model
is valid only approximately or the implementation contains errors.

In our case, there are several small approximations in the estimation process, e.g.,
the bi-cubic interpolation only leads to approximated interpolated values, since the true
underlying signal is not known. This refers to the estimated signal f as well to the �rst
derivatives, which need to be determined at non-integer coordinates.

The three tests are quite sensitive, i.e., increasing the number of samples K increases
the probability that the test statistics lie in the rejection region.

The theory for these tests is documented in Förstner and Wrobel (2016, Sect. 4.6.8.1),
see App. 28.8.3.

28.5 Noise variance estimation

The strength of the estimation procedure is to provide the covariance matrix of the esti-
mated parameters which indicates the uncertainty of the estimated geometric and radio-
metric transformations. In order to this covariance matrix to be realistic, we need realistic
variances for the given observations, i.e., the pixels in the two image windows.

In a �rst approximation we assume the pixels to be statistically independent and the
variance of each pixels is a function of the intensity. This is motivated by the Poisson
statistics of the photon counts which electronically are transferred into intensities. Since
digital cameras generally aim at yielding nicely looking images, the photon counts of the
sensors are further processed. This process usually is not made public by the producer of
cameras.

Therefore, we assume the variance of the intensities is some arbitrary smooth function
of the intensity, and estimate this functions. This is done for each channel of the left and
the right image. Since the matching algorithms assumes grey-level images, we take the
average variance of the three channels as su�ciently good approximation for the variance
function.

The noise variance estimation assumes, that the image contains su�ciently many pixels
where the gradient is small, and estimates the noise variance from the gradients in these
regions. Therefore, noise estimation should be based on large enough windows, possibly
larger than those used for matching.

Hence noise variance estimation can be done in two modes:

1. The noise variance functions σ2
n(g) and σ2

n(h) (variables vg and vh) are determined
from one or several images which are characteristic for the matching windows, and
used during the matching process.

2. The noise variance function σ2
n(g) and σ2

n(h) are determined from a large enough
region, e.g., 400 × 400 pixels around the matching window, e.g., if the matching
windows are speci�ed by a keypoint in a larger image.

The second alternative is realized in the demos demo_medium.m and demo_image_pairs.m.
The theory for the noise estimation is given in Förstner (2000, Sect. 3), see App.

28.8.2.
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28.6 Demo routines

We have realized four demo-routines,

1. demo_LSM_small.m for showing the use of the main routine when two image windows,
approximate values and the variacne functions are given,

2. demo_LSM_medium.m for showing the use of the main routine when two image win-
dows together with two corresponding Lowe-keypoints are given,

3. demo_LSM_simulated.m using simulated data for checking the correctness of the
implementation, and

4. demo_LSM_image_pairs.m using real data with interactively identi�ed correspon-
dences.

Generally, the control parameters are set in separate �les and stored in the struct par.
The two �les are simulated_set_parameters.m and image_pair_set_parameters.m.

28.6.1 Demo demo_LSM_small.m

The demo routine demo_LSM_small.m shows the most simple form of using of the main
routine, here LSM_62_sym_warp_main.m. The required input data are loaded from �le.
The routine assumes the approximate values for the geometric transformation is given.
Furthermore, the noise variance functions vg and vh are assumed to be provided, e.g.
determined from a representative image using the routine noise_standard_deviation

_estimation.m. The input images, the noise standard deviations and the change of the
estimated image windows are shown in �gures. It is best to start with this demo.

28.6.2 Demo demo_LSM_medium.m

The demo routine demo_LSM_medium.m shows how the noise variance estimation is inte-
grated into the matching process. Again, the required input data are loaded from �le. Here
these are the two complete images together with two corresponding Lowe-keypoints (co-
ordinates, scale, direction). These are used to de�ne the window size and the approximate
values. The noise variance functions vg and vh are determined automatically from the area
around the keypoints. First, the input images with the keypoints are shown. When zoom-
ing into the keypoints the centre and the direction vector �xing the scale and the direction
can be seen. The start and the end of this arrow can be provided interactively, when
setting the parameters par.readX=1 in the routine image_pair_set_parameters.m, line
34. Further �gures show the selected windows, the noise standard deviations and the
change of the estimated image windows.

28.6.3 Demo demo_LSM_simulated.m

The demo routine demo_LSM_simulated.m is meant to check the correctness of the imple-
mentation based on simulated data. It allows to monitor the individual iterations for a
single case, or to statistically test, whether the resultant parameters and their covariance
matrix are coherent with the theoretical values, the true values of the parameters and the
theoretical covariance matrix derived by the estimation procedure (Cramer-Rao bound).

28.6.3.1 Control parameters

We have the following options, which can be set in the main routine:

• Choosing whether the random sequence is pre-speci�ed or randomly initiated:
variable init_rand

• Choosing the number of samples for checking the covariance matrix and for bias:
variable N_samples
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• Choosing between three arti�cially generated images and taking a window of a given
image as reference:
variable type_data

The true transformations and the true images are generated. Within a loop, the true
images are perturbed by Gaussian noise and rounded to integers. The N_samples are
used to test for the correctness of the estimation. In addition we have the following
options, which can be set in the routine simulated_set_parameters.m:

• Choosing the approximate window size of the overlapping image:
variable Nh

• Choosing whether a test on swapping the two images is to be performed:
variable test_symmetry

• Choosing the geometric and radiometric transformation:
variables A_true and R_true

• Choosing the smoothing kernel σs:
variable sigma_smooth

• Choosing the maximum number of iterations:
variable max_iter

• Choosing the signi�cance number S of the statistical tests:
variable S

28.6.3.2 Output

The output is di�erent, when looking into the individual iterations (N_samples = 1) or
when checking the implementation (N_samples > 9).

The individual iterations. When analysing the individual iterations for a single sam-
ple (N_samples = 1), the command window shows the following information

• Document of the control parameters

• Per iteration the number of observations, N and the estimated pσ0 as sigma_0_est. Ifpσ0 is not close to 1, this indicates, the assumed model does not �t to the observations.
The cause of this e�ect cannot be given: it may be, that the scene is not �at, the
windows are too large, the estimated noise variance deviates from the noise variance
in the windows, the shadow situation in both images is di�erent, and so on.

• The �nal result is characterized by the estimated transformations A_est and R_est.

• A warning is given, if the maximum number of iterations is reached.

• If the symmetry of the solution is tested, the checks pA ·yA−1− I 3 and pR ·yR−1− I 2 are
provided as check_symmetry_AAi_I and check_symmetry_RRi_I

In addition, the following �gures are provided

• the true image f(x) (large black box in Fig. 28.2)

• the true mean, left, and right images f(x), g(y) and h(z), respectively (the small
black box, the blue box, and the green box in Fig. 28.2)

• the noisy image window pair

• for each iteration, left and the right image warped into the x-coordinate system, i.e.,
f(y) and f(z) (the part of the blue and the green parallelograms lying within the
small black box in Fig. 28.2)5.

5The size of the image patches depends on the maximum number of iterations.
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Checking the implementation. When checking the implementation, thus N_samples
> 9, the command window shows the following information

• Document of the control parameters

• Monitoring the samples

• The number of cases, where the maximum number of iterations is reached is docu-
mented as a warning. These are not used for the following analysis.

• The result of the statistical tests for all 8 parameters and only the 6 geometric
parameters:

1. test whether the mean of the estimated variance factor deviates from 1,

2. test whether the empirical covariance matrix pΣpθpθ of the parameters, derived

from the estimates pθ, coincides with the theoretical covariance matrix Σpθpθ from
the inverse normal equation matrix,

3. test whether the mean of the estimated parameters is identical to the true
(simulated) value,

see Förstner and Wrobel (2016, Chapt. 4.6.8). Test statistics lying in the rejection
region are indicated with *****. Actually, the non-rejection region is given.

• For each parameter, the theoretical and the empirical standard deviation, their ratio,
the mean, the standard deviation, and the maximum bias.

• The average standard deviation of the parameters of the a�nity, the translation and
the radiometric transformation.

• Information about the CPU time.

In addition there are �gures showing a noisy sample image window pair, the histograms
of the estimated variance factors (twice) and the number of iterations.

28.6.4 Demo demo_LSM_image_pairs.m

The routine is meant to apply the matching routine to real data. The user may choose to
interactively measure the correspondences or read the previously measured data from �le
in folder Images. For each image pair the correspondences are stored in a mat-�le in the
folder Data/ImageCoordinates. Color images are converted to black and white images.

The user is asked to identify two corresponding points together with a scale σ and
orientation, mimicking the output of the Lowe-detector. The sequence of actions is the
following. For each image

• identify an approximate position in the image,

• a blow-up of the surrounding point is provided,

• the �rst point to be measured is the centre of the window,

• the second point to be measured provides three times the dominant scale σ and the
direction.

Windows of size 8σ×8σ around the measured keypoints are used for matching. The signal
dependent noise variances for both images are estimated from a larger neighbourhood
(≤ 200× 200 pixels) and used for de�ning the weights of the intensities.

28.6.5 Error messages and convergence

The following error messages may occur:

• Geometric affinity is not positive definite. The approximate a�nity must
be represented by a positive de�nite 2× 2 matrix A. No mirroring is allowed.
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• Overlap is too small. The overlap of the two images in each iteration must lead
to a square window of at least 9× 9.

In both cases the output parameter Red of the main-routine is negative.
Convergence is guaranteed if the number N_iter of used iterations is smaller than the

maximum number max_iter of iterations. If the number of used iterations is identical
to the maximum number of iterations, and the maximum relative change max_ratio=

maxu(||x∆θ(ν)

u ||/σpθ) of the parameters in the last iteration is smaller than 1, then con-
vergence can be assumed. Generally, there is no guarantee, that the global optimum is
reached.

28.7 Timing

The time mainly depends on the size of the images, i.e., the average number N of pixels
in the two images. On an Lenovo X220 with Matlab 2018 we have found the following
approximate relation between the number of pixels and the time per iteration, depending
on whether the warping function ofMatlab is used or the design matrix is built up using
loops on the individual pixels:

twarping [ms] = (0.0047 N + 12) [ms] and tloop [ms] = (0.050 N + 6.2) [ms] . (28.83)

Hence, when using the warping function ofMatlab, the computing time takes below 0.05
milliseconds/pixel. With usually 3 iterations, windows of 40× 40 can be matched in less
than 0.1 seconds.

28.8 Appendix

28.8.1 Bi-cubic interpolation

Bi-cubic interpolation is required for estimating the true underlying function f from the
observed images g and h. This interpolation induces errors, which we take into account
when specifying the variances of the observed images. Therefore, we analyse the e�ect
of this interpolation onto a signal and derive the relations between the original and the
interpolated signal as a basis for variance propagation.

28.8.1.1 1D cubic interpolation

Compact representation. Here we follow Shu (2013). For each value x in the interval
[i, i+ 1] the function is a cubic polynomial which satis�es the following conditions

1. The function at i has the values f(i) = bi

2. The function at i+ 1 has the value f(i+ 1) = bi+1.

3. The derivative at i is f ′(i) = (bi+1 − bi−1)/2.

4. The derivative at i+ 1 is f ′(i) = (bi+2 − bi)/2.

Hence, we need the four neighbouring values collected in

b =


bi−1

bi
bi+1

bi+2

 . (28.84)

We use the substitution

u(x) =


1

(x− i)
(x− i)2

(x− i)3

 with i = bxc . (28.85)
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Then with

M0 =
1

2


0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 . (28.86)

the interpolated value is
f(x) = uT(x)M0b , (28.87)

as above.
Proof: We use

a =


a0
a1
a2
a3

 . (28.88)

Then cubic function in the i-th interval [i, i+ 1] can be written as

f (i)(u) = a0 + a1(u− i) + a2(u− i)2 + a3(u− i)3 = uTa (28.89)

The derivative is

f (i)
u (u) = a1 + 2a2(u− i) + 3a3(u− i)2 = u


a1
2a2
3a23
0

 = uT
Da with D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


(28.90)

The four conditions then can be written as
f (i)(i)

f (i)(i+ 1)

f
(i)
u (i)

f
(i)
u (i+ 1)

 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0

0 −1/2 0 1/2


loooooooooooooooooooomoooooooooooooooooooon

U


bi−1

bi
bi+1

bi+2

 =


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3


loooooooooomoooooooooon

V


a0
a1
a2
a3


(28.91)

or compactly
c = Ub = Va . (28.92)

Therefore
a = V

−1
U = M0b , (28.93)

which holds since

U = VM0 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0

0 −1/2 0 1/2

 =
1

2


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3




0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 .
(28.94)

�
Remark: This de�nition of interpolating cubic splines does not minimize the total curvature

of the interpolating function, thus di�ers from the classical de�nition. In contrast to the classical

de�nition, the function values f(u) only depend on four neighbouring points bi linearly, not on

all values of the pro�le. �
Since, with a = M0b the �rst derivative of the polynomial from (28.90) we obtain the

compact expression for the derivative

f ′(x) = uT(x)M1b (28.95)

with

M1 = DM0 =
1

2


−1 0 1 0
4 −10 8 −2
−3 9 −9 3
0 0 0 0

 . (28.96)
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Variance of cubic interpolation. We now give the variances of cubic interpolation.
This is the uncertainty of the interpolated values assuming the given values are uncertain
and bi-cubic interpolation is the correct model.

Cubic interpolation at r ∈ [0, 1] requires the vales of g at [−1, 0, 1, 2]. Speci�cally we
obtain the interpolated value

g(r) =
1

2

[(
−r + 2 r2 − r3

)
g−1 (28.97)

+
(
2− 5 r2 + 3 r3

)
g0 (28.98)

+
(
r + 4 r2 − 3 r3

)
g1 (28.99)

+
(
−r2 + r3

)
g2

]
, (28.100)

see (28.86). Assuming homogeneous noise variance, we obtain the variance

σ2
n(r) = q2

cubic(r)σ
2
n (28.101)

with
with q2

cubic(r) =
1

2

[
2− 9 r2 + 8 r3 + 21 r4 − 30 r5 + 10 r6

]
. (28.102)

It is symmetric w.r.t. r = 1/2. It reaches its its maximum σ2
x(0) = σ2

n at r = 0 and r = 1
and its minimum at r = 1/2 min

σ2
n(r = 1/2) =

41

64
σ2
n ≈ 0.641σ2

n . (28.103)

We may derive an individual variance as a function of the remainder r = x − bxc. Fur-
theron, we also can use the average variance, which is

σ2
n =

» 1

r=0

σ2
xdr =

57

70
σ2
n ≈ 0.814σ2

n . (28.104)

Using this mean value, we have an error of approximately 13% in the variance.

28.8.1.2 2D cubic interpolation

We thus obtain bi-cubic interpolation using the substitution

v(y) =


1
v
v2

v3

 with v = y − byc (28.105)

and the collection of the 4× 4 neighbouring values in the cell [i, i+ 1]× [j, j + 1]

B =


bi−1,j−1 bi−1,j bi−1,j+1 bi−1,j+2

bi,j−1 bi,j bi,j+1 bi,j+2

bi+1,j−1 bi+1,j bi+1,j+1 bi+1,j+2

bi+2,j−1 bi+2,j bi+2,j+1 bi+2,j+2

 , (28.106)

We obtain
f(x, y) = uT(x)M0BM

T
0v(y) . (28.107)

The partial derivatives then are

fx(x, y) = uT(x)M1BM
T
0v(y) and fy(x, y) = uT(x)M0BM

T
1v(y) (28.108)

The variance of bi-cubic interpolated values is

σn(x, y) = q2
bi-cubic(r, s)σ

2
n with q2

bi-cubic(r, s) = q2
cubic(r)q

2
cubic(s) . (28.109)

The average variance is

σ2
n =

» 1

r=0

» 1

s=0

σ2
n(x, y)dxdy =

57

70

2

σ2
n ≈ 0.663σ2

n . (28.110)
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Interpolation error. We want to determine the interpolation error of a function f(x, y).
Here we assume the data are �xed, i.e., not contaminated by random errors, and the
interpolation leads to erroneous results, since the interpolation rule may be di�erent.
Since the true interpolation rule is unknown, we perform two bi-cubic interpolations, and
compare the result with the original function.

We do this in three steps, see Fig. 28.3:

1. Interpolating the function f at the grid at [i+ 1/2, j + 1/2]:

g(x, y) = fB(x+ 1/2, y + 1/2) . (28.111)

2. Interpolating the function g at the grid at [i− 1/2, j − 1/2]:

h(x, y) = gB(x− 1/2, y − 1/2) . (28.112)

3. Determining the error induced by the two interpolations

σ2 = D(h(x, y)− f(x, y)) . (28.113)

We start from (28.107) using

u = u(x)− i and v = v(x)− j , (28.114)

with the special choice for x = +1/2

u+ = x− bxc = +1/2− 0 = 1/2 and v+ = 1/2 . (28.115)

Hence we have

u =


1

1/2
1/4
1/8

 and v =


1

1/2
1/4
1/8

 (28.116)

We refer to the 49 values of F (1 : 7, 1 : 7), see Fig. 28.3 This allows to derive G (1 : 4, 1 : 4)

1

7

1 7

1

4

1 4

4

4

Figure 28.3: Interpolation error. The black 7× 7 grid of f is used to interpolate the green
4 × 4 grid of g. This is used to obtain the interpolated value h at the position of f(4, 4).
The di�erence is an indication for double the interpolation error.

via
g(i, j) = uTM0F (i : i+ 3, j : j + 3)MT

0v . (28.117)

Similarly, starting from the interpolated signal g, we can derive the back shifted value

h = uTM0GM
T
0v . (28.118)

The di�erence
δ2(F ) = h(F )− f(4, 4) (28.119)
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is a function of the 49 values of F and represents twice the interpolation error.
We now determine the standard deviation of the interpolation. First, the Jacobian

J2 = ∂δ2/∂F is independent of f and given by

J2 =
1

216



1 −18 63 164 63 −18 1
−18 324 −1134 −2952 −1134 324 −18
63 −1134 3969 10332 3969 −1134 63
164 −2952 10332 −38640 10332 −2952 164
63 −1134 3969 10332 3969 −1134 63
−18 324 −1134 −2952 −1134 324 −18

1 −18 63 164 63 −18 1


(28.120)

We now assume that the signal values f are correlated, depending on the underlying
power-spectrum. We assume three di�erent cases

1. Gaussian power spectrum. Then the covariance function is

C(d) = exp(−(d/d0)2/2) . (28.121)

2. Laplacian power spectrum. Then the covariance function is

C(d) =
1

1 + (d/d0)2
. (28.122)

3. The powers spectrum follows the power law, e.g., in the form P (u) ∝ f−2, or P (u) =
1/(1 + u2)/π. Then the covariance function has the form

C(d) = exp(−d/d0) . (28.123)

The value d0 controls the smoothness of the signal, larger d0 leads to smoother func-
tions. Via variance propagation we obtain V(δ2(f)). Since this di�erence results from two
interpolations we report

σδ =

c
V(δ2)

2
(28.124)

in the table. We observe:

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.1855 0.2888 0.3499
1.5000 0.0643 0.1860 0.2947
2.0000 0.0249 0.1180 0.2583
2.5000 0.0112 0.0754 0.2323
3.0000 0.0056 0.0491 0.2128
3.5000 0.0031 0.0327 0.1974
4.0000 0.0019 0.0222 0.1849

Table 28.1: Standard deviation σδ of bi-cubic interpolation error for di�erent types of
correlations and correlation widths d0 error

1. the larger d0, i.e., the smoother the signal, the smaller the interpolation error is.

2. As to be expected, signals with Laplacian power spectrum are rougher than those
with Gaussian, and smoother than those with the power spectrum following the
power law.

These results refer to the shift [1/2, 1/2] and depend on the assumed stochastical model
for the signal. For the use in LSM, we do not want a dependency on the stochastical model
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for the unknown image function. Since J2 = ∂δ2/∂F , we can use the matrix J2 as �lter
for deriving δ2 from f :

δ2 = J2 ∗ f . (28.125)

Obviously, the matrix J2 represents a highpass �lter. Hence, we can determine the indi-
vidual interpolation errors due to forward and backward shifting with interpolation from
an arbitrary signal. This allows us to derive the variance of the maximal interpolation
error from pσ2

δ,max = 1
|R |
°
r∈R δ2

r . (28.126)

Since we are interested in the average interpolation error within the region of one pixel,
we determine the mean of the expected variance σ2

δ for all forward and backward shifts
[x, y], x, y ∈ [0, 1]. Hence, we can determine the interpolation variance for a speci�c window
f from x

σ2
δ = k pσ2

δ,max with k =
σ2
δ

σ2
δ,max

. (28.127)

As an example we have the variances of the interpolation error for d0 = 1 and Gaussian
covariance function at the grid points [i, j]/8, i, j ∈ {0, ..., 8} of the unit interval:

[σ2
ij ] =

1

1000



0 9 93 247 327 247 93 9 0
9 22 111 267 349 267 111 22 9
93 111 208 368 449 368 208 111 93
247 267 368 527 608 527 368 267 247
327 349 449 608 688 608 449 349 327
247 267 368 527 608 527 368 267 247
93 111 208 368 449 368 208 111 93
9 22 111 267 349 267 111 22 9
0 9 93 247 327 247 93 9 0


(28.128)

As to be expected, the interpolation error is zero in the corners of the square, thus for
integer coordinates.

Interestingly, the factor k does not vary much for di�erent stochastical models of f , as
Tab. 28.2 shows.

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.3482 0.3710 0.3803
1.5000 0.3425 0.3608 0.3793
2.0000 0.3432 0.3536 0.3789
2.5000 0.3446 0.3490 0.3787
3.0000 0.3459 0.3462 0.3786
3.5000 0.3468 0.3445 0.3785
4.0000 0.3476 0.3437 0.3785

Table 28.2: Ratio k of mean and maximal bi-cubic interpolation error variance for di�erent
stochastical models for a signal.

Therefore, we can use the following variances of the model error of the given data, e.g.,
for g in graylevels [0, ..., 255]

σ2
n′j

= σ2
nj + k pV(J2 ∗ g) with k = 0.38 . (28.129)

depending on the empirical noise variance σ2
nj of the intensities of gi and the interpolation

error derived from the image window.
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28.8.2 Noise Variance Estimation

The following section is taken from Förstner (2000)

The noise variance needs to be estimated from images. There are three possible meth-
ods to obtain such estimates:

1. Repeated images: Taking multiple images of the same scene without changing any
parameters yields repeated images. This allows to estimate the noise variance for
each individual pixel independently. This certainly is the optimal method in case no
model for the noise characteristics is available and can be used as a reference.
The method is the only one which can handle the case where there is no model for
the noise characteristics.
The disadvantage of this method is the need to have repeated images, which, e. g.
in image sequences is di�cult to achieve.

2. Images of homogeneous regions: Images of homogeneous regions, thus regions with
piecewise constant or linear signal, allows to estimate the noise variance from one
image alone.
The disadvantage is the requirement for the segmentation of the images into homo-
geneous regions. Moreover, it is very di�cult to guarantee the constancy or linearity
of the true intensity image within the homogeneous regions. Small deviations from
de�ciencies in the illumination already jeopardize this method.
The method is only applicable in case the noise only depends on the signal.

3. Images with little texture: Images with a small percentage of textured regions allow
to derive the noise variance from the local gradients or curvature. For the larger
part of the image they can be assumed to have approximately zero mean. Thus
presuming a small percentage of textured regions assumes the expectation of the
gradient or the curvature in the homogeneous regions to be negligible compared to
the noise.
Also this method is only applicable in case the noise characteristics is only depending
on the signal.

We want to describe this method in more detail. We �rst discuss the method for intensity
images. The generalization to range images is straight forward.

28.8.2.1 Estimation of a constant noise variance in intensity Images

The idea is to analyze the histogram of the gradient magnitude of the image in the area
where there are no edges and no texture. The procedure given here is similar to that
proposed in Förstner (1991).

We now need to specify the model for the ideal image f . We assume that a signi�cant
portion H of the image area I is homogeneous, thus shows locally constant intensity,
thus µf = const.. Adopting notions from statistical testing H0 = (r, c) ∈ H is the null-
hypothesis, i. e. the hypothesis a pixel belongs to a homogeneous region. Thus

E(∇f |H0) = 0 (28.130)

The other area I −H covers edges and textured areas with signi�cantly larger gradients.
Then, as to be shown, the histogram of the homogeneity measure h = |∇g| shows

exponential behaviour in its left part representing the noise in the image and arbitrary
behaviour in the right part representing the edges:

We assume the intensities to be Gaussian distributed with �xed mean and random
noise. Assuming the simple gradient kernels

(
∂

∂r

)
0

=

 0 1 0
0 0 0
0 −1 0

 (
∂

∂c

)
0

=

 0 0 0
1 0 −1
0 0 0

 (28.131)
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neglecting the scaling factors 1/2, we obtain the gradient

∇g =

[
gr
gc

]
=

[
gr+1,c − gr−1,c

gr,c+1 − gr,c−1

]
(28.132)

which is Gaussian distributed with covariance matrix

D

(
g
r
g
c

∣∣∣∣H0

)
= σ2

n′ I (28.133)

Here we use the convention
σ2
n′ = σ2

nr = σ2
nc (28.134)

which in general is given by

σ2
n′ =

»
x,y

G2
x;s(x, y)dx dy =

1

8πs4
σ2
n, or σ2

n′ =
¸
r,c

∂2
r (r, c)σ2

n (28.135)

see Förstner (2000, Eq. (15)). In our case eq. (28.131) leads to

σ2
n′ = 2σ2

n (28.136)

The squared gradient magnitude measures the homogeneity h

h∇(r, c) = |∇g(r, c)|2 = g2
r(r, c) + g2

c (r, c) (28.137)

It is the sum of two squares of Gaussian variables.
In case the mean µg = µf of g is constant in a small region, thus the model eq.

(28.130) holds, the squared gradient magnitude is χ2
2 or exponentially distributed with

density function (neglecting the index ∇ for simplicity)

p(h|H0) =
1

µh
e
−
h

µh (28.138)

and mean
E(h|H0) = µh = 4σ2

n (28.139)

Therefore, we are able to estimate the parameter µh from the empirical density function
in the following way:

1. Set the iteration index ν = 0. Specify an approximate value σ(0)
n for the noise stan-

dard deviation. Use µ(0)
h = 4σ

2(0)
n as approximate value for the gradient magnitude.

2. Determine all h(r, c)

3. Take the mean m(ν) of all values h(r, c) < µ
(ν)
h . Its expected value is given by

µ(ν)
m =

» µ(ν)
h

h=0

hp(h|H0)dh» µ(ν)
h

h=0

p(h|H0)dh

=
e− 2

e− 1
µ

(ν)
h (28.140)

in case the edges or textured areas do not signi�cantly contribute to this mean. Thus
a re�ned estimate µ(ν+1)

h for µh is given by:

µ
(ν+1)
h =

e− 1

e− 2
m(ν) ≈ 2.392m(ν) (28.141)

4. Set ν = ν + 1 and repeat step 3.

Usually, only two iterations are necessary to achieve convergence. A modi�cation would
be, to take the median of the values h(r, c) as a robust estimate and compensate for the
bias caused 1) by taking the median instead of the mean and 2) by the edge pixels (see
Brügelmann and Förstner (1992)).

This procedure can be applied to every channel in a multi-channel image, especially in
colour images or in gradient images of range images.
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28.8.2.2 Estimating a general noise variance function

In case the noise variance is not constant over the whole image area and can be assumed
only to depend on the intensity, we need to parameterize the noise variance function
σ2
n = s(g) in some way.
The easiest possibility is to assume it to be continuous. Then we can partition the

range [0..G] of all intensities g into intervals Iγ , γ = 1..Γ and assume the noise variance to
be constant in each interval.

Thus we repeat the procedure of subsection 28.8.2.1 for each intensity interval under
the condition g ∈ Iγ .

The choice of the intervals obviously requires some discussion, as it may signi�cantly
in�uence the solution. Taking a set of constant intervals may lead to intervals where
no intensities belong to, even in case one would restrict to the real range [gmin, gmax].
Therefore, the intervals should be chosen such that

1. they contain enough intensity values.
The number should be larger than 100 in order to yield precise enough estimates
for the noise variances, which in this case has a relative (internal) accuracy better
than 10 %. The number of intervals should be chosen in dependency of the expected
roughness of s(g). For aerial images we have made good experiences with intervals
between 1 and 8 grey values on image patches of 300 × 300 pixels (cf. Waegli (1998)).

2. they contain an equal number of intensities. This may easily be achieved by using
the histogram of the intensities.

28.8.3 Checking the Implementation of the Estimation

This section has been taken from Förstner and Wrobel (2016, Sect. 4.6.8)

Before using the implementation of an estimation procedure we need to check whether
it yields correct results. This refers to (1) the estimated parameters, (2) their covariance
matrix, and (3) the estimated variance factor. The estimated parameters should be un-
biased, the covariance matrix should re�ect the sensitivity of the estimated parameters
w.r.t. random perturbations of the observations, characterized by the stochastical model,
especially the covariance matrix of the observations; and the estimated variance factor
should not signi�cantly deviate from 1.

If the implementation is correct, small perturbations in the observations following the
stochastical model should lead to small perturbations in the variance factor and in the
estimated parameters, where they also should follow the predicted covariance matrix. In
the case of larger perturbations, e�ects of the linearization of a nonlinear model will be
visible.

Such an evaluation is based on simulated data, since we then have access to the true
values. This also has the advantage that no access to the source code is necessary; the
check can be based on the output {pθ,Σpθpθ,xσ0

2}.
Based on given true values θ̃ for the parameters, a given observational design, repre-

sented by the function f(θ) and a stochastical model D(y) = Σyy, we can simulate K
samples of observations yk from

y
k

= f(θ̃)− vk , k = 1, ...,K v ∼ N (0,Σyy) , (28.142)

leaving the model {f(θ),Σyy} and the true parameters θ̃ �xed.
The estimation leads to K vectors pθk of estimated parameters, to K estimates pσ2

0k of
the variance factor, and � provided the relative accuracy σy/E(y) of the observations is
below 1% � a su�ciently accurate covariance matrix Σpθpθ. In order to be able to check the
validity of the model a su�ciently large number K of samples is necessary, which should
be larger than the number of elements of the largest covariance matrix which is to be
checked.
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In the case of Gaussian noise, the evaluation can be based on well-established statistical
tests. If one of these tests fails, there are good reasons to doubt whether the program code
is a reliable realization of the envisaged estimation model. However, without further tests
there are no clues to the source of the discrepancy; it may be the implementation of the
envisaged model or of the simulation. This may require more detailed testing.

We now discuss three tests concerning the noise level, the bias, and the validity of
the theoretical covariance matrix. They should be performed on a set of representative
estimation tasks before using the estimation procedure in a real application.

28.8.3.1 Correctness of the Estimated Noise Level

The correctness of the estimated noise level can be reduced to check the validity of the
variance factor. The validity of the estimated variance factor can be based on the mean
of the K variance factors derived from the K simulations,

s2 =
1

K

Ķ

k=1

pσ2
0k . (28.143)

When the implemented model, which is the null hypothesis H0, holds, the test statistic

F =
s2

σ2
0

, F |H0 ∼ FKR,∞ (28.144)

is Fisher distributed with KR and ∞ degrees of freedom, where R is the redundancy of
the estimation task. If for a speci�ed signi�cance level S, the test statistic F > FKR,∞;S ,
then the estimated variance factor indicates deviations from the assumed model � possibly
caused by implementation errors. In this case, it might be useful to analyse the histogram
in order to �nd possible sources of the deviations.

Observe, this test does not require the theoretical covariance matrix Σpθpθ of the esti-
mated parameters.

28.8.3.2 Correctness of the Covariance Matrix

To make sure we can rely on the theoretical covariance matrix provided by the implemented
estimation procedure, we compare it with the empirical covariance matrix of the simulation
sample. It is given by

pΣ =
1

K − 1

Ķ

k=1

(pθk −xmpθ)(pθk −xmpθ)
T (28.145)

with the estimated mean xmpθ =
1

K

Ķ

k=1

pθk . (28.146)

When the model holds as implemented and the theoretical precision Σpθpθ is correct, the
test statistic

X2 = (K − 1)
[
ln
(

det Σpθpθ/det pΣ)− U + tr
(pΣΣ−1

pθpθ

)]
∼ χ2

U(U+1)/2 (28.147)

is approximately χ2-distributed with U(U + 1)/2 degrees of freedom (cf. Koch, 1999,
Eq. (2.205)). If for a prespeci�ed signi�cance level S the test statistic X2 is larger than
χ2
U(U+1)/2,S , then there is reason to assume the theoretical covariance matrix, as it results

from the implemented model, does not re�ect the covariance matrix of pθ su�ciently well.
In this case, it might be useful to visualize the covariance matrix in order to identify
possible causes for the found deviation.

It is su�cient to take one of them as reference, though the theoretical covariances of
the K samples vary slightly, as the variance propagation is performed not using the true
mean, but the estimated parameters. However, as the relative size of this variation is a
second-order e�ect, it can be neglected.
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28.8.3.3 Bias in the Estimates

To check the unbiasedness of the estimated parameters we determine their empirical mean.
If the mathematical model holds, the implementation is correct, and higher-order terms

during linearization are negligible; the estimated mean of the estimated parameters is
Gaussian distributed according to

xmpθ ∼ N
(
θ̃,

1

K
Σpθpθ

)
. (28.148)

Under these conditions, the test statistic, the Mahalanobis distance,

X = K(xmpθ − θ̃)T Σ−1
pθpθ (xmpθ − θ̃) ∼ χ2

U , (28.149)

is χ2-distributed with U degrees of freedom. If X > χ2
U,S for the test statistic and a

prespeci�ed signi�cance level S, we have reasons to reject the hypothesis that the model,
including the approximations, actually holds as implemented. In this case it might be
useful to visualize the bias in order to �nd possible causes for the rejection of the model.

If these statistical tests are passed on a set of representative simulation data sets, the
statistical tests, when applied to real data, can be used as diagnostic tools for identifying
discrepancies between the data and the assumed mathematical model.
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29 Essential Matrix from A�neMatches

and its Precision

Estimating the relative pose of two images, for which the intrinsic camera parameters are
known, can be based on a�ne matches. They contain 6 parameters and 3 of them are
needed to estimate the essential matrix. We investigate the uncertainty of the essential
matrix based on a�ne matches.
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29.1 Preface

Using a�ne correspondences promises to speed up the determination of the relative pose
(the essential matrix) from a minimum number of correspondences. This is due to the
higher number of constraints, namely three, per correspondence, such that only two cor-
respondences are required for a minimal solution of the essential matrix. Since the image
area covered by a single a�ne correspondence is related to the local scale of a keypoint
detector, such as Lowe's detector, thus captures only a small part of an image, it appears
reasonable to investigate the expected accuracy of the estimated relative pose, i.e., the
accuracy of the direction of the basis and the relative rotation. We give an algorithms for
the expected accuracy of the relative pose (b,R). We prove the validity of the algorithm
using simulated data. We report on the usefulness of deriving the relative pose from two
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a�ne matches using real data, showing a high variability in the achieved accuracy. Us-
ing images of a planar scene, we empirically analyse the di�erence between the estimated
a�nities and those derived from the Jacobian of the homography between the images.

On Notation. Homogeneous coordinates and matrices are boldface upright, e.g., co-
ordinates x or transformation A. Homogeneous coordinates of 2D points ar partitioned
x = [x0;xh] into the non-homogeneous part x0 and the homogeneous part xh. Hence, the
non-homogeneous coordinates of the point are x = x0/xh, in some cases xh = 1. The
dimension depends on the context. Stochastical variables are underscored. Observe, we
de�ne the derivative of the scalar c = xTa w.r.t. a column vector x as a row vector:

∂xTa

∂x
=
∂aTx

∂x
= aT , (29.1)

since dc = ∂c/∂x dx = aTdx.

29.2 The geometry

We start from sensor/pixel coordinates x or x = [x; 1]. For two points x ′ and x ′′ and the
fundamental matrix

F = (K′)−TR ′S(b)R ′′
T

(K′′)−1 (29.2)

we have the constraint
x′

T
Fx′′ = 0 . (29.3)

The relative pose is given by the �ve parameters in (R,b) with ||b|| = 1. We now specialize

1. The left camera has rotation R ′ = I 3, the right camera has rotation R.

2. If we know the camera calibration, we can use have camera coordinates, which
represent the directions in the camera coordinate system

cx′ = (K′)−1x′ and cx′′ = (K′′)−1x′′ (29.4)

This is equivalent to

cx′ ∼=

 ix
′

iy
′

f ′

 and (29.5)

The signs will only be relevant when referring to the correct direction of b and the
corresponding rotation R not when referring to the essential or the fundamental
matrix.

3. If we know the calibration partially, i.e. up to the focal lengths, we can use image
coordinates, which refer to the principle point in a Cartesian image coordinate system

ix
′

= iK
′
c
cx′ with iK

′
c =

 f ′ 0 0
0 f ′ 0
0 0 1

 (29.6)

4. We further assume, the calibration matrices are identical

K =

 f 0 0
0 f 0
0 0 1

 or Q ∼= K−1 =

 1 0 0
0 1 0
0 0 f

 . (29.7)

The we have the two epipolar constraints, which we will use for calibrated cameras

cx′
T
E cx′′ = 0 with E = S(b)RT (29.8)
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or

c(cal) = [x1, x2, 1]

 e1 e4 e7

e2 e5 e8

e3 e6 e9

 z1

z2

1

 = 0 (29.9)

with the Euclideanly normalize camera coordinates

x1 =
cu′

cw′
=

ix
′

f
, x2 =

cu′

cw′
=

iy
′

f
, z1 =

cu′′

cw′′
=

ix
′′

f
, z2 =

cv′′

cw′′
=

iy
′′

f
. (29.10)

For partially calibrated cameras we have the constraint

ix′
T
F ix

′′
= 0 with F = QS(b)RTQ and Q =

 1 0 0
0 1 0
0 0 f

 (29.11)

or

c(uncal) = [x1, x2, 1]

 f1 f4 f7

f2 f5 f8

f3 f6 f9

 z1

z2

1

 (29.12)

with the image coordinates

x1 = ix
′
, x2 = iy

′
, z1 = ix

′′
, and z2 = iy

′′
. (29.13)

In this representation, the constraints di�er in the meaning of the Euclideanly normalized
coordinates and in the meaning of the 3 × 3 matrix of the bilinear form. This eases the
following derivations.

29.3 A�ne Correspondences

29.3.1 De�nition of uncertain ACs

Let us assume we observe an a�ne correspondence (ACs) (x0, z0,A). The two points
(x0, z0) may result from the matching of keypoints. The a�nity A may result from a least
squares matching.

The local a�ne transformation between two image patches positioned at x0 in the �rst
image and at z0 in the second image, measured in the image coordinate system, hence
assuming calibrated cameras, is given by:

z − z0 = A(x− x0) + b or z = z0 + A(x− x0) + b . (29.14)

The a�nity refers to the local coordinates x − x0 and in case of perfect correspondence
of (x0, z0) we have b = 0.

The a�nity A not only contains the local warping of the two images around these
points via A but also a local correction b to the position z0 in the second image.

We assume the reference points (x0, z0) of the AC are certain, and all uncertainty of
the AC is due to the a�ne transformation A.

z = (z0 + b) + A(x− x0) . (29.15)

Any pair (x, z) ful�lls the model. For simplicity, we chose x = x0 and assume the point
pair

{x0, z0 + b} (29.16)

is corresponding, since the a�nity A has no in�uence on the point in the second image.

We immediately see: the a�nity A

A =

[
a1 a3

a2 a4

]
=
∂z

∂x
=

 ∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

 (29.17)
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is the Jacobian of z w.r.t x. The shift contains the last two parameters of the a�nity:

b =

[
a5

a6

]
. (29.18)

With the homogeneous matrix

A =

[
A b
0T 1

]
=

 a1 a3 a5

a2 a4 a6

0 0 1

 = [A0 | b0] (29.19)

this can be written with homogeneous coordinates

x =

[
x
1

]
and z =

[
z
1

]
(29.20)

and the translation matrices

Tx =

[
I 2 x0

0T 1

]
and Tz =

[
I 2 z0

0T 1

]
(29.21)

and
∆z = T−1

z z and ∆x = T−1
x x (29.22)

as
∆z = A∆x . (29.23)

We assume the matrix A and the covariance matrix Σaa of the 6 parameters a = [ai] is
provided by the observation process.

Hence, the a�ne correspondences are given by

AC : {x0, z0,A,Σaa} , (29.24)

Thus:

1. the two points x0 and z0 serve as reference points, e.g. are the coordinates of detected
keypoints. They are assumed to be �xed, i.e. not stochastic.

2. the two points x0 and z0 + b are assumed to correspond.

3. the 6 parameters in the homogeneous matrix A are assumed to be observed.

4. the covariance matrix of these 6 parameters is Σaa.

29.3.2 Coordinate Transformation of Uncertain ACs

We estimate the a�nity in the sensor coordinate system, but need it in the camera coor-
dinate system. The relation is

x = K cx or cx = K−1 x . (29.25)

where we assume Euclideanly normalized homogeneous coordinates. This applies for both
images.

It it straight forward to transform the coordinates:

cx0 = K−1 x0 and cz0 = K−1 z0 . (29.26)

We now need the matrix A as a function of the matrix

cA =

[
cA cb
0T 1

]
. (29.27)
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For this we use the following translation matrices for the camera coordinates

cTx =

[
I 2

cx0

0T 1

]
and cTz =

[
I 2

cz0

0T 1

]
(29.28)

with
x0 = Kcx0 and z0 = Kcz0 . (29.29)

Then (29.23) can be written as
T−1
z z = AT−1

x x . (29.30)

Therefore
T−1
z K cz = AT−1

x K cx . (29.31)

or
cz = K−1TzAT

−1
x K cx . (29.32)

Hence referring to the centred coordinates

cT−1
x

cx and cT−1
z

cz (29.33)

we obtain
cT−1

z
cz = cT−1

z K−1TzAT
−1
x K (cT−1

x )−1loooooooooooooooooomoooooooooooooooooon
cA

cT−1
x

cx . (29.34)

Thus, �nally, with
cA = cT−1

z K−1TzAT
−1
x K cTx (29.35)

we have the local a�nity in the camera coordinate system equivalent to (29.30)

cT−1
z

cz = cA cT−1
x

cx . (29.36)

Now, using x0 = K cx0 + k we observe

T−1
x K cTx =

[
I 2 −x0

0T 1

] [
K k
0T 1

] [
I 2

cx0

0T 1

]
(29.37)

=

[
K k − x0

0T 1

] [
I 2

cx0

0T 1

]
(29.38)

=

[
K K cx0 + (k − x0)
0T 1

]
(29.39)

=

[
K 0
0T 1

]
(29.40)

for arbitrary x0. Therefore we have the simple relation

cA =

[
K−1 0
0T 1

] [
A b
0T 1

] [
K 0
0T 1

]
(29.41)

or
cA =

[
K−1AK K−1b

0T 1

]
(29.42)

The covariance matrix of the a�nity in the camera coordinate system can be derived
from

cA = K−1
0 AK0 with K0 =

[
K 0
0T 1

]
. (29.43)

Vectorization yields
vec(cA) = (KT

0 ⊗ K−1
0 )vecA . (29.44)

from which we obtain the covariance matrix of the a�nity in the camera system

Σcaca = (KT
0 ⊗ K−1

0 )Σaa(K
T
0 ⊗ K−1

0 )T , (29.45)

� except for some zero rows and columns in the covariance matrices, which we add and
delete in order to start with a 9 × 9 covariance matrix Σaa and �nally obtain a regular
6× 6 covariance matrix Σcaca.
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29.3.3 Theoretical Precision of ACs

The covariance matrix of an AC can be derived from the normal equation matrix of the
least squares matching. We use the approximate template matching for the analysis of the
theoretical precision The normal equation matrix for LSM with a 6-parameter a�nity is:

N =
1

σ2
n

¸
ij

∇fθ(i, j)∇Tfθ(i, j) (29.46)

with

∇fθ(i, j) =


ifi
ifj
jfi
jfj
fi
fj

 , (29.47)

and the image noise variance σ2
n, which is assumed to be the same for all pixels. Since we

do not know f , let us assume the following:

• The expectation of f is 0.

• The variance of fi and fj are σ2
f ′ . Their correlation is 0.

Then the normal equation matrix for a K ×K image is diagonal with the entries

N =
σ′2f
σ2
n

Diag([s, s, s, s, t, t]) with s =
1

12
K2(K2 − 1) and t = K2 . (29.48)

Hence the precision, i.e. the inverse standard deviations of the shifts and the a�ne pa-
rameters increase with the scale or the window size. In detail, for some constant

κ =
σn
σf ′

(29.49)

the standard deviations of the 6 parameters are approximately related to the diameter K
of the image patch by:

σθu =
`

12 κ
1

K2
for u = 1, 2, 3, 4 and σθu = κ

1

K
for u = 5, 6 . (29.50)

Since the precondition for this relation is that the variance of the gradient is the
same and homogeneous over all the image windows, this theoretical relation will only
approximately hold for real images.

However, we may use this result to generate reasonable arti�cial covariance matrices:

Σaa =

[
σ2
aI 4 0

0 σ2
b I 2

]
with σa =

`
12

K2

1

σf ′
σn and σb =

1

K

1

σf ′
σn (29.51)

for some κ = σn/σf ′ and using the assumed side length K of the image window.
In some of my experiments I used σn = 1 [gr] and σf ′ = 5 [gr/pixel] hence, the constant

κ = 1/5 [pixel]. Normally, we assume the pixel distance to be 1, unitless.

29.4 Precision of relative orientation from pairs of a�ne

matches

29.4.1 The constraints

29.4.1.1 Point constraints

Since we have 4 observed image coordinates but 3 unknown 3D coordinates, there is one
constraint - the epipolar constraint between the image coordinates.
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If the two poses are given by

P2 = [I 3 | 0] and P2 = [R | b] (29.52)

then, given a corresponding point pair with camera coordinates1 (x, z) := (cx′, cx′′) the
epipolar constraint for the essential matrix E is given by

c(x, z) = xTEz = 0 with E = S(b)RT =

 e1 e4 e7

e2 e5 e8

e3 e6 e9

 . (29.53)

or with the Euclideanly normalized homogeneous coordinates x := [x; 1] and z := [z; 1]

c = (zT ⊗ xT) e = ([zT, 1]⊗ [xT, 1]) e = 0 with e = vecE , (29.54)

or explicitly
c = [x1z1 x2z1 z1 x1z2 x2z2 z2 x1 x2 1] e = 0 (29.55)

Hence, with 5 corresponding points we may derive the 5 parameters of the relative pose.
Thus, the coordinates x and z can be assumed to be observed in a calibrated camera with
focal length f = 1.

29.4.1.2 A�nity constraints

Since we have 6 observed parameters but 3 unknown parameters of the (locally) planar
surface, there are 3 constraints between the 6 parameters. One expresses the epipolar
constraint of the two points x0 and y from (29.14). The other two relate the 4 a�ne
parameters (a1, ..., a4) to the 2 parameters of the surface slope.

In order to arrive at constraints for the a�nity we may di�erentiate (29.53) w.r.t x,
leading to the 2 constraints

∂xTEz

∂x
=
∂zTETx

∂x
= 0 (29.56)

Since e have
∂xT

∂x
= [I 2 | 0] and

∂zT

∂x
= [AT | 0] (29.57)

we obtain

∂xT

∂xloomoon
2×3

E z +
∂zT

∂xloomoon
2×3

ET x = 0 . (29.58)

With (29.20) this is given by (see Eichhardt and Chetverikov (2018, eq. (8))

[I 2 | 0] E z + [AT | 0] ET x = 0 . (29.59)

If we include twice the epipolar point constraint (29.53) we obtain the 3 combined con-
straints

c =

[
I 2 x
0T 1

]T

Ez +

[
A z
0T 1

]T

ETx = 0 . (29.60)

For simplifying notation we introduce the matrices

X =

[
I 2 x0

0T 1

]
=: [P0 | x0] and Z =

[
A z
0T 1

]
=: [A0 | z] . (29.61)

1We choose the name z for the points in the right image, since we use the letter y for the observations
in the estimation process.
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and obtain the combined constraints

c = XTEz + ZTETx = 0 . (29.62)

We alternatively may di�erentiate (29.54) w.r.t x to obtain

∂c

∂x
=
(
zT ⊗ [I 2|0] + [AT|0]⊗ xT

)
e (29.63)

Together we obtain per pair the three constraints

c =

(
zT ⊗

[
I 2 0
xT 1

]
+

[
AT 0
zT 1

]
⊗ xT

)
e = 0 , (29.64)

or
c =

(
zT ⊗ XT + ZT ⊗ xT

)
e = 0 , (29.65)

or
c = CTe = 0 (29.66)

with the 3× 9 matrix
C = C 1 + C 2 (29.67)

with

C 1 = [z1X
T, z2X

T,XT] =

 z1 0 0 z2 0 0 1 0 0
0 z1 0 0 z2 0 0 1 0

x1z1 x2z1 z1 x1z2 x2z2 z2 x1 x2 1

 (29.68)

and

C 2 =

 a1x
T a2x

T 0T

a3x
T a4x

T 0T

z1x
T z2x

T xT

 =

 a1x1 a1x2 a1 a2x1 a2x2 a1 0 0 0
a3x1 a3x2 a3 a4x1 a4x2 a4 0 0 0
x1z1 x2z1 z1 x1z2 x2z2 z2 x1 x2 1


(29.69)

CT =

z1 + a1x1 a1x2 a1 z2 + a2x1 a2x2 a1 1 0 0
a3x1 z1 + a3x2 a3 a4x1 z2 + a4x2 a4 0 1 0
2x1z1 2x2z1 2z1 2x1z2 2x2z2 2z2 2x1 2x2 2


Remark: Some authors perform the vectorization of the epipolar constraint based on its

transposed. So, starting from
zT
E

Tx = 0 (29.70)

they arrive at

(xT ⊗ z)e = 0 with e = vec
(
E

T
)

(29.71)

i.e., using a row-wise vectorization of E. This obviously leads to expressions where the two
factors of the Kronecker products are exchanged. This leads to the same constraints, however,
the columns of its entries permuted.

For the combined constraints we obtain

c =
(
X

T ⊗ zT + xT ⊗ ZT
)

e = 0 , (29.72)

and
C

T
e = 0 (29.73)

with

C
T

=

z1 + a1x1 z2 + a2x1 1 a1x2 a2x2 0 a1 a2 0
a3x1 a4x1 0 z1 + a3x2 z2 + a4x2 1 a3 a4 0
2x1z1 2x1z2 2x1 2x2z1 2x2z2 2x2 2z1 2z2 2


This directly relates to Eichhardt and Chetverikov (2018, eqs. (15), (16)), taking into account

that they refer to a row-wise numbering of the elements of A, hence, a2 and a3 are exchanged

compared to our de�nition. �
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29.4.2 Relative pose from two a�ne correspondences

With two AC's we obtain 6 constraints for the 5 parameters. This allows us to estimate
the essential matrix by approximating the 6× 9 matrix CT(y) = [C 1(y1),C 2(y2)]T with a
rank 5-matrix and using its 4-dimensional nullspace for estimating E, similar to the 5-point
algorithm, since the 6× 9 matrix CT generally has rank 6.

This approximation can be done in two ways:

1. If its reduced SVD is given by

CT = U
6×6

D
6×6

V T

6×9
(29.74)

with

U = [u1
6×1

, . . . ,ui, . . . ,u6] , D = Diag([di]) and V = [ v1
9×1

, . . . ,vi, . . . ,v6]

(29.75)
then the rank-5 approximation CT

ρ of CT is

ρ(CT) =: CT
ρ =

5̧

i=1

di ui v
T
i = CT − d6 u6 v

T
6 . (29.76)

Actually the matrix CT
ρ is used for the determination of E. Hence, for determining

the covariance matrix of the pose, we need the Jacobians of the modi�ed constraints

CT
ρ (y,θ) e(θ) = 0 . (29.77)

2. Alternatively, we may omit one of the 6 constraints, thus eliminate one row ck of
CT. The choice may again use the SVD: we choose that k, where the angle between
ck and v6 is smallest. We have the cos of the rows of CT with v6:

cos(ck,v6) = UDV Tv6/||ck|| = UDe6/||ck|| = d6U :,6/||ck|| . (29.78)

Hence, we choose that k for which the cosine is largest. Hence, we work with the
5× 9 matrix

CT
r = C [k]T . (29.79)

We only discuss the second option, since we do not have the Jacobian for the SVD of a
rectangular matrix.

29.4.3 Uncertainty of the relative pose with selected constraints

In the following we assume the two points (x0, z0) are certain and the complete uncertainty
of the a�ne matches is contained in the 6 parameters θ = [a1, ..., a6]T of A. Further,
we assume the covariance matrix Σyy is available from the matching process. With the
observations y = [a1, ..., a6]T and the unknown parameters θ ≡ (R,b) the constraints
(29.60) have the form r(C(y,θ)) e = 0 or explicitly

cr(y,θ) = r

([
XT

1 ⊗ zT
1 + xT

1 ⊗ Y
T
1

XT
2 ⊗ zT

2 + xT
2 ⊗ Y

T
2

])
e = CT

r e = 0 (29.80)

If the covariance matrix Σyy of the given observations y is given, we can derive the
covariance matrix Σθθ of the estimated 5 parameters of the relative pose using the two
Jacobians

BT
r =

∂cr
∂y

and Dr =
∂cr
∂θ

(29.81)

from

Σpθpθ =
(
DT
r (BT

rΣyyBr)
−1Dr

)−1 if |Dr| /= 0
= D−1

r BT
rΣyyBrD

−T
r . (29.82)

The derivation can be generalized for observed directions xe = x/||x|| and ze = z/||z||,
when observing the local a�nity in the tangent space of xe.
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29.4.4 The Jacobians for selected constraints

We now want to derive the Jacobians of the constraints w.r.t the 12 observed a�ne pa-
rameters y in

A1 =

 y1 y3 y5

y2 y4 y6

0 0 1

 and A2 =

 y7 y9 y11

y8 y10 y12

0 0 1

 (29.83)

and 5 parameters of the relative pose, still to be speci�ed.
The derivatives for the selected constraints w.r.t. the observations follow from

BT
r

5×12
=



∂cr1
∂y
. . .
∂crk
∂y
. . .
∂cr5
∂y


(29.84)

=

[
∂(cT

rke)

∂y

]
(29.85)

=

[
∂(eTcrk)

∂y

]
(29.86)

=

eT ∂crk)

∂yloomoon
9×12

 (29.87)

=

eT ∂crk(CT)

∂vecCloooomoooon
9×54

∂vecC (y)

∂yloooomoooon
54×12

 (29.88)

Observe, vecC is a 54-vector.
Similarly we need the Jacobian w.r.t. parameters θ

DT =
∂cr
∂θ

=
∂cr
∂e

∂e

∂θ
= CT

r

∂e

∂θ
(29.89)

We start with

• determining he derivatives of vecC = [c1; c2; c3] w.r.t. the observations y, this can
be achieved separately for each AC. The selection is done separately.

• determine the Jacobian of the elements e of the essential matrix w.r.t. pose param-
eters θ, this is independent of the constraint matrix; and �nally

• addressing the Jacobian of the selected constraints ∂cr(C
T)/∂(vecC ).

29.4.4.1 The Jacobians of CT w.r.t. observations y

We can determine the Jacobian for each AC separately.
With approximate values x = x0 have from (29.15)

dz = db = d
[
y5

y6

]
and dA = d

[
y1 y3

y2 y4

]
(29.90)

and

dz = d

 y5

y6

0

 and dA0 = d

 y1 y3

y2 y4

0 0

 . (29.91)
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We use the 3× 6 matrices

Y T
i = eT

i ⊗ P0 e.g. Y T
1 =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

 . (29.92)

Then we can express the derivatives as

dz = Y T
3dy and dA0 =

[
Y T

1dy | Y
T
2dy

]
(29.93)

The three rows of the matrix CT from (29.166) cT
1

cT
2

cT
3

 = CT = XT ⊗ zT(y) + xT ⊗ ZT(y) (29.94)

are  cT
1

cT
2

cT
3

 =

 eT
1 ⊗ zT(y) + xT ⊗ [y1, y2, 0]
eT

2 ⊗ zT(y) + xT ⊗ [y3, y4, 0]
2xT ⊗ zT(y)

 (29.95)

For the vec-product we have e.g.

∂x⊗ z(y)

∂y
9×6

=

∂

 x1z(y)
x2z(y)
x3z(y)


∂y

=

 x1Y
T
3

x2Y
T
3

x3Y
T
3

 = x⊗ Y 3 . (29.96)

Hence we obtain the Jacobians

∂c1

∂yloomoon
9×6

= e1 ⊗ Y T
3 + x⊗ Y T

1 (29.97)

∂c2

∂y
= e2 ⊗ Y T

3 + x⊗ Y2 (29.98)

∂c3

∂y
= 2x⊗ Y T

3 . (29.99)

or simply for each AC

∂vecC i
∂y

27×6

=

 e1 ⊗ Y T
3 + xi ⊗ Y T

1

e2 ⊗ Y T
3 + xi ⊗ Y 2

2xi ⊗ Y T
3

 . (29.100)

therfore

∂vecC
∂y

54×12

=


∂vecC 1

∂y
0

0
∂vecC 2

∂y

 . (29.101)

29.4.4.2 The Jacobians of e w.r.t. parameters θ

We represent the uncertain rotation matrix via the product of the mean rotation µR and
an uncertain small rotation exp(S(r))

R = exp(S(r))µR ≈ µR + S(dr)µR . (29.102)
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Similarly we represent the uncertain basis vector b via an uncertain 2-vector br perpen-
dicular to µb:

b = N(µb + Jr(µb)br) with Jr(µb)
3×2

= null(µT
b ) . (29.103)

We therefore have
db = Jr dbr and dR = S(dr)R , (29.104)

since ||b|| = 1 and assuming R = µR. We collect the uncertain �ve parameters in the
vector

θ =

[
br
r

]
with D(θ) = Σθθ (29.105)

First we determine the di�erential of E = S(b)RT:

dE(θ) = dS(b)RT + S(b)(S(dr)R)T = S(Jrdbr)R
T + EST(dr) . (29.106)

The transposed

dET(θ) = RST(Jrdbr) + S(dr)ET . (29.107)

can be rewritten as

de = vec
(
dET

)
= (I 3 ⊗ R) vec

(
ST(Jrdbr)

)
+ (E⊗ I 3) vec (S(dr)) (29.108)

The vectorizing of a skew symmetric matrix S(a) yields

vecS(a) = vec

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 =



0
a3

−a2

−a3

0
a1

a2

−a1

0


=



0T

+eT
3

−eT
2

−eT
3

0T

+eT
1

+eT
2

−eT
1

0T


loooomoooon

JS

a (29.109)

Therefore, we have

de = vec
(
dET

)
= −(I 3 ⊗ R) JS Jrdbr + (E⊗ I 3) JS dr (29.110)

Finally, we therefore �nd

de =
∂e

∂θ
dθ , (29.111)

with the Jacobian (check signs)

∂e

∂θ
= [−(I 3 ⊗ R) JS Jr | (E⊗ I 3) JS ] . (29.112)

29.4.4.3 The Jacobians of the constraints c w.r.t. observations y

With approximate values x = x0 have from (29.15)

dz = db = d
[
y5

y6

]
and dA = d

[
y1 y3

y2 y4

]
. (29.113)

Hence, from (29.62)
c = XTEz(y) + ZT(y)ETx0 = 0 , (29.114)
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we obtain

dc = XT E(θ) d

 y5

y6

0

+ d

 y1 y3 y5

y2 y4 y6

0 0 0

T

ET(θ) x0 (29.115)

With the matrix

Y T
1 =

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 = [0, 0, 1]⊗ P0 (29.116)

hence

db = Y 1dy or d

 y5

y6

0

 = Y 1dy (29.117)

the �rst summand can be written as

XT E(θ) d

 y5

y6

0

 = XT E(θ) Y T
1 dy . (29.118)

With the epipolar line l of x0 in the second image

l = ETx0 =

[
lh
l0

]
(29.119)

the second summand in (29.115) is

d

 y1 y2 0
y3 y4 0
y5 y6 0

 l = d

 y1 y2

y3 y4

y5 y6

 lh =

 dy1l1 + dy2l2
dy3l1 + dy4l2
dy5l1 + dy6l2

 = Y T
2dy (29.120)

with the matrix

Y T
2 =

 l1 l2 0 0 0 0
0 0 l1 l2 0 0
0 0 0 0 l1 l2

 = I 3 ⊗ lTh (29.121)

Hence, the Jacobian w.r.t. observations is

BT =
∂c

∂y
= XT E(θ) Y T

1 + Y T
2 . (29.122)

We can simplify this, since the matrices Y i have a special structure and are sparse.
We �rst have:

BT =

[
PT

0E(θ)
lT

]
E(θ) ([0, 0, 1]⊗ P0) + I 3 ⊗ lTh . (29.123)

This can be rearranged to

BT = [0, 0, 1]⊗
[
PT

0E(θ)P0

xT
0E(θ)P0

]
+ I 3 ⊗ lTh (29.124)

This �nally leads to

BT

3×6
=
∂c

∂y
=

[
I 2 ⊗ lTh E(θ)1:2,1:2

0T
4 2lTh

]
. (29.125)
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29.4.4.4 Alternative derivation of the Jacobians of the constraints c w.r.t.

observations y

With approximate values x = x0 have from (29.14)

dz(y) = dA∆x = (∆xT ⊗ I 3)d(vec(A)) and dA = d
[
y1 y3

y2 y4

]
. (29.126)

Hence, from (29.62)
c = XTEz(y) + ZT(y)ETx0 = 0 , (29.127)

we obtain

dc = XT E(θ) (∆xT ⊗ I 3)d(vec(A)) + d

 y1 y3 y5

y2 y4 y6

0 0 0

T

ET(θ) x0 (29.128)

The �rst summand can be rewritten the following way: With the matrix

Y 1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


= I 3 ⊗ P0 (29.129)

hence
d(vec(A)) = Y 1dy (29.130)

the �rst summand can be written as

XT E(θ) (∆xT ⊗ I 3)(I 3 ⊗ P0)dy = XT E(θ) (∆xT ⊗ P0)dy . (29.131)

With the epipolar line l of x0 in the second image

l = ETx0 =

[
lh
l0

]
(29.132)

the second summand in (29.128) is

d

 y1 y2 0
y3 y4 0
y5 y6 0

 l = d

 y1 y2

y3 y4

y5 y6

 lh =

 dy1l1 + dy2l2
dy3l1 + dy4l2
dy5l1 + dy6l2

 = Y T
2dy (29.133)

with the matrix

Y T
2 =

 l1 l2 0 0 0 0
0 0 l1 l2 0 0
0 0 0 0 l1 l2

 = I 3 ⊗ lTh (29.134)

Hence, the Jacobian w.r.t. the observations is

BT =
∂c

∂y
= XT E(θ) Y T

1 + Y T
2 . (29.135)

We can simplify this, since the matrices Y i have a special structure and are sparse.
We �rst have:

BT =

[
PT

0E(θ)
lT

]
([0, 0, 1]⊗ P0) + I 3 ⊗ lTh . (29.136)
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This can be rearranged to

BT = [0, 0, 1]⊗
[
PT

0E(θ)P0

xT
0E(θ)P0

]
+ I 3 ⊗ lTh (29.137)

This �nally leads to

BT

3×6
=
∂c

∂y
=

[
I 2 ⊗ lTh E(θ)1:2,1:2

0T
4 2lTh

]
. (29.138)

29.4.4.5 The Jacobians of the constraints c w.r.t. unknown parameters θ

We represent the uncertain rotation matrix via

R = exp(S(r))µR ≈ µR + S(dr)µR . (29.139)

Similarly we represent the uncertain basis vector b via

b = N(µb + Jr(µb)br) with Jr(µb)
3×2

= null(µT
b ) . (29.140)

We therefore have
db = Jr dbr and dR = S(dr)R , (29.141)

since ||b|| = 1 and assuming R = µR. We collect the uncertain �ve parameters in the
vector

θ =

[
br
r

]
with D(θ) = Σθθ (29.142)

Hence we have the di�erential of c w.r.t the unknown parameters

dc = XT dE(θ) z + ZT dET(θ) x0 (29.143)

First we determine the di�erential of E = S(b)RT = RTS(Rb):

dE(θ) = dS(b)RT + S(b)(S(dr)R)T = S(Jrdbr)R
T + EST(dr) . (29.144)

Therefore, the di�erential of c contains 4 summands

dc = XTS(Jrdbr)R
Tzlooooooooomooooooooon

K 1

+XTEST(dr)zloooooomoooooon
K 2

+ZT(S(Jrdbr)R
T)Tx0loooooooooooomoooooooooooon

K 3

+ZT(EST(dr))Tx0looooooooomooooooooon
K 4

. (29.145)

Hence the Jacobian w.r.t. rotation parameters θ is

DT =
∂c

∂θ
=
[(
XTST(RTz) + ZTRS(x0)

)
Jr

∣∣∣XTES(z) + ZTST(ETx0)
]
. (29.146)

Remark: We may expand the expressions an use the transformed point, the (non-normalized)
normal of the epipolar plane and the relation between rotations and skew matrices:

1z = R
Tz and nx = x0 × b and RS(d) = S(Rd)R . (29.147)
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for simplifying the expressions

K1 = X
T
S

T(1z)Jr dbr =

[
P

T
0

xT
0

]
S

T(1z)Jr dbr

K2 = X
T
ES(z) dr =

[
P

T
0

xT
0

]
S(b)RT

S(z) dr =

[
P

T
0S(b)

nT
x

]
S(1z)RT dr

K3 = Z
T
RS(x0)Jr dbr =

[
A

T
0

zT

]
RS(x0)Jr dbr =

[
A

T
0R

1z
T

]
S(x0)Jr dbr

K4 = Z
T
S(dr)ETx0 (29.148)

= Z
T
S

T(ETx0)dr (29.149)

= Z
T
RR

T
S

T(RST(b)x0)dr (29.150)

= (ZT
R) RT

S(RS(b)x0)dr (29.151)

= (ZT
R) RT

S
T(Rnx)dr (29.152)

=

[
A

T
0R

zT
R

]
R

T
S

T(Rnx)dr (29.153)

=

[
A

T
0R

1z
T

]
S

T(nx)RT dr

or

D
T =

[([
P

T
0S

T(1z)

(1z× x0)T

]
+

[
A

T
0RS(x0)

(1z× x0)T

])
Jr

∣∣∣∣ ([ P
T
0S(b)S(1z)

(nx × 1z)T

]
+

[
A

T
0RS

T(nx)

(nx × 1z)T

])
R

T

]
(29.154)

However, these expressions are computationally more demanding. �

29.4.4.6 The Jacobian ∂(CT
r )/∂CT

The Jacobian of the selected lines are the selected Jacobians of all lines.
The constraint matrix with selected rows follows from

CT
r

5×9
= GT

r
5×6

CT

6×9
. (29.155)

where the selection matrix consists of 5 unit vectors of length 6:

GT
r =


eT
r1
eT
r2
eT
r3
eT
r4
eT
r5

 :=


e

[6],T
r1

e
[6],T
r2

e
[6],T
r3

e
[6],T
r4

e
[6],T
r5

 with rk ∈ {1, . . . , 6} and GT
rG r = I 5 . (29.156)

We again determine the Jacobians for each row separately. For the rk-th constraint we
have

cT
rk

= eT
rk
CT or crk = Cerk . (29.157)

or
crk = (eT

rk
⊗ I 9) vecC . (29.158)

Therefore we obtain the Jacobian

∂crk
∂vecC

= eT
rk
⊗ I 9 . (29.159)

29.4.5 The algorithm

The algorithm is given below.
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Algorithm 6: Covariance matrix of (b,R) from two ACs;
Σ=CovM_bR_from_2_ACs(U0,V 0,A,Σaa,b,R, s)

Input: Reference points, 2× 2 matrices: U0 =

[
xT

01

xT
02

]
, V 0 =

[
zT

01

zT
02

]
;

A�nity tensor 3× 3× 2 with homogeneous matrices: Ai = A(:, :, i), i = 1, 2;
Covariance matrix Σaa of uncertain a�ne correspondences;
Relative orientation (b,R);
Vector s of indices for selection of constraints.
Condition: The constraint matrix has full rank.
Output: 5× 5 Covariance matrix Σ = D(p), with p = [br; r].

1 Essential matrix: E = S(b)RT;
2 Fitted points: V = V 0 + A(1 : 2, 3, :), see (29.16);
3 Homogeneous coordinates: U0 = [U0,1], V = [V ,1];

4 Ancillary vectors: L = U0E =

[
lT
1

lT
2

]
, see (29.132);

5 Ancillary matrix: P0
3×2

= [I 2,0]T, see (29.61) ;

6 for i = 1, 2 do

7 Jacobian: ∂(ci)/∂yi = BT
i = [P0,xi]

T E (eT
3 ⊗ P0 + I 3 ⊗ lhi), see (29.122)

8 end

9 Jacobian: ∂(c)/∂y = BT = Diag({BT
i });

10 Jacobian: Jr = null(bT);
11 for i = 1, 2 do

12 Ancillary matrix: A0i =

[
A(1 : 2, 1 : 2, i)

0T

]
, see (29.61);

13 Ancillary matrices X i = [P0,xi], Z i = [A0i, zi], see (29.61);
14 Ancillary matrices K 1 = XT

i S
T(Rzi), K 2 = ZT

i RS(x0), see (29.146);
15 Ancillary matrices K 3 = XT

i ES
T(zi), K 4 = ZT

i S
T(ETx0), see (29.146);

16 Jacobians (3× 5): ∂(ci)/∂θ = DT
i = [(K 1 + K 2)Jr,K 3 + K 4], see (29.146);

17 end

18 Jacobian: D
6×5

=

[
DT

1

DT
2

]
;

19 Selection matrix: GT
r = GT

r (s);
20 (Inverse) Jacobians of selected constraints: H = (GT

rD)−1, BT
r = GT

rB
T;

21 Covariance matrix (5× 5): Σ = HBT
rΣaaBrH

T, see (29.82);
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29.5 Precision of relative orientation with focal length

from pairs of a�ne matches

29.5.1 The constraint � version 1

We use the same constraint as for the case of the calibrated camera. However, we

1. use the image coordinates

x := ix
′

and z := ix
′′

(29.160)

or

x := ix
′

=

 ix
′

iy
′

1

 and z := ix
′′

=

 ix
′′

iy
′′

1

 (29.161)

together with the a�nity referring to the image coordinates, and

2. use the fundamental matrix

F(b,R, φ) = QEQ with Q = Diag([1, 1, f ]) and E = S(b)RT . (29.162)

3. We use all constraints, thus do not reduce them to 5.

Thus we have the point constraint

xTF(b,R, f)z = (xT ⊗ zT)f = 0 (29.163)

and the combined constraint

c = XTFz + ZTFTx = 0 . (29.164)

or
C

T
f = 0 , (29.165)

with
C

T
= XT ⊗ zT + xT ⊗ ZT . (29.166)

Therefore, the Jacobians of the constraints can be taken from the case without focal
length, except for

1. Using the 6× 9 matrix C
T
instead of the 5× 9 constraint matrix.

2. Using the fundamental matrix F instead of the essential matrix, hence the epipolar
line

l = FTx0 and lh = l1:2 . (29.167)

Therefore, the Jacobian B is

BT =
∂c

∂y
=

[
I 2 ⊗ lTh F(θ)1:2,1:2

0T
4 2lTh

]
. (29.168)

3. Extending the Jacobian w.r.t. unknowns for the 6-th parameter f , see below.

29.5.2 The constraint � Version 2

29.5.2.1 The constraints

We use the same constraint as for the case of the calibrated camera. However, we
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1. use the image coordinates

x := ix
′

and z := ix
′′

(29.169)

or

x := x(f) = cx′ =

 x′

y′

f

 and z := z(f) = cx′′ =

 x′′

y′′

f

 (29.170)

together with the a�nity referring to the image coordinates,

2. We use all constraints, thus do not reduce them to 5.

Thus we have the point constraint

xT(f) E(b,R) z(f) = (xT(f) ⊗ zT(f)) e = 0 (29.171)

and the combined constraint

c = XT(f) E z(f) + ZT(f) ET x(f) = 0 . (29.172)

with

XT =

[
I 2 x
0T f

]
and ZT =

[
A z
0T f

]
(29.173)

Hence we have
CT(f) e = 0 or C

T
(f) e = 0 , (29.174)

with
CT = zT ⊗ XT + ZT ⊗ xT . (29.175)

or
C

T
= XT ⊗ zT + xT ⊗ ZT . (29.176)

Therefore, the Jacobians of the constraints can be taken from the case without focal
length, except for

1. Using the 6× 9 constraint matrix instead of the 5× 9 constraint matrix.

2. Using the essential matrix E, hence the epipolar line

l = ETx0 and lh = l1:2 . (29.177)

Therefore, the Jacobian B is

BT =
∂c

∂y
=

[
I 2 ⊗ lTh E(θ)1:2,1:2

0T
4 2lTh

]
. (29.178)

3. Extending the Jacobian w.r.t. unknowns for the 6-th parameter f , see below.

29.5.2.2 The Jacobians

The 6 parameters in dθ now consist of the 5 parameters dθ1 and the focal length dθ = df :

dθ =

[
dθ1

dθ2

]
=

 dbr
dr
df

 (29.179)

Hence taking the di�erential of

c = XTEz + ZTETx0 = 0 . (29.180)

uses (29.146)

DT
1 =

∂c

∂θ1
=
[(
XTST(RTz) + ZTRS(x0)

)
Jr

∣∣∣XTES(z) + ZTST(ETx0)
]

(29.181)
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and

DT
2 =

∂c

∂θ2
= Diag(e3) E zi + XT

i E e3 + Diag(e3) ET xi + ZT
i E

T e3 (29.182)

Therefore, the di�erential dc now consists of 5 terms, the �rst four referring to [dbr, dr]
the last referring to df

dc =
¸
j

K j (29.183)

with

K 1 = XT ST(RTz) Jr dbr (29.184)

K 2 = XT E ST(z) dr (29.185)

K 3 = ZT R S(x0) Jr dbr (29.186)

K 4 = ZT ST(ET x0) dr (29.187)

K 5 = Diag(e3) E zi + XT
i E e3 + Diag(e3) ET xi + ZT

i E
T e3 (29.188)

as to be shown.
Hence, we observe that the matrices K 1 to K 4 algebraically are the same as before,

taking into account that the coordinates in all cases refer to the camera system. However,
here the camera coordinates are not Euclideanly normalized, hence:

x :=

 x′

y′

f

 and z :=

 x′′

y′′

f

 . (29.189)

Therefore the Jacobians here numerically are larger by a factor f2, than those Jacobians
derived for the calibrated case.

For deriving K 5

K 5 =
∂c

∂f
=

∂

∂f
(XT(f) E z(f) + ZT(f) ET x(f)) (29.190)

we use the following simplifying relations, due to the Euclidean normalization of the co-
ordinates

dx(f) = e3 df (29.191)

dz(f) = e3 df (29.192)

dXT(f) = Diag(e3) df (29.193)

dZT(f) = Diag(e3) df (29.194)

and obtain

K 5 = Diag(e3)E z + XT E e3 + Diag(e3)ET x0 + ZT ET e3 (29.195)

406



29.5.2.3 A short derivation for the Jacobian of the a�ne constraints w.r.t.

focal length

Given are two a�ne correspondences (ACs):

ACi : {x, z,A,Σaa}i (29.196)

with

• the coordinates x and z in the left and the right image, referring to the principal
point in pixel coordinates

• the uncertain a�nity

A =

[
a1 a3

a2 a4

]
(29.197)

and

• the covariance matrix Σaa of the six parameters [a1, ..., a4, z
T]. Hence, we treat x

as �xed value.

The three constraints for the two ACs can be written as

ci = XT
i E zi + ZT

i E xi = 0 (29.198)

where

• The homogeneous coordinates of the directions in the camera system are

xi =

[
xi
f

]
and zi =

[
zi
f

]
(29.199)

Care has to be taken for the sign of f . We have a right hand system in the image
plane. Then the Z-axis of the camera points away from the scene. If the images
are in taking position (the sky is at the top), then the image plane in the camera
coordinate system is at Z = f , where f < 0.

• the matrices are

X i =

[
I 2 xi
0T f

]
and Z i =

[
A zi
0T f

]
(29.200)

Observe, the epipolar constraint is in the third row, and taken with a factor 2.

The constraint for the ACs are

ci = XT
i E zi + ZT

i E
T xi , (29.201)

We have the derivatives w.r.t. f

∂ XT
i

∂f
= Diag(e3) (29.202)

∂ ZT
i

∂f
= Diag(e3) (29.203)

∂ xi
∂f

= e3 (29.204)

∂ zi
∂f

= e3 . (29.205)

Therefore, the di�erential is

dci = dXT
i E zi + XT

i E dzi + dZT
i E

T xi + ZT
i E

T dxi (29.206)

= Diag(e3) E zi + XT
i E e3 + Diag(e3) ET xi + ZT

i E
T e3 (29.207)
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29.5.3 Generating ACs

We can easily generate an AC. For this we need to specify

1. the relative pose (R,B) of the two images

2. the plane A(A)

3. a reference point x0(x0) in the �rst image

4. a small o�set b for determining the other reference point z0(z0).

We preform the following calculations

1. Determine the intersection point of the plane A with the projection ray Lx0 of x0:

X = A ∩ Lx0
(29.208)

which is for AT = [NT,−S]

X = I I T(A)Q
T
x0 =

[
−SI 3 ST(N)

NT 0T

] [
x0

0

]
=

[
−Sx0

NTx0

]
(29.209)

2. determine the corresponding point z in the second image

z = P′′X . (29.210)

3. determine the reference point z0

z0 = z − b . (29.211)

4. determine the a�nity A from (29.14), where the Jacobians are evaluated at (x0, z):

A = J2J
−1
1 (29.212)

with

J1 = Jc(x0) JZ J2 = Jc(z) R JZ and JZ =

[
I 2
nT

]
(29.213)

For choosing a plausible covariance matrix Σaa for the 6 parameters (A, b) we take one
from a LSM result.

For generating noisy ACs, we sample 6-dimensional deviations ∆a from N (0,Σaa) to
obtain samples

A =

[
A b
0T 1

]
with A = A+ ∆A and b = b+ ∆b . (29.214)

29.6 Local a�nities of homographies

Local a�nities derived from least squares matching should be similar to the local a�nity
derived by di�erentiation, if projective component is not too large.

Let a homography be
y = Hx . (29.215)

We want to derive the local a�nity at some given pair (x0,y0). For this we linearize and
start with

H =

[
H11 h12

hT
21 h22

]
and x =

[
x
1

]
. (29.216)

Then we have

y =
H11x+ h12

hT
21x+ h22

. (29.217)
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For deriving the Jacobian ∂y
∂x we use

y(hT
21x+ h22) = H11x+ h12 , (29.218)

take the total di�erential:

dy(hT
21x+ h22) + y(hT

21dx) = H11dx (29.219)

and solve for dy:

dy =
H11 − yhT

21

hT
21x+ h22loooooomoooooon
A(x)

dx (29.220)

Hence the local a�nity at some pair (x0,y0)) is given by

y − y0 = A(x− x0) (29.221)

or
y = Ax+ (y0 − Ax0) . (29.222)

29.7 Experiments

29.7.1 Goals

The goal of the experiments is to demonstrate the validity and the usefulness of the
approach. We therefore want to answer the following questions:

• Prove the validity of the derivation of the relative pose and its uncertainty from two
ACs.

• Compare the usefulness of the derivation of the essential matrix from two ACs with
that from �ve point correspondences (PCs)

29.7.2 Validity of the estimation of the essential matrix from two
ACs

This is realized in the Matlab script demo_2ACs_2_E_precision.m. It performs the
following steps:

1. The �rst camera is set to P = [I 3 | 0].

2. A second camera with P = [R | −B] is generated randomly.

3. Two planes (X0,N) are generated randomly.

4. A small o�set b for the a�nity is generated randomly.

5. Two covariance matrices

Σaa = Diag([σ2
a, σ

2
a, σ

2
a, σ

2
a, σ

2
b , σ

2
b ]) (29.223)

with some σf ′ representative for the image patch

σa =

`
12

σf ′s2
and σa =

1

σf ′s
(29.224)

is generated depending on a prespeci�ed scale s.

6. Two uncertain ACs are generated. The noise is varied for di�erent samples within
an experiment.

409



7. The essential matrix and the 5× 5 covariance matrix for the basis direction and the
rotational uncertainty are determined.

8. Using a sample of K the correctness of the implementation is checked for the covari-
ance matrix and the bias.

For small noise of σf ′ = 500 [gr/pixel] and K = 1000 samples no deviation of the
empirical from the theoretical covariance matrix and no bias was observed.

29.7.3 Compare the usefulness of deriving the essential Matrix
from two ACs

This test refers to real data.

1. We use the multi-view data set of (https://icwww.epfl.ch/multiview/denseMVS.
html), see Strecha et al. (2008).

2. We selected appropriate image pairs and performed a bundle adjustment to obtain
matches between the images using Aurelo, see Läbe and Förstner (2006). This
yields Lowe-keypoints with position, scale and orientation.

3. We used 5-tupels of matches to verify the 5-point algorithm of Nister.

4. We determined a�ne correspondences by performing LSM. Approximate values for
the a�nity result from scale and direction di�erences

A = s2/s1R(φ2 − φ1)

5. We used pairs of ACs to verify the 2-AC-algorithm above.

We obtained the following preliminary results:

• The usefulness of the 5-point algorithm was con�rmed. Using a threshold of 5 pixels
for the consistency check we usually found enough consensus. The di�erence of the
relative rotation to its ground truth was in the order of a few degrees, sometimes
below 1◦. The angle between the estimated and the given baseline was in the order
of a few degrees, never below 1◦. This partly can be explained by the short baselines,
being only a fraction (1/2 to 1/10) of the distance to the scene.

• The theoretical precision of the relative pose of both algorithms was comparable. We
used the maximum standard deviation of the rotation angles and the base-direction.
However, there was a tendency, that the solution with 2 ACs yielded more precise
results. Except for weak con�gurations the standard deviations were below 0.5◦.
The precision of the relative pose from pairs of ACs varied heavily.

• The relative rotation could be recovered from 2 ACs with angular deviations in the
order of a few degrees. Also here large variations appeared. Not every (correct)
pair of ACs was able to recover the relative pose. This partly can be explained by
the small scales and the local 3D structure, which was present. Only for very large
windows and very planar regions the results came close to the true values. This
indicates, that the keypoint detector needs to be able to catch large planar regions.
This appears not to be the case for Lowe keypoints.

29.7.4 Bias of a�ne parameters

If the mapping between the images is known and smooth we are able to compare the
estimated local a�nity with the one derived from the known mapping. We can expect
the deviations increase with increasing window size and increasing deviation from an ideal
a�nity. We now investigate the dependency empirically.

We choose a real image where there are no depth discontinuities in the scene, here the
gra�ti image. We use it to generate two noisy images with known perspective distortion.
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For 21 manually selected points we determined the corresponding coordinates. At these
positions we determined the local a�nity pA(pa) and compared it with the local a�nity
A(a) derived from the Jacobian of the perspective mapping. As measure for the similarity
of the two a�nities we use the Mahalanobis distance

m2 = (pa− a)TΣ−1
aa (pa− a) ∼ χ2

6 (29.225)

which is χ2
6-distributed if the mapping is an ideal a�nity. The covariance matrix Σaa is

taken from the LSM. Hence, this test statistic should be smaller than the critical value
k = k(S), say for a signi�cance level of 99.9%, k = 22.46. For easier interpretation we
give m′ =

a
m2/6 and compare it with k′ =

a
k/6 = 4.7, since then the distance can be

interpreted similar to normally distributed test statistics.
The table contains the median and maximum values m′ for di�erent window sizes and

perspective distortions. Given the radius (or scale) the window-size is 10r × 10r. The
perspective distortion is realized by mapping the rectangle with the corner coordinates
ci, i = 1, 2, 3, 4 to a quadrangle with the four corners

ci � (1 + d ε) with ε ∈ U2(0, 1) . (29.226)

The coordinates refer to the centre of the window. Hence, the coordinates are randomly
enlarged by a factor (1 + d) approximately.

Table 29.1: Maximum test statistic m′ =
a
χ2/6 as a function of the window size 10r×10r

and the degree d of perspective distortion. Critical value k′ = 4.7. The values result from
10 samples each

r\d 0.0 0.1 0.2 0.4
median max median max median max median max

2.0 1.49 3.36 3.90 9.98 4.64 12.79 5.30 17.18
3.0 1.48 3.01 6.77 18.15 8.99 25.31 10.80 31.83
4.0 1.25 2.75 10.42 24.50 12.85 41.31 17.40 71.63
5.0 1.21 3.52 14.01 36.55 19.87 61.99 23.93 124.16

In case of no perspective distortion, the estimated a�nity appears to be consistent
with the true a�nity. The maximum test statistics keep below the critical value.

With increasing distortion and increasing window the estimated a�nity shows signi�-
cant bias when compared with the a�nity at the centre point derived from the Jacobian
of the perspective mapping.

In the following table we provide the absolute changes (RMSE) for the a�ne parameters
and the shifts. The absolute biases decrease with larger windows, especially the bias of

Table 29.2: Root mean square errors sA =RMSEA and sb =RMSEb for the a�ne parame-
ters [a1..., a4] and the shifts [a5, a6] as a function of the window size 10r×10r and the degree
d of perspective distortion, derived from 50 samples each

r\d 0.0 0.1 0.2 0.4
sA [1] sb [pel] sA [1] sb [pel] sA [1] sb [pel] sA [1] sb [pel]

2.0 0.0644 0.1940 0.0688 0.3634 0.0838 0.3665 0.1221 0.3889
3.0 0.0209 0.1051 0.0302 0.3169 0.0533 0.3159 0.0916 0.3188
4.0 0.0089 0.0553 0.0231 0.2966 0.0434 0.3028 0.0798 0.2888
5.0 0.0058 0.0474 0.0230 0.2965 0.0458 0.2919 0.0891 0.2791

the a�nities, while the bias of the positions only decrease for zero perspectivity, as to be
expected, while being a bit below 1/3 of a pixel independent of the window size and the
distortion.

We will repeat the experiment by comparing the estimated a�nities with the average
a�nity in a given window.

411



30 Surface Slope from A�ne Matches

We discuss how to derive the local slope of the surface from a�ne matches for recti�ed and
non-recti�ed images. The methods are rigorous, in case the surface is locally planar and
the perspective distortions are small, which usually is an acceptable assumption, except
at depth or slow discontinuities.

30.1 Surface Slope from A�ne Matches . . . . . . . . . . . . . . . . . . . . . . . 412
30.1.1 Geometric models for a�nities . . . . . . . . . . . . . . . . . . . . . 412
30.1.2 Slope from recti�ed images . . . . . . . . . . . . . . . . . . . . . . . 413
30.1.3 Slope from non-recti�ed images . . . . . . . . . . . . . . . . . . . . . 413

30.1 Surface Slope from A�ne Matches

A�ne matches allow to recover the local slope at the observed scene point. We derive
expressions to determine the surface normal for recti�ed and for non-recti�ed images.

30.1.1 Geometric models for a�nities

We address two geometric models for deriving surface slope:

1. The �rst model assumes recti�ed calibrated images: the two cameras have projection
matrices

P′ = [I 3 | 0] , P′′ = [I 3 | −B] with B =

 BX
0
0

 (30.1)

Assuming recti�ed images an a�ne transformation in the direction of the �rst coor-
dinate [

x′

y′

]
=

[
a0 + a1x

′′ + a2y
′′

y′′

]
(30.2)

This model is rigorous in case the scene is locally planar. In case the surface plane
is given by

Z = A0 +A1X +A2Y , A =


A1

A2

−1
A0

 (30.3)

the three parameters ai correspond to the slopes A1 and A2 of the plane in X- and
Y -direction and the depth A0.

2. The second model assumes non-recti�ed images: the two cameras are assumed to
have projection matrices

P′ = [I 3 | 0] , P′′ = R[I 3 | −B] with B =

 BX
BY
BZ

 (30.4)
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Assuming an a�nity with U = 6 unknown parameters

y = Az + a

[
x′

y′

]
=

[
a1 a3

a2 a4

] [
x′′

y′′

]
+

[
a5

a6

]
(30.5)

as the �rst order approximation of all more general smooth (di�erentiable) geometric
transformations. However, the parameters ai cannot be chosen arbitrary, but have
to ful�l three constraints, since the local a�nity has only three degrees of freedom.

30.1.2 Slope from recti�ed images

We start from the homography between the two images

x′′ = P′′ I I T(A)Q′
T
x′ =

 A0 +BXA1 BXA2 −cBX
0 A0 0
0 0 A0

x′ (30.6)

where the image coordinates refer to the principle point. Therefore we have the three
parameters of the 1D a�nity

a0 = −cBX
A0

, a1 =
A0 +BXA1

A0
, a2 =

BXA2

A0
(30.7)

and inversely

A0 = − c

a0
BX , A1 = − c

a0
(a1 − 1) , A2 = − c

a0
a2 . (30.8)

The Jacobian is given by

∂A

∂a
=

c

a2
0

 BX 0 0
a1 − 1 −a0 0
a2 0 −a0

 . (30.9)

30.1.3 Slope from non-recti�ed images

We can derive the normal of the plane following Eichhardt and Chetverikov (2018, eq. 2).
We use x = c(x) = x0/xh and thus dx = Jc(x)dx (see Förstner and Wrobel (2016, eq.
(10.33)), with

Jc(x) =
1

x2
h

[xhI 2 | −x0] (30.10)

We obtain from
x′ = c(Z) and x′′ = c(R(Z −B)) (30.11)

the di�erentials

dx′ = Jc(x
′)dZ(mX) and dx′′ = Jc(x

′′)RdZ(mX) (30.12)

Here we assume the Z3 coordinates depend on the map-coordinates mX via

Z = A0 +A1
mX1 +A2

mX2 or

 Z1

Z2

Z3

 =

 0
0
A0

 1 0
0 1
A1 A2

looooooomooooooon
JZ

[
mX1
mX2

]
. (30.13)

Hence, the di�erentials are

dx′ = J1dmX and dx′′ = J2dmX (30.14)

with
J1 = Jc(x

′) JZ and J2 = Jc(x
′′) R JZ (30.15)
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The local a�nity between the image coordinates is y = x′′ + A(y − x′), hence

dx′ = Adx′′ with A = J2J
−1
1 . (30.16)

We explicitly have
Jc(x

′) JZ A = Jc(x
′′) R JZ (30.17)

With n = [A1, A2]T and thus JZ = [I | n]T we therefore �nd a relation linear in n

Jc(x
′)

[
A

nTA

]
= Jc(x

′′) R

[
I 2
nT

]
. (30.18)

This reads as

1

x′2h
(x′hA− x′0nTA) = (Jc(x

′′) R):,1:2 + (Jc(x
′′) R):,3n

T (30.19)

or

1

x′2h
x′hvec(A)− 1

x′2h
(AT ⊗ x′0)n = vec ((Jc(x

′′) R):,1:2) + (I 2 ⊗ (Jc(x
′′) R):,3)n (30.20)

Thus(
1

x′2h
(AT ⊗ x′0) + (I 2 ⊗ (Jc(x

′′) R):,3)

)
n =

1

x′h
vec(A)− vec ((Jc(x

′′) R):,1:2) . (30.21)

This is an overdetermined 4 × 2 equation system for the 2-vector n. Since A may not
be arbitrary, but has to ful�l two constraints, we can expect the equation system to be
consistent.

The two constraints restrict the rotation and the scaling of the a�nity A.
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31 Local A�nity of a Homography and

its Approximation

Image matching may be based on a�ne matches. The estimated a�nity depends on local
windows with a size depending on the scale e.g., of a keypoint detector. In case of locally
planar scenes they approximate the Jacobian of a homography. On the other hand, the
scale and rotation parameters provided by a keypoint detector, do not encode the local
shears, but may be used as approximation for the local a�nity, possibly re�ned by some
intensity-based matching. We discuss the Jacobian of a homography, provide methods
to determine the scaled rotation part of the a�nity, and a criterion to identify the lack
of shears. This enables to empirically determine the accuracy of the scale and rotation
parameters derived from Lowe keypoints.

31.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
31.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
31.3 A�nity for observed slanted plane . . . . . . . . . . . . . . . . . . . . . . . 416
31.4 Code for Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
31.5 Partitioning of an a�nity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
31.6 A�nity and Slope of Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

31.1 Task

Given is a homography x (x) 7→ y(y) such that y = Hx. Derive the Jacobian for the
non-homogeneous coordinates, i.e., the local a�nity at a given point x (x)

A =
∂y

∂x

∣∣∣∣
x

, (31.1)

provide methods to determine the scaled rotation part of the a�nity, and a criterion to
identify the lack of shears. This enables to empirically determine the accuracy of the scale
and rotation parameters derived from Lowe keypoints.

31.2 Derivation

If the homography is described using the row vectors or using its partitioning

H =

 hT
1

hT
2

hT
3

 =

[
AH t
pT s

]
, (31.2)

the non-homogenous coordinates of y read as

y(x) =

[
hT

1 x
hT

2 x

]
hT

3 x
with x =

[
x
1

]
. (31.3)
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With the symbolic package of Matlab the Jacobian yields

A =
∂y

∂x

∣∣∣∣
x

(31.4)( H1,1

H3,3+H3,1 x1+H3,2 x2
− H3,1 (H1,3+H1,1 x1+H1,2 x2)

(H3,3+H3,1 x1+H3,2 x2)2
H1,2

H3,3+H3,1 x1+H3,2 x2
− H3,2 (H1,3+H1,1 x1+H1,2 x2)

(H3,3+H3,1 x1+H3,2 x2)2

H2,1

H3,3+H3,1 x1+H3,2 x2
− H3,1 (H2,3+H2,1 x1+H2,2 x2)

(H3,3+H3,1 x1+H3,2 x2)2
H2,2

H3,3+H3,1 x1+H3,2 x2
− H3,2 (H2,3+H2,1 x1+H2,2 x2)

(H3,3+H3,1 x1+H3,2 x2)2

)

With the homogeneous coordinates of the transformed point

y =

[
y0

yh

]
=

 H1,3 +H1,1 x1 +H1,2 x2

H2,3 +H2,1 x1 +H2,2 x2

H3,3 +H3,1 x1 +H3,2 x2

 (31.5)

we �nd the short version

A =
1

y2
h

(yhAH − y0p
T) . (31.6)

Observe it also can be derived by cantering the coordinate system into y using

cy = Ty with T =

[
I 2 −y
0T 1

]
(31.7)

yielding the homography

cy = cHx with cH = TH =

[
I 2 −y
0T 1

] [
AH t
pT s

]
=

[
AH − ypT t− sy

pT s

]
(31.8)

From (31.6) we can conclude that, if y0 = 0, we just need to extract the a�nity of cH and
divid by yh. Since cy = 0 we arrive at

A =
1

yh
(A cH) =

1

yh
(A− ypT) . (31.9)

31.3 A�nity for observed slanted plane

Let a plane be given by its homogeneous coordinates A = [AT
h , A0]T and observed by an

image pair in normal pose, i.e., R = I 3 and B = e1. Then the homography

cx′ = Hcx′′ with H = I +
TAT

h

A0
=

[
AH t
pT s

]
(31.10)

can be used to derive the local a�nity

A =
1

y2
h

(yhAH − y0p
T) (31.11)

with y0 from

y =

[
y0

yh

]
= Hx , (31.12)

where x is the point of linearization.
In our special case we assume the plane is

Z = H +XZX + Y ZY or A =


ZX
ZY
−1
H

 =

 [ n
−1

]
H

 . (31.13)
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The homography is

H =

[
I 2 0
0T 1

]
+

1

H

[
e

[2]
1

0

]
[nT | −1] =

[
I 2 + e

[2]
1 n

T/H −e[2]
1 /H

0T 1

]
(31.14)

This is an a�nity. Hence the Jacobian is independent on the position

A =
∂x′′

∂x′
= I 2 + e

[2]
1 n

T/H =

[
1 + ZX/H ZY /H

0 1

]
. (31.15)

31.4 Code for Jacobian

The Matlab code for determining the Jacobian is

%% local affinity from homography at point

x=sym('x',[2,1],'real')

y=sym('y',[2,1],'real')

H=sym('H',[3,3],'real')

y= H(1:2,:)*[x;1]./([1;1]*H(3,:)*[x;1]);

jacobian(y,x)

31.5 Partitioning of an a�nity

We assume rAi ∈ R2×2 matrix locally approximate the homography rHi ∈ R3×3. The goal of
comparing SIFT directions could be to determine the rotation component R̃ of the a�nityrAi and compare it to the angle between the directions of corresponding keypoints.

We address three alternatives for determining the rotational component of Ã:

1. a QR-decomposition,

2. a SVD-decomposition, and

3. an exponential decomposition.

Rotation from QR-decomposition of an a�nity A. Assuming the a�nity is a
concatenation of a shear matrix S and a subsequent rotation with R

A = RS (31.16)

the classical QR-decomposition is de�ned as

Rqr,A := R with [R, S ] = qr(A) . (31.17)

In case the a�nity is de�ned by the reverse sequence, i.e.,

A = SR (31.18)

the QR decomposition of the transposed needs to be taken

Rqr,AT := RT with [R, S ] = qr(AT) . (31.19)

If there are no shears, i.e., the shear matrix is a scaled unit matrix, the two rotations Rqr,A

and Rqr,AT are the same, otherwise they di�er.
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Rotation from SVD-decomposition of A. An alternative way to derive the rotation
component uses the matrix exponential. Let us assume, the a�nity is decomposable as
two rotations sandwiching a individual scaling

A = UDV T with D =

[
d1 0
0 d2

]
, (31.20)

where the shears are represented by the rotation V and the ratio d1/d2. Then the SVD
yields the rotation

Rsvd,A := UV T with [U,Λ,V ] = svd(A) . (31.21)

Transposing A does not change the rotation. The resulting rotation only is identical to
those of the QR-decomposition if the a�nity is a scaled rotation.

Rotation from an exponential decomposition The a�nity A can be written as an
exponential of a matrix B

A = eB (31.22)

If the matrix B is zero, i.e. B = 0 , the a�nity is a unit transformation. We now can
decompose the exponent additively in the following form

B =
¸
i

piBi (31.23)

with the four basic 2× 2 matrices

B1 =

[
1 0
0 1

]
, B2 =

[
0 −1
1 0

]
(31.24)

B3 =

[
0 1
1 0

]
, B4 =

[
1 0
0 −1

]
. (31.25)

Hence
A = ep1B1+p2B2+p3B3+p4B4 . (31.26)

If we take each of the summands individually, the four parameters refer to (1) scaling with
log p1, (2) rotation by p2 [rad], (4) 1st shear, namely opposite rotation of axes, and (4)
2nd shear, namely opposite scaling of axes, see Fig 31.1.

Figure 31.1: The a�nity A = exp(B) may be interpreted as the combined e�ect of the four
basic transformations scaling, rotation, the �rst and the second shear, here with parameters
p = (0.2, 0.8, 0.6, 0.4) showing the individual transformations exp(piBi). The plus-signs in
the �gure refer to the exponents

The rotation is given by the well-known relation

R = exp(p2B2) . (31.27)
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Furthermore, for the �rst shear we explicitely have

exp

([
0 p4

p4 0

])
(31.28)

=

[
e−p4/2 + ep4/2 ep4/2 − e−p4/2

e−p4/2 − e−p4/2 e−p4/2 + ep4/2

]
(31.29)

q4=ep4/2

=

[
q4 + 1/q4 q4 − 1/q4

q4 − 1/q4 q4 + 1/q4

]
. (31.30)

This representation is highly symmetric. The additive terms are invariant w.r.t. the
sequence of the terms. Moreover, the scaled rotation is independent on the existence of
shears.

However, since the exponent of two matrices only is the product of the two matrices if
they commute, i.e.

exp(A+ B) = exp(A) exp(B) only if AB = BA , (31.31)

the interpretation of the elements in the exponent is not independent of the existence of
the other elements. Only a common scaling can be exchanged with the other components,
as is known from scaled rotation.

Now, we can de�ne the rotational component using (31.27) deriving p2 from

p2 = (B(2, 1)−B(1, 2))/2 with B = log(A) (31.32)

where log(A) is the matrix logarithm of A.
Therefore we are able to identify the existence of shears, namely we have no shears if

d2
s = |[p3, p4]| = p2

3 + p2
4 = 0 (31.33)

Since a scale rotation has condition number cond(sR) = 1, also the condition number can
be used to identify the lack of shears, namely if cond(A) = 1. For not too large shears the
the condition number and the degree of shears d2

s are approximately the same:

d2
s ≈ cond(A) . (31.34)

31.6 A�nity and Slope of Plane

We give a relation between the condition number and the slope of a plane observed by an
image pair in normal position.

The image of a sloped plane leads to scale di�erences s and shears a due to the tilts
Zx and Zy of the plane along and across the base line. They have the form

As =

[
1 + s 0

0 1

]
and Aa =

[
1 a
0 1

]
(31.35)

The combined e�ect is the a�nity

Asa = AaAs =

[
1 + s a

0 1

]
(31.36)

Condition Number for A�nity except Scaled Rotation. The condition number
of this a�nity, is given by

c = 1 +
(
a

4(1 + s) + t2 + t)

2(1 + s)
t with t2 = a2 + s2 (31.37)

For small s and t it can be approximated by

c ≈ 1 + t = 1 +
a
a2 + s2 (31.38)

neglecting higher order terms. A condition number c = 1.5 corresponds to t =
`

2/3.
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A�ne Parameters and Slope of Scene Plane. Assume the stereo image pair in
normal position with rotation R = I , basis b = [1, 0, 0]T, and focal length f = 1 with
coordinate system in the �rst camera observing a sloped plane at [0, 0, Z0]T

Z = Z0 +XZX + Y ZY with ZX =
∂Z

∂X
, ZY =

∂Z

∂Y
(31.39)

or with homogeneous plane coordinates

A = [ZX , ZY ,−1, Z0]T = [nT, Z0]T . (31.40)

The homography from x ′ to x ′′ is given by x ′′ = Hx ′ by

H = I +
bnT

Z0
=

 ZX

Z0
+ 1 ZY

Z0
− 1
Z0

0 1 0
0 0 1

 (31.41)

This is an a�nity with a Jacobian independent of the position in the image, namely

A =
∂x ′′

∂x ′
=

(
1 + ZX

Z0

ZY
Z0

0 1

)
. (31.42)

Hence, we have the scale di�erence and the shear

s =
ZX

Z0
and a =

ZY

Z0
. (31.43)

If the scale di�erence and the shear are s = a = 1/3, the slope of the plane is atan2 (
`

2, 3) =
25.24◦ and the condition number is c = 1.5, which we use as threshold for approximate
scale rotations.
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32 Noise Suppression with Box, Bino-

mial, and Gaussian Filters

We derive expressions for the scale dependent decrease of the variance of white noise
images when being smoothed with a box, with a Binomial, with a Gaussian �lter, and
partial derivatives of a Gaussian �lter of up to second order.

32.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
32.2 Noise variances for discrete �lters . . . . . . . . . . . . . . . . . . . . . . . . 421
32.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
32.4 Variances of Gaussian-�ltered noise images . . . . . . . . . . . . . . . . . . 424

32.1 Task

Low pass �lters aim at suppressing the noise in an image. This note provides explicit
expressions for the decrease in noise variance when applying box, binomial, and Gaussian
�lters.

32.2 Noise variances for discrete �lters

The result is given in the following theorem.
Theorem 32.2.9: Noise variance for discrete �lters.
If the noise n in an image g has zero mean, standard deviation σn, and is uncorrelated,

the noise n in the image

g = g ∗H or g(x) =
¸
k

H(k)g(x− k) or g(x) =

»
t

H(t)g(x− t) (32.1)

has standard deviation
σn = c(H) · σn (32.2)

with

c2(H) =
¸
k

H2(k) or c2 =

»
t

H2(t) . (32.3)

For 1D- and 2D-images and box �lter H = Rm and binomial �lter H = Bm the ratios
cm = σn/σn are given in the table as function of the width of the �lters.
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Table 32.1: Rigorous expressions for the noise standard deviation for box and binomial
�lters

cm =
σn
σn

1D 2D

Box Rm
1`
m

1

m

Binomial Bm

c
1 · 3 · 5 · · · · · (2m− 1)

2 · 4 · 6 · · · · · 2m
1 · 3 · 5 · · · · · (2m− 1)

2 · 4 · 6 · · · · · 2m

For large m these expressions can be approximated by the values in the following table.

Table 32.2: Approximate expressions (large m) for the noise standard deviation for box
and binomial �lters

cm ≈
σn
σn

1D 2D

Box Rm
1`
m

=
1

4̀ 12
`
σRm

= 0.5373
1`
σRm

1

m
=

1`
12σRm

= 0.2887
1

σRm

Binomial Bm
1

4̀ πm
=

1
4̀ 4π
`
σBm

= 0.5311
1`
σBm

1`
πm

=
1`

4π σBm
= 0.2821

1

σBm

using the widths (spatial standard deviation)

σRm =

c
m2 − 1

12
(32.4)

σBm =

c
m

4
(32.5)

of the �lters.

32.3 Derivation

The equations for the box �lter are obtained easily.

For the binomial �lter we show that

c2m =
1

(2m)2

m̧

k=0

[(
m

k

)]2

=
1 · 3 · 5 · · · · · (2m− 1)

2 · 4 · 6 · · · · · 2m
=

(2m− 1)!!

(2m)!!
(32.6)
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with the double factorial for odd n and even m

n!! = n(n− 2) . . . 1 and m!! = m(m− 2) . . . 2 . (32.7)

This expression is just the sum of the squares of the elements of the kernel Bm, needed
for error propagation.

Remark: Proofwiki contains proofs for the relation:

m̧

k=0

(
m

k

)2

=

(
2m

m

)
(32.8)

see https://proofwiki.org/wiki/Sum_of_Squares_of_Binomial_Coefficients. Hence, we ob-
tain

c2m =
1

(2m)2

m̧

k=0

(
m

k

)2

=
1

4m
2m!

m!m!
=

2m!

(2mm!)(2mm!)
=

±
k(2k)

±
k 2k − 1±

k 2k
±
k 2k

=

±
k 2k − 1±
k 2k

.

(32.9)

q.e.d. �

We explicitly obtain for m = 2, 3, 4, 5, 6

m = 1 :

(
1

2

)2

(12 + 12) =
1

2
= 0.5 (32.10)

m = 2 :

(
1

4

)2

(12 + 22 + 12) =
3

8
=

1 · 3
2 · 4

(32.11)

m = 3 :

(
1

8

)2

(12 + 32 + 32 + 12) =
5

16
=

1 · 3 · 5
2 · 4 · 6

(32.12)

m = 4 :

(
1

10

)2

(12 + 42 + 62 + 42 + 12) =
35

128
=

1 · 3 · 5 · 7
2 · 4 · 6 · 8

(32.13)

m = 5 :

(
1

32

)2

(12 + 52 + 102 + 102 + 52 + 12) =
63

256
=

1 · 3 · 5 · 7 · 9
2 · 4 · 6 · 8 · 10

m = 6 :

(
1

64

)2

(12 + 62 + 152 + 202 + 152 + 62 + 12) =
231

1024
=

1 · 3 · 5 · 7 · 9 · 11

2 · 4 · 6 · 8 · 10 · 12

The coe�ent c for the 2D-binomial can be written as

c2m =
(2m)!

(2mm!)2
(32.14)

With Stirlings formula for m!

m! ≈
(m
e

)m`
2πm (32.15)

we obtain the approximation

c2m =
( 2m
e )2m

`
2π · 2m

22m · (me )2m · 2πm
=

1`
πm

(32.16)

This is valid for large m.

It can also be obtained by the continuous approximation of the binomial Bm namely
the Gaussian function Gσ

G(x;σ) =
1`
2π σ

exp

(
−1

2

x2

σ2

)
(32.17)
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We have

c2(G(x;σ)) =

» ∞
x=−∞

G2(x;σ) dx (32.18)

=

» ∞
x=−∞

1

2πσ2
exp

(
−x

2

σ2

)
dx (32.19)

=

» ∞
x=−∞

1

2
`
πσ

1b
2π(σ/

`
2)2

exp

(
−1

2

x2

(σ/
`

2)2

)
dx (32.20)

=
1

2
`
πσ

» ∞
x=−∞

1b
2π(σ/

`
2)2

exp

(
−1

2

x2

(σ/
`

2)2

)
dxloooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

1

(32.21)

=
1

2
`
πσ

. (32.22)

With (32.5) we obtain 32.16.

32.4 Variances of Gaussian-�ltered noise images

This section collects the e�ect of Gaussian related �lters, including partial derivatives,
onto the degree of smoothing white noise.

Let the central 1D- and 2D-Gaussian with width σ be

G(x;σ) =
1`

2πσ2
exp

(
−1

2

x2

σ2

)
(32.23)

and

G(x, y;σ) =
1

2πσ2
exp

(
−1

2

x2 + y2

σ2

)
= G(x;σ)G(y;σ) . (32.24)

The coe�cients c2 = σ2
n̄/σ

2
n for Gaussian related �lters result from (32.3). We have

for 1D signals the factors

c2(G(x;σ)) =
1

2
`
π

1

σ
≈ 0.2820947918

1

σ
(32.25)

c2(Gx(x;σ)) =
1

4
`
π

1

σ3
≈ 0.1410473959

1

σ3
(32.26)

c2(Gxx(x;σ)) =
3

8
`
π

1

σ5
≈ 0.2115710938

1

σ5
. (32.27)

As an example, compare the result in (32.25), which is c2(G(x;σ)) = 1/(2
`
πσ) with the

result in Table 32.2 for the 1D Binomial �lter, which is c2m = 1/(2
`
πσBm) when using

m = (2σBm)2 from (32.5), see the derivation of (32.22).

For 2D signals we have the factors

c2(G(x, y;σ)) =
1

4π

1

σ2
≈ 0.07957747152

1

σ2
(32.28)

c2(Gx(x, y;σ)) =
1

8π

1

σ4
≈ 0.03978873576

1

σ4
(32.29)

c2(Gxx(x, y;σ)) =
3

16π

1

σ6
≈ 0.05968310364

1

σ6
(32.30)

c2(Gxy(x, y;σ)) =
1

16π

1

σ6
≈ 0.01989436788

1

σ6
(32.31)
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Observe, we have the relations

c2(G(x, y;σ)) = c4(G(x;σ)) (32.32)

c2(Gx(x, y;σ)) = c2(G(x;σ)) c2(Gx(x;σ)) (32.33)

c2(Gxx(x, y;σ)) = c2(G(x;σ)) c2(Gxx(x;σ)) (32.34)

c2(Gxy(x, y;σ)) = c4(Gx(x;σ)) . (32.35)

For the Mexican hat

∆G(x, y;σ) = Gxx(x, y;σ) +Gyy(x, y;σ) (32.36)

we obtain the variance
c2(∆G(x, y;σ)) =

3

8π

1

σ6
. (32.37)
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Technical Notes on Geometry
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33 Circles and Circular Segments

We collect representations for circles and circle segments and their estimation from given
points. Circle segments may be useful for geometric reasoning, especially if the angular
support is small, since then the covariance matrix of the circle segment parameters have
a much lower condition number than the covariance matrix of the corresponding circle.

33.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
33.2 Representation of the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

33.2.1 The implicit form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
33.2.2 On the sign of the radius . . . . . . . . . . . . . . . . . . . . . . . . 428

33.3 Estimating the circle parameters from points . . . . . . . . . . . . . . . . . 428
33.3.1 Local representation if circular segment . . . . . . . . . . . . . . . . 429

33.1 Summary

An estimated circle segment s refers to a certain position of the circle, which can be freely
chosen. As the circle, it has three degrees of freedom namely the position across the circle,
the direction of the tangent and the curvature. It is represented as

s : {x, y, φ, κ;D([q, φ, κ])} . (33.1)

The tangent coordinate system is provided by (x, y, φ). In addition, we need the curvature
κ. The uncertainty is represented by the covariance matrix D([q, φ, κ]).

It can be derived from the best �tting circle, which directly can be determined from
the given points without showing a bias in the radius.

The note collects representations for the circle and circle segments and their estimation
from given points.

33.2 Representation of the circle

33.2.1 The implicit form

A general circle with centre x0 = [x0, y0]T and radius r is represented by the implicit
function

(x− x0)2 + (y − y0)2 − r2 = 0. (33.2)

It cannot represent straight lines. The following representation with the homogeneous
coordinates

Y =


U
V
W
T

 = T


x2 + y2

x
y
1

 , C =


A
B
C
D

 (33.3)

we have
A(x2 + y2) +Bx+ Cy +D = 0 . (33.4)
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In case we have a circle we have A /=0 and can write (33.2)

(x2 + y2)− 2x0x− 2y0y + (x2
0 + y2

0 − r2) = 0 (33.5)

which yields

x0 = − B

2A
, y0 = − C

2A
, r =

c
B2 + C2 − 4AD

4A2
. (33.6)

In case we have a straight line we have A = 0 and its homogeneous coordinates are

l =

 B
C
D

 . (33.7)

33.2.2 On the sign of the radius

The basic equation of the circle is invariant to the sign of the radius. However the curvature
of the circle depends on the chosen algebraic form.

The curvature of a curve is positive if its tangent rotates counter clockwise, otherwise
it is negative, though there are opposite de�nitions.

The unit circle is given parametrically as

x(t) =

[
x(t)
y(t)

]
=

[
r cos t
r sin t

]
(33.8)

In case r > 0 the point x runs counter clockwise. E.g. at t = 0 or x = [1; 0] it runs
upwards. If r < 0 the point x(t) runs clockwise.

The direction of the tangent vector is[
ẋ
ẏ

]
=

[
−r sin t
r cos t

]
(33.9)

E.g. at t = 0 or x = [1; 0] the tangent direction is [0; 1], con�rming the direction of the
motion of the point.

The curvature is given by (see https://mathworld.wolfram.com/Curvature.html)

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
(33.10)

In our case it is

κ =
(−r sin t)(−r sin t)− (r cos t)(−r cos t)

(r2 sin2 t+ r2 cos2 t)3/2
=

1

r
(33.11)

Thus, the curvature and the radius have the same sign.

33.3 Estimating the circle parameters from points

Given the N points (xn, yn), n = 1, ..., N having weights wn several direct solutions for
estimating the circle parameters θ = [x0, y0, r]

T are available, see Förstner and Wrobel
(2016, Sect. 4.9.2.5). The covariance matrix of the circle parameters is

D

 px0py0pr
 = Σpθpθ =

σ2
0°

n wn

 c2 cs c

cs s2 s
c s w

−1

(33.12)

with the abbreviations

c =

°
n wncn°
n wn

, c2 =

°
n wnc

2
n°

n wn
, . . . . (33.13)

and

wn =
1

σ2
n

, cn = cos(pαn) =
pxn − px0pr and sn = sin(pαn) =

pyn − py0pr . (33.14)
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33.3.1 Local representation if circular segment

We now choose the point on the circle as centre of the circle segment. We are free to
choose the point as long it represents the point distribution on the segment.

This can be achieved by transforming the original points into the centroid, see Fig.
33.1. If we, at the same time scale the points, such that the coordinates on an average are
close to one, we obtain a task speci�c conditioning of the given points, which anyway is
necessary.

α

x

y

.

(x  ,y  )

h

r

x’

y’

00

φ

t

s

d
m

O

O

O

c

t

xx 0

Figure 33.1: Circle segment s derived from circle C (x0, y0, r) . The centroid system with
centre Oc together with the major axes of the given points is used for estimating the circle
and assumed to be �xed. The circle segment is represented by (xt, yt, φ, κ), where (xt, yt)
is the origin of the tangent system, parallel to the centroid system, φ the direction of the
tx-axis and κ the curvature. The shift h between the two coordinate systems is uncertain.
We assume the tangent system to be �xed, but the tangent to be uncertain, thus close to
the ty axis, with two degrees of freedom: a shift q along the tx axis, with observed value 0
and standard deviation σq = σh and a rotation with tφ = 0 and standard deviation σφ. In
addition we have the uncertainty of the radius r or the curvature κ = 1/r.

This transformation can be determined from

x′n =
1

λ
RT(xn − x) (33.15)

with

• the weighted centroid

x =

°
n wnxn°
n wn

. (33.16)

• the rotation angle and the scale from the centred moment matrix

M =
¸
n

wn(xn − x)(xn − x)T (33.17)

via
φ0 =

1

2
atan2 (−2M12,M11 −M22) , λ =

a
tr(M) (33.18)

leading to the rotation matrix

R =

[
cosφ − sinφ
sinφ cosφ

]
. (33.19)

The inverse transformation reads as

xn = λRx′n + x . (33.20)
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From now on we assume the coordinates are conditioned following (33.15). The result will
be �nally back transformed using (33.20).

We now can derive the uncertainty of the estimated circle segment, see Fig. 33.1.
We represent it with the three parameters referring to the centroid coordinate system

s : ps =

 phpφpκ
 (33.21)

where h is the coordinate of the tangent point in the local coordinate system.
We derive it by from the circle parameters by

• in the centroid coordinate system

ps′(pθ′) =

 ph′pφ′pκ′
 =

 px′0 + pr′
atan2 (py′0, pr)

1/pr
 (33.22)

with the Jacobian

Js′x′ =
∂s′

∂x′
=

 1 0 1

0 r′

y′20 +r′2
− y′0
y′20 +r′2

0 0 − 1
r′2

 . (33.23)

• in the original system

ps(ps′) =

 λph′pφ′ + φ0
pr
λ

 , Jss′ =
∂s

∂s′
=

 λ
1

1
λ

 . (33.24)

Thus, the covariance matrix of the circle element in the original coordinate system is

Σpsps = Jss′ Js′x′ Σpx′px′ JT
s′x′ J

T
ss′ . (33.25)

In detail we obtain

1. Uncertainty of position of the tangent point across the circle, taking the correlations
into account

σ2
ph = σ2

px0
− 2σpx0pr + σ2

pr . (33.26)

2. Uncertainty of direction φ of tangent

σ2
pφ =

1py′20 + pr′2 (r′2σ2
py′0 − 2py0pr′σpy0pr + py2

0σ
2
r′) . (33.27)

3. Uncertainty of curvature κ = 1/r

σpκ =
σprpr2
. (33.28)

Observe, the relative accuracy of the curvature and the radius are the same: σpr/pr =
σpκ/pκ.

4. All elements are correlated. However, only the position tx0 and the radius show
signi�cant correlation.

The �nal representation for an uncertain circle segment is

s : {xt, yt, φ, κ;D([q, φ, κ])} . (33.29)
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where (xt, yt, φ) de�nes the coordinate system of the tangent t . The observation for q = 0,
which therefore needs not stored, it is contained in the �xed coordinates (xt, yt). However,
q is uncertain by σq. The complete likelihood function is

[q;φ;κ] | C ∼M ([0;φ;κ],D([q;φ;κ])) . (33.30)

From this we easily can derive the uncertain tangent line t from

t = T ∗ t′ (33.31)

with

t′ =

 1
φ
−q

 (33.32)

and

T =

 cosφ − sinφ xt
sinφ cosφ yt

0 0 1

 (33.33)

which represents two degrees of freedom, namely the shift q across the tangent and the
direction φ of the normal. The third parameter is the uncertain curvature κ.
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34 Geometric Algebra and Projective Ge-

ometry for Representing Relations be-

tween Geometric Elements

Geometric relations and constructions of projective elements usually are represented with
homogeneous vectors and matrices. We analyse these relations and constructions using
Geometric or Cli�ord algebra. It con�rms all representations for relating homogeneous
representations of 3D points, planes and 3D lines, especially the sign choices.
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34.1 Preface

This note (2003) is motivated by the very speci�c question, how to choose the sign when
dualling the Plücker coordinates of a 3D line. It is based on the analysis of the geometric
relations and constructions using Geometric or Cli�ord algebra. As an important side
e�ect, it con�rms all sign choices made for representing and relating homogeneous repre-
sentations of 3D points, planes and 3D lines, �nally documented in Förstner and Wrobel
(2016, Chapt. 5), see the remark on p. 236.

Speci�cally, we originally (before 2000) chose to de�ne the dual of a line with Plücker

coordinates L = [Lh,L0] as L
T

= −[L0,Lh], which was motivated by the cap product
of the Grassmann Caley algebra Faugeras and Luong (2001, Def. 3.8, p.. 150), Faugeras
and Papadopoulo (1998, meet-operator, p. 1125),and Browne (2009) and also follows from
tensor notation for Plücker matrices Gmn = εklmnG

kl. It di�ers from our later work in
Förstner et al. (2000) and in Geometric or Cli�ord Algebra where L

T
= [L0,Lh].

This note clari�es the reason, proposes to use the de�nition of the dual line in ac-
cordance with the Geometric Algebra, and shows that our construction results are not
a�ected by this.

Moreover, all the relations/constructions are shown to be directly derivable from geo-
metric algebra.
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34.2 Relations between di�erent representations for ge-

ometry

We collect representations and incidence relations for the following types of representation
in 2D and 3D:

• Euclidean geometry

• Projective geometry

• Grassmann-Cayley algebra (GCA)

• Geometric or Cli�ord algebra (GA)

The representations are collected in the following Tab. 34.1, at the same time specifying
the notation.

name Entity d.o.f. Euclidean projective GCA GA

x 2d point 2 x x x < x >1

l 2d line 2 (x,d), |d| = 1 l l < l >2

X 3d point 3 X X X < X >1

L 3d line 4 (X,D), |D| = 1 L L < L >2

A plane 3 (N , S), |N | = 1 A A < A >3

Table 34.1: Representation of geometric entities. A line may be represented Euclideanly
with a point and a direction, a plane may be represented Euclideanly by its normal and its
distance to the origin. The indices for the elements in geometric algebra (GA) indicate what
is called the grade of the vector, which can be visualized by the number of points necessary
to generate it

Incidence relations are collected in the following Tab. tab:IncidenceOfGeometricEntities.

inc(a, b) d.o.f. Euclidean projective GCA GA

x ∈ l 1 x = xl + λdl xTl = 0 < x, l >= 0 x ∧ l = 0

X ∈ A 1 XTN = S XTA = 0 < X,A >= 0 X ∧A = 0
L1 ∩ L2 /= ∅ 1 |D1,D2,X2 −X1| = 0 L1DL2 = 0 < L1,L2 >= 0 L1 ∧ L2 = 0

X ∈ L 2 X = XL + λDL I
T

(L)X = 0 X ∧ L = 0 X ∧ L = 0

I I
T

(X)L = 0
L ∈ A 2 Lh ×N = 0 I (L)A = 0 L ∩A = 0 (A ∧ L)∗ = 0

XT
LN = S I I T(A)L = 0

Table 34.2: Representation of geometric incidences. The matrices I I (·) and I (·) are de�ned
in Förstner and Wrobel (2016, (5.73),(7.37)) and given below, see (34.1) and (34.2)

.

34.3 Introduction to Geometric or Cli�ord Algebra

The description here is developed based on sources, namely Hestenes and Ziegler (1991),
Browne (2009), Perwass (2000). The results partially have been realized with the Maple

package GA by Mark Ashdown, see https://gitlab.com/majashdown/ga.

34.3.1 Basics

In Geometric Algebra (GA) all basic entities are collected in one. The basic entity is a
vector.
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Points are vectors

X = X1e1 +X2e2 +X3e3 +X4e4 = XTeX

with base vectors ei, i = 1, 2, 3, 4 collected in a compound base vector

eX =


e1

e2

e3

e4


All further elements are built upon these base vectors as in Grassmann-Caley algebra
(GCA).

The geometric product of two vectors is formally de�ned as

XY = X.Y +X ∧ Y

It is a sum of the scalar product of X and Y , which is symmetric, thus X.Y = Y .X and
the outer product X ∧ Y which is antisymmetric, thus X ∧ Y = −Y ∧ X. The sum of
these both products is to be seen as the sum of two non-compatible elements such as 1
and i in complex numbers, e. g. z = x+ iy, where there is no possibility to come to a sum
of x and y.

Generally, GA works with multi-vectors, which are sums of r-vectors

A = α+X + Y Z +RST + EFGH + ...

If a multi-vector is an r-vector, it is homogeneous (not to be confused with our notion).
The individual sums of the multi-vectors have grade 0, 1, 2, etc. We will only work with
homogeneous vectors.

The geometric product of two vectors is called a bi-vector or a 2-vector. One also can
multiply three of them XY Z, which yields a 3-vector.

For the base vectors ei we have the following rules:

ei.ej = δij ei ∧ ej =

{
0, if i = j
−ej ∧ ei, if i /= j

The left relation de�nes the metric in which we operate.
Thus, we have

eiej =

{
1, if i = j
ei ∧ ej for i /= j

We often use the abbreviation
eiej = eij

Thus, there is no further simpli�cation of the outer product of two di�erent base
vectors.

If we are in 4-dimensional space we have 4 base vectors, therefore 6 possible bi-vectors
as basis

(e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4) = (e12, e13, e14, e23, e24, e34)

If we look at triple products we have only four di�erent ones, as in case two of the
factors are identical we can reorder the factors and yield at least one factor 0. Therefore,
we obtain the four base vectors:

(e1e2e3, e1e2e4, e1e3e4, e2e3e4) = (e123, e124, e134, e234)

Finally, we look at quadruple products. There is only one:

e1e2e3e4 = e1234

If we now look at the squares of the base vectors we �nd:
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1. base vectors for vectors
e2
i = 1

2. base vectors for bi-vectors
e2
ij = −1

as eiejeiej = −eie2
jei = −1

3. base vectors for triple vectors
e2
ijk = −1

as eiejekeiejek = eiejekekeiej = −1

4. base of quadtruple vectors
e2

1234 = 1

We need the reverse of a r-vector, which is just the product of its factors in the reverse
order:

(XY...Z)† = Z...Y X

We then can de�ne the absolute value of an r-vector:

T = XY...Z |T |2 = T †T

This enables us to de�ne an inverse of an r-vector

T−1 = T †/|T |2

Now observe
e1234† = e4321

and
(e1234)

−1
= e4321/|e1234|2 = e1234

In spite e1234 is not 1, it behaves like 1. Therefore, it is called the unit pseudo scalar

I = e1234 with I−1 = I† = I

Remark: This speci�c property only holds, because we have used the special metric
eiej = δij . If we had taken a di�erent metric, e. g. e2

i = 1, i = 1, 2, 3 and e2
4 = −1 we had

obtained I2 = −1 and therefore I−1 = −I.
We now can de�ne lines as bi-vectors

L = X ∧ Y

In case we use the basis

eL = [e4 ∧ e1, e4 ∧ e2, e4 ∧ e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2]T = [e41, e42, e43, e23, e31, e12]T

we arrive at our de�nition of the Plücker coordinates of the line

L = LTeL = L1e41 + L2e42 + L3e43 + L4e23 + L5e31 + L6e12

Observe, the outer product of two vectors is a bi-vector, thus a homogeneous multi-vector
of grade 2.

Remark: The correspondence of the coordinates Li to the base vectors ekl is arbitrary. We

have chosen them, such that the �rst and second triple of L correspond to the direction and the

moment pf the 3D line, the moment being the normal on the plane through L and the origin. �
In a similar manner we can de�ne planes

A = ATeA

where we use the compound base vector

eA =


e234

e314

e124

e321


The reason for this choice results from the de�nition of duality.
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34.3.2 Duality

The dual V ∗ of a multi-vector V is de�ned as

V ∗ = V I−1

Thus we have the dual to a point

X∗ = (X1e1 +X2e2 +X3e3 +X4e4) e1234 = X1e234 +X2e314 +X3e124 +X4e321

This is a plane with identical coordinates, corresponding to the dualling operation in
coordinate vectors:

X = I 4X

Observe, the sequence of the �rst two indices in the �rst three base vectors (23,31,12).
Then we have the dual of a line

L∗ = (L1e41 + L2e42 + L3e43 + L4e23 + L5e31 + L6e12) e1234

= L1e23 + L2e31 + L3e12 + L4e41 + L5e42 + L6e43

= L4e41 + L5e42 + L6e43 + L1e23 + L2e31 + L3e12

(as we had before last autumn! . . . before 2003.)
Thus in coordinate vectors we have

L = DL

with

D =

[
0 I 3
I 3 0

]
And �nally, the dual of a plane

A∗ = (A1e234 +A2e314 +A3e124 +A4e321) e1234 = A1e1 +A2e2 +A3e3 +A4e4

yielding a point, in coordinates
A = I 4A

34.3.3 The join

The join of two entities is the outer product in case they are not incident. In GA the outer
product is the smallest subspace containing both elements, even in case the two elements
have some space in common.

Thus, we have the following cases

• Line L as join of two distinct points

L = X ∧ Y = −Y ∧X

The minus sign results from the anti-symmetry of the base-vectors eiej = −ejei
The result is the following

L = (X1e1 +X2e2 +X3e3 +X4e4) ∧ (Y1e1 + Y2e2 + Y3e3 + Y4e4)

which - after some manipulation - leads to

L = LTeL

with
L = I I (X)Y = − I I (Y)X

using our convention of I I (X), cf. (34.1).
Observe, we can interpret X ∧ Y as a line only when inspecting the elements of L,
when seeing that L does not change when choosing two other point on the line as
basis while noticing the intersection with a plane.
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• Plane A as join a line L and a point X not sitting on L

A = L ∧X = X ∧ L

The reason for the symmetry lies in the fact that eiejek = ekeiej
The result is the following

A = (L1e41 +L2e42 +L3e43 +L4e23 +L5e31 +L6e12)∧(X1e1 +X2e2 +X3e3 +X4e4)

which - after some manipulation - leads to

A = ATeA

with
A = I I

T
(X)L = I

T
(L)X

(cf. (34.3)) and
I I (X) = D I I (X)

and our Plücker-Matrix, cf. (34.2)

I (L) = I (L)

• Then we have the join of a point X and a plane A not passing through the point

βI = X ∧A = −A ∧X

First, the minus sign results from eijkl = −ejkli. Second, the result necessarily is a
pseudo scalar, thus has unit e1234.
We explicitely get

βI = (X1e1 +X2e2 +X3e3 +X4e4) ∧ (A1e234 +A2e314 +A3e124 +A4e321)

= X1A1e1e234 +X2A3e2e314 +X3A3e3e124 +X4A4e4e321 = XTAe1234

The value β is the determinant of four points, in case A is the join of three points Yi

β = |X,Y1,Y2,Y3| = −|Y1,Y2,Y3,X|

• Finally, we have the outer product of two skew lines L and M

γI = L ∧M = M ∧ L

The symmetry results from e1234 = e3412. Again the result must have unit e1234.
Explicitly we obtain

γI = (L1e41 + L2e42 + L3e43 + L4e23 + L5e31 + L6e12)

∧(M1e41 +M2e42 +M3e43 +M4e23 +M5e31 +M6e12)

= L1M4e41e23 + L2M5e42e31 + ...

= −L1M4e1234 − L2M5e1234 + ...

= −LTMe1234

as all other products vanish, as they have at least one base vector ei in common.
The scalar γ is the determinant of four points, in case the two lines are built by
L = X1 ∧X2 and M = Y1 ∧ Y2

γ = |X1,X2,Y1,Y2| = |Y1,Y2,X1,X2|

All other products either are trivial, as they include a scalar as factor, or vanish, as they
result in an entity with a product of more than 5 base vectors, which always vanish.
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34.3.4 The meet

The meet of two multi-vectors in GA is formally de�ned by de Morgan's rule

(U ∨W )∗ = U∗ ∧W ∗

or explicitly
U ∨W = ((UI−1) ∧ (WI−1))I

Of course the meet is only de�ned in case the join of the two dual entities is de�ned.
We have the following cases, dual-ling the previous four cases for the join

• Line L as the meet of two distinct planes

L = A ∨B = −B ∨A = ((AI−1) ∧ (BI−1)I

This is in full agreement with our path of thinking.
Therefore, we obtain

L = ((A1e1 +A2e2 +A3e3 +A4e4) ∧ (B1e1 +B2e2 +B3e3 +B4e4)) e1234

and after some manipulation
L = LTeL

with
L = I I (A)B = − I I (B)A

• Point X as the meet of a line L and a plane A not passing through the plane

X = L ∨A = A ∨ L = ((LI−1) ∧ (AI−1))I

We obtain

X = ((L1e41 + L2e42 + L3e43 + L4e23 + L5e31 + L6e12)e1234

∧(A1e234 +A2e314 +A3e124 +A321e4)e1234)e1234

which - after some manipulation yields

X = XTeX

with
X = I I T(A)L = I T(L)A

• The meet of a point X and a plane A not passing through the point

β = X ∨A = −A ∨X = ((XI−1) ∧ (AI−1))I

The result is a scalar, as the term inside the outer brackets is a pseudo-scalar, which,
when multiplied with I yields a scalar.
The value of β is identical to the one derived from the join.

• The meet of two lines

γ = L ∨M = M ∨ L = ((LI−1) ∧ (MI−1))I

Again the resultant scalar γ is the same as above.
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34.3.5 The cap product

Faugeras' cap-product Faugeras and Luong (2001, Def. 3.8, p. 150) refers to two homo-
geneous multi-vectors (GCA only knows about homogeneous multi-vectors) Vr and Vn−r
and yields a scalar

< Vr, Vn−r >r=< Vn−r, Vr >= Vr.Vn−rI−1 GA
= (Vr ∧ Vn−r)I

It obviously is symmetric and has specialization mentioned in Faugeras/Luong:

< X,A >1=< A,X >1= X.A∗ = XTA = ATX

and
< L,M >2=< L,M >2= L.M∗ = −LTM

There obviously is a third cap-product, not mentioned in Faugeras:

< A,X >3=< X,A >3= A.X∗ = −ATX = −XTA

The signs of the inner products result from the squares of the base vectors, e2
i = 1 for

r = 1, e2
ij = −1 for r = 2, and e2

ijk = −1 for r = 3.
Remark: The cap product of the lines can be evaluated as follows:

(LTeL).(MTe∗L) = (LTeL).(MT
DeL)

=
6̧

i=1

(
LieLi (

6̧

j=1

DijMj)eLi

)
= −LT

DM

as
e2Li = −1 for all i

�

34.3.6 In�uence onto De�nition of Dual Line and the Relations

The reasoning for the dual-ling of the 3D-line needs to be reconsidered
Thus, there are two processes to be distinguished:

1. dual-ling, here exchanging homogeneous and Euclidean part

2. calculating the cap-product, resulting in a sign change, due to the metric induced
by the base vectors of the line.

So, the argument for taking the negative exchanged subvectors as dual-ling operation
was misled by the sign change induced by the - not-visible - base vectors.

Therefore, I recommend to go back, and have the original dual-ling operation for 3D-
lines, which is simpler and consistent with the more general rules of GA.

Moreover, nothing changes with the relations. All tables stay the same.

34.4 GCA as Specialization of the GA

As mentioned GA is a generalization of Grassmann-Caley algebra.
We may interpret 1-vectors are point, 2-vectors are 3D-lines, and 3-vectors are planes.
Together with scalars and pseudo-scalars we have a multi-vector

A = α+ XTeX + LTeL + ATeA + βI
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with the compound base vectors for points

eX =


e1

e2

e3

e4


the compound base vectors for lines

eL =


e41

e42

e43

e23

e31

e12

 with eij = ei ∧ ej = −eji

the compound base vectors for planes

eA =


e234

e314

e124

e321


and the unit pseudo scalar

I = e1234 = e1 ∧ e2 ∧ e3 ∧ e4

Dualling an entity is achieved by post multiplication with

I−1 = e4321 = e4 ∧ e3 ∧ e2 ∧ e1

which in this special case has the property

I = I−1

Thus, we obtain
A∗ = A I−1

If we now dualize the base vectors for points, lines and planes we obtain using e2
i = 1

(there was an error in the previous version)

e∗X =


e1

e2

e3

e4

 I−1 =


e1

e2

e3

e4

 ∧ e1 ∧ e2 ∧ e3 ∧ e4 =


e234

e314

e124

e321

 = eA

and therefore
e∗A = eX

But we obtain

e∗L =


e41

e42

e43

e23

e31

e12

 ∧ e1 ∧ e2 ∧ e3 ∧ e4 =


e23

e31

e12

e41

e42

e43


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34.5 Statistical error propagation

Given a nonlinear function y = f(x) of stochastical variables, which are underlined, the
�rst order approximation of error propagation leads to the following result:

Given x ∼ M(µx,Σxx) represented with its �rst and second moments µx and Σxx

then the distribution of y = f(x) is

y ∼M(f(µx, JΣxxJ
T)

with the Jacobian

J =
∂f(x)

∂x
Bilinear forms

c = a ◦ b or ck =
¸
ij

fijkaibj

can be written as
c = U(b)a = V (a)b

with
Uki =

¸
j

fijkbj Vkj =
¸
i

fijkai

or

U =
∂(a ◦ b)
∂a

V =
∂(a ◦ b)
∂b

Since all the constructions discussed above a bi-linear or multi-linear, we easily may per-
form variance propagation based on the coordinates of the entities. Care has to be taken,
since the degrees of freedom usually is less than the number of coordinates, thus the
coordinates of the homogeneous entities usually have singular covariance matrices.

34.6 Geometric algebra with coordinate vectors

The representation in geometric algebra (GA) is with vectors represented as linear forms
of base vectors.

Applied to projective geometry (PG) it is useful to use G4. Then we have the fol-
lowing relations between elements in GA and PG, including scalars and results of 4 × 4-
determinants

1. Scalars. Any scalar α can be interpreted as a �multi-vector�1 < D >0 of grade 0

α =< D >0 ↔ α

2. 3D points vectors

X =< D >1= X1e1 +X2e2 +X3e3 +X4e4 ↔ X =


X1

X2

X3

X4


3. 3D lines are bi-vectors

L =< D >2= L1e4,1+L2e4,2+L3e4,3+L4e2,3+L5e3,1+L6e1,2 ↔ L =


L1

L2

L3

L4

L5

L6


with

eij = eiej
1In the original note the indices had an overline.
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4. Planes are tri-vectors

A =< D >3= A1e2,3,4 +A2e3,1,4 +A3e1,2,4 +A4e3,2,1 ↔ A =


A1

A2

A3

A4


eijk = eiejek

5. Pseudoscalar being the result of 4× 4 determinants

βI =< D >4= βe1,2,3,4 ↔ β

In PG one can write the join of two elements, e. g. points as

L = X ∧Y = I I (X)Y = − I I (Y)X

with

I I (X) =
∂(X ∧Y)

∂Y
=


T 0 0 −U
0 T 0 −V
0 0 T −W
0 −W V 0
W 0 −U 0
−V U 0 0

 (34.1)

Also we have the join of a line L and a point X

A = L ∧X = X ∧ L = A = I
T

(L)X = I I
T

(X)L

with the Plückermatrix

I (L) =


0 L6 −L5 −L1

−L6 0 L4 −L2

L5 −L4 0 −L3

L1 L2 L3 0

 = −I T(L) (34.2)

the dual line (new version !!!)

L = DL D =

[
I 3

I 3

]
and the matrices

I I (X)
.
= D I I (X) I (L) = I (L) =


0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0

 (34.3)

In order to be able to apply statistical error propagation we need to represent a multi-
vector as vector. Then, as the geometric product is bilinear, we can directly arrive at the
Jacobian of a geometric product with respect to its factors.

We apply the general mapping in GN

D =
Ņ

n=1

< D >n → d
2N×1

=


< D >0

..
< D >n

...
< D >N


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In the case of PG we have the mapping

D → d
16×1

=


α
X
L
A
β


Therefore, we can attach uncertainty information to a multi-vector by working with

the pair
(d,Σdd)

in the case of PG requiring a 16 × 16-covariance matrix for every multi-vector, even in
case is is a homogeneous one.

The overhead in representation is the price for having a compact notation. However,
one always can represent all entities with sparse techniques, equivalent to only storing the
coe�cients of the base-vectors which are non-zero.

The idea can be transferred to any geometric algebra with bilinear forms involved.
In the following we give the Jacobians for the geometric product Cg = AgBg, the join

Cg = Ag ∧ Bg and the meet Cg = Ag ∨ Bg = Ag ∩ Bg = (AgI
−1 ∧ BgI−1)I for the three

following multi-vectors

Ag = α+

+X1e1 +X2e2 +X3e3 +X4e4 +

L1e4,1 + L2e4,2 + L3e4,3 + L4e2,3 + L5e3,1 + L6e1,2

+A1e2,3,4 +A2e3,1,4 +A3e1,2,4 +A4e3,2,1

+βI

Bg = γ +

+Y1e1 + Y2e2 + Y3e3 + Y4e4 +

M1e4,1 +M2e4,2 +M3e4,3 +M4e2,3 +M5e3,1 +M6e1,2

+B1e2,3,4 +B2e3,1,4 +B3e1,2,4 +B4e3,2,1

+δI

and

Cg = ε+

+Z1e1 + Z2e2 + Z3e3 + Z4e4 +

N1e4,1 +N2e4,2 +N3e4,3 +N4e2,3 +N5e3,1 +N6e1,2

+C1e2,3,4 + C2e3,1,4 + C3e1,2,4 + C4e3,2,1

+ηI

represented as vectors

a =


α
X
L
A
β

 b =


γ
Y
M
B
δ

 c =


ε
Z
N
C
η


Thus, thin letters representing the geometric elements, the pseudo scalars including their
unit

Ag = α+X + L+A+ β

Bg = γ + Y +M +B + δ
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Cg = ε+ Z +N + C + η

The following Jacobians are calculated with the Maple package �GA Package, Version
1.1, for Maple V Release 5�, written by Mark Ashdown, Astrophysics Group, Cavendish
Laboratory, University of Cambridge, see the enclosed Maple code.

444



Join of two elements

Ja∧b =

(
∂a ∧ b
∂b

)


α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X2 0 α 0 0 0 0 0 0 0 0 0 0 0 0 0

X3 0 0 α 0 0 0 0 0 0 0 0 0 0 0 0

X4 0 0 0 α 0 0 0 0 0 0 0 0 0 0 0

L1 X4 0 0 −X1 α 0 0 0 0 0 0 0 0 0 0

L2 0 X4 0 −X2 0 α 0 0 0 0 0 0 0 0 0

L3 0 0 X4 −X3 0 0 α 0 0 0 0 0 0 0 0

L4 0 −X3 X2 0 0 0 0 α 0 0 0 0 0 0 0

L5 X3 0 −X1 0 0 0 0 0 α 0 0 0 0 0 0

L6 −X2 X1 0 0 0 0 0 0 0 α 0 0 0 0 0

A1 0 −L3 L2 L4 0 X3 −X2 X4 0 0 α 0 0 0 0

A2 L3 0 −L1 L5 −X3 0 X1 0 X4 0 0 α 0 0 0

A3 −L2 L1 0 L6 X2 −X1 0 0 0 X4 0 0 α 0 0

A4 −L4 −L5 −L6 0 0 0 0 −X1 −X2 −X3 0 0 0 α 0

β −A1 −A2 −A3 −A4 −L4 −L5 −L6 −L1 −L2 −L3 X1 X2 X3 X4 α


or 

ε
Z
N
C
η

 =


α
X αI
L I I (X) αI

A I
T

(L) I I
T

(X) αI

β −AT −L
T

XT α




γ
Y
M
B
δ


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Meet of two elements

Ja∨b =

(
∂a ∨ b
∂b

)


β A1 A2 A3 A4 −L4 −L5 −L6 −L1 −L2 −L3 −X1 −X2 −X3 −X4 α

0 β 0 0 0 A4 0 0 0 A3 −A2 0 −L6 L5 L1 X1

0 0 β 0 0 0 A4 0 −A3 0 A1 L6 0 −L4 L2 X2

0 0 0 β 0 0 0 A4 A2 −A1 0 −L5 L4 0 L3 X3

0 0 0 0 β −A1 −A2 −A3 0 0 0 −L1 −L2 −L3 0 X4

0 0 0 0 0 β 0 0 0 0 0 0 −A3 A2 0 L1

0 0 0 0 0 0 β 0 0 0 0 A3 0 −A1 0 L2

0 0 0 0 0 0 0 β 0 0 0 −A2 A1 0 0 L3

0 0 0 0 0 0 0 0 β 0 0 A4 0 0 −A1 L4

0 0 0 0 0 0 0 0 0 β 0 0 A4 0 −A2 L5

0 0 0 0 0 0 0 0 0 0 β 0 0 A4 −A3 L6

0 0 0 0 0 0 0 0 0 0 0 β 0 0 0 A1

0 0 0 0 0 0 0 0 0 0 0 0 β 0 0 A2

0 0 0 0 0 0 0 0 0 0 0 0 0 β 0 A3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 β A4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 β


or 

ε
Z
N
C
η

 =


β AT −L

T −XT α

βI I I T(A) I T(L) X

βI I I (A) L
βI A

β




γ
Y
M
B
δ


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Finally the dual

Jb∗b =

(
∂b∗

∂b

)


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


or 

γ
Y
M
B

δ


looomooon
c

=


1

I 4
D

I 4
1

looooooooooooomooooooooooooon
V b∗(b)


γ
Y
M
B
δ

looomooon
b

447



As a comparison we obtain for the join

Cg = Ag ∧Bg


ε
Z
N
C
η

loomoon
c

=


α
X αI
L I I (X) αI

A I
T

(L) I I
T

(X) αI

β −AT −L
T

XT α

loooooooooooooooooooooomoooooooooooooooooooooon
V a∧b(a)


γ
Y
M
B
δ

looomooon
b

=


α ∧ γ

X ∧ γ + α ∧X
L ∧ γ +X ∧ Y + α ∧M

A ∧ γ + L ∧ Y +X ∧M + α ∧B
β ∧ γ +A ∧ Y + L ∧M +X ∧B + α ∧ δ


and for the meet

Cg = Ag ∨Bg = Ag ∩Bg


ε
Z
N
C
ηI

looomooon
c

=


β AT −L

T −XT αI

βI I I T(A) I T(L) X

βI I I (A) L
βI A

β


looooooooooooooooooooooomooooooooooooooooooooooon

V a∨b(a)


γ
Y
M
B
δI

looomooon
b

=


β ∩ γ +A ∩ Y + L ∩M +X ∩B + α ∩ δ

β ∩ Y +A ∩ L+ L ∩B +X ∩ δ
β ∩M +A ∩B + L ∩ δ

β ∩B +A ∩ δ
β ∩ δ


34.7 Conclusions

We may conclude the following:

1. The dualling of the line in GA is identical to exchanging the two 3-subvectors, which
is simpler than taking the minus sign. This causes no irritation.

2. The consequences for the construction tables are negligible. Only the minus sign in
the relation

< L,M >= −LTM = |X,Y,Z,T|

needs to be taken into account.

3. The GA proves nicely our equations including all signs.

4. There is no need - at the moment - to switch to GA, which for our application would
lead to an overhead.
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35 Euler Angles and Small Multiplica-

tive Rotation Vector

We provide the Jacobian for two representations of uncertain 3D rotations: the Euler
angles and the multiplicative representation of an uncertain rotation. The Jacobian is
singular, in case the second rotation angle is 90 degrees, which in the chosen Euler repre-
sentation corresponds to the Gimbal lock.

35.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
35.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
35.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

35.1 Preface

The note (2019) provides the Jacobian for two representations of uncertain 3D rotations:
the Euler angles and the multiplicative representation of an uncertain rotation. The
Jacobian is singular, in case the second rotation angle is ±90◦, which in the chose Euler
representation corresponds to the Gimbal lock.

35.2 The Problem

A rotation can be represented by Euler angles with the vector

θ =

 ω
φ
κ

 (35.1)

e.g., as
R(θ) = R3(κ)R2(φ)R1(ω) (35.2)

and by a multiplicative representation with a small vector

r =

 r1

r2

r3

 (35.3)

as
R(r,Ra) = R(r)Ra . (35.4)

The task is to derive the Jacobian

Jrθ =
∂r

∂θ
. (35.5)
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35.3 Derivation

We start from the identity of the total derivative

dR = dR(θ) = dR(r,Ra) . (35.6)

and aim at �nding a relation between dθ and dr under the assumption R = Ra, i.e.,
di�erential dr.

We �rst obtain

dR(θ) = d (R3(κ)R2(φ)R1(ω)) (35.7)

= dR3(κ) (R2(φ)R1(ω)) + R3(κ) dR2(φ) R1(ω) + (R3(κ)R2(φ)) dR1(ω)(35.8)

Now we observe, e.g., for ω

dR1(ω) = d

 1 0 0
0 cosω − sinω
0 sinω cosω

 (35.9)

=

 0 0 0
0 − sinω − cosω
0 cosω − sinω

dω (35.10)

=

 0 0 0
0 0 −1
0 +1 0

 1 0 0
0 cosω − sinω
0 sinω cosω

 (35.11)

= S(e1)R1(ω) , (35.12)

or generally
dRi(α) = S(ei)Ri(α) . (35.13)

Similarly we thus have

dR2(φ) = S(e2)R2(φ) dφ and dR3(κ) = S(e3)R3(κ) dκ (35.14)

This leads to

dR(θ) = S(e3) R3(κ) R2(φ) R1(ω) dκ+ (35.15)

R3(κ) S(e2) R2(φ) R1(ω) dφ+ (35.16)

R3(κ) R2(φ) S(e1) R1(ω) dω (35.17)

We now use the relation R(a× b) = Ra× Rb which is valid for all b in the form

RS(a) = S(Ra)R or RS(a)RT = S(Ra) . (35.18)

Then we obtain

dR(θ) = S(e3)R dκ+ (35.19)

S(R3(κ)e2)R dφ+ (35.20)

S(R3(κ)R2(φ)e1)R dω (35.21)

or the skew symmetric matrix

dR(θ)RT = S(e3dκ) + (35.22)

S(R3(κ)e2dφ) + (35.23)

S(R3(κ)R2(φ)e1dω) (35.24)

Now the total di�erential of R(r;Ra) is given by

dR(r;Ra) = S(dr)Ra (35.25)
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Hence we have
dR(r;Ra)RaT = S(dr) (35.26)

Since the approximate rotation matrix is the point of linearization, we have the constraint

dR(θ)RT = dR(r;Ra)RT (35.27)

Therefore the two skew symmetric matrices (35.22) and (35.26) need to be identical. From
this we follow

e3dκ+ R3(κ)e2dφ+ R3(κ)R2(φ)e1dω = dr (35.28)

or
r = Jrθθ (35.29)

with the Jacobian
Jrθ = [R3(κ)R2(φ)e1 | R3(κ)e2 | e3] (35.30)

The determinant of the Jacobian is

|Jrθ| = cosφ . (35.31)

This is why for cosφ = 0 or for φ = ±90◦ there is no unique relation between dr and
dθ, which is known as the gimbal lock. Observe, the rotation matrix (35.2) for φ = 90◦

specializes to

R(α, β = 90◦, γ) =

 0 − sin(γ − α) cos(γ − α)
0 cos(γ − α) sin(γ − α)
−1 0 0

 , (35.32)

indicating, that it only depends on the di�erence γ − α of two of the angles, i.e., loosing
one degree of freedom.
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36 Visualization of the Projective Space

using Stereographic Projection

We show a mapping of the complete projective space into the Euclidean space of the same
dimension, exploiting the stereographic projection which guarantees that straight lines of
the projective space map to circles in the Euclidean space.

36.1 The Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
36.2 The mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
36.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
36.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

36.1 The Task

We use the stereographic projection to map the complete projective space into the Eucle-
dean space. We want to show, the mapping maps straight lines of the projective space to
circles in the Euclidean space.

As an example take the projective plane IP2 with the origin xO, its two points x∞x
and x∞y at in�nity in x- and y- direction, the coordinate axes lx and ly and the line l∞
at in�nity: They can be visualized as in Fig. 36.1, see Fig. 5.27 in (Förstner and Wrobel,
2016, p. 244).

oo

oo

oo

y

σ

σ

x

yx

l

xl x

l y

O
x x

Figure 36.1: The basic elements of the projective plane IP2
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Figure 36.2: Stereographic mapping of the projective plane for visualization. Mapping the
unit sphere S2 representing IP2 onto the unit disc in the equator plane using a stereographic
projection. Each point x is mapped to x σ via the spherically normalized point xs on the
upper half of the unit sphere, seen from the south pole s of the unit sphere. The complete
projective plane P with positive points x ([u, v, w]), w > 0 is mapped into the interior of the
great circle in the (xσ, yσ)-plane.

36.2 The mapping

Let the homogeneous coordinates of x (x) ∈ IPd with homogeneous coordinates

[
x0

xh

]
:=


x1

...
xι
...
xd
xd+1

 = x (36.1)

We assume the points to be positive, thus xh = x(d + 1) > 0. Points with negative last
coordinate are called negative points.

Spherical normalization leads to

xs =
1

|x|

[
x0

xh

]
. (36.2)

Then we have the stereographically mapped point at (see the similarity of the two green
triangles)

xσ =

[
xs0

1+xsh
1

]
∼
=

[
x0

xh + |x|

]
(36.3)

The complete projective space is mapped into the unit ball. Inversion yields

x(xσ) =

[
2xσhx

σ

(xσh)2 − |xσ0 |2
]
. (36.4)

Remark: Points outside the unit ball have their pre-image in negative points, thus with
points having homogeneous coordinate x(n+ 1) < 0.

If we start from Cartesian coordinates x using x = [x; 1] we therefore can write the
mapping as

xσ(x) =
x

1 +
a

1 + |x|2
. (36.5)

All points map into the interior of the unit ball. Inversion yields

x(xσ) =
2

1− |xσ|2
xσ (36.6)
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36.3 Example

Let us assume the area of interest is the square [−1,+1]2, shown in black in Figure 36.4
upper left. The major region is in the square [−40,+40]2 shown in blue. There however
may be objects outside this region.

Specifying a reference radius R we �rst apply a down scaling and afterwards an up-
scaling using the matrix

S(R) =

[
R In 0
0T 1

]
. (36.7)

This yields the mapping

xσ = S(R) xσ
(
S

(
1

R

)
x

)
or xσ = R xσ

(x
R

)
. (36.8)

This maps the complete projective space into the sphere with radius R.
Distorted projections are shown in Figure 36.4 for di�erent reference radii.
Using an quadtree in the bounding box [−R,+R] for accessing the original elements

of the scene allows to handle elements at in�nity easily.
The idea can be transferred to 3D: Then the complete projective 3D space, including

all elements at in�nity, e.g., the sky, can be addressed using an octree centred at the object
of interest.

36.4 Proof

The proof uses the fact that the projection of a point x to the unit sphere maps is a
gnomonic projection, which maps straight lines to great circles, which then are mapped
to circles using the stereographic projection.

c

D

B

A

C

x , l

s

O

1

.

σ
x  (1:n)σ

x(n+1)

n

x  (n+1)

x(1:n)

x(1:n)

σ

S

Figure 36.3: Stereographic mapping of the projective plane for visualization. The mapping
maps straight lines into circles. This can be seen by decomposing the mapping into (1) a
gnomonic mapping from the plane A : x(n + 1) = 1 to the unit sphere S2, and (2) a
stereographic mapping of the unit sphere S2 onto the plane B : x(n+ 1) = xσ(n+ 1) = 0.

The proof for arbitrary n is the following:

1. The point x ∈ IRn (2D point n = 2 in the horizontal plane x(n+ 1) = 1) is mapped
to the unit sphere Sn (S2) using a gnomonic projection.
The gnomonic projection maps a hyperplane l (straight line at the blue point x being
perpendicular to the drawing plane) in IRn (R2) to a hypersphere C (blue great circle)
on the unit sphere Sn (S2) in Rn+1: It is the intersection of the hyperplane (plane)
D = O ∧ l spanned by the origin O and l . This hyperplane (plane) D intersects the
unit sphere Sn in a great hypersphere C on Sn. Only the blue semicircle above the
origin is valid. The light blue circle below results from negative points on the line l .
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2. A stereographic projection of Sn to Rn is sphere-preserving. Therefore, also the
hypersphere C on Sn maps to a sphere cσ (the blue circle in Figure 36.3) in IRn (IR2

here sitting in the horizontal plane through O). In this special case only the image
right is valid. The light grey part of the circle results from negative points on the
line l .

Figure 36.4: Boxes stereographically distorted with di�erent reference radii. The up-
per sub�gure with R = 100 shows only small distortions. The lower sub�gures with
R = 30, 10, 3, 1 show more and more distortions together with the reference circle with
radius R. In all cases the borders of the boxes are circle segments
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37 Rotation from the Essential Matrix

for Zero-Basis

We show, that the determination of the rotation and translation from an estimated the
essential matrix for an image pair yields the correct rotation matrix in case the basis is 0.

37.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
37.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
37.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
37.4 Optimal solution for the rotation for zero basis . . . . . . . . . . . . . . . . 458

37.1 Preface

This note (2011) shows, that the determination of the rotation and translation, when
estimating the essential matrix for an image pair yields the correct rotation matrix in case
the basis is 0.

37.2 The Problem

Given N corresponding points (x′i,x
′′
i ), i = 1, ..., I in a situation, where the basis has zero

length. The task is to determine the essential matrix

E = S(b)RT (37.1)

based on the epipolar constraints

0 = xi
′TEx′′i = (xi

′T ⊗ xi
′′T)e with e = vecE . (37.2)

Empirically, in case the basis is zero, the null space of the matrix

A = [xi
′′T ⊗ xi

′T] (37.3)

is six. However, the rotation derived from any vector in the null space of A is correct.
This is plausible. A proof appears to be missing. This note provides a proof.

37.3 Proof

The idea of the proof is the following: In case the basis is zero we have

x′′i = Rx′i . (37.4)

Therefore the matrix A from (31.11) specializes to

A = [xi
′TRT ⊗ xi

′T] = [(xi
′T ⊗ xi

′T)(RT ⊗ I 3)] = Ar(R
T ⊗ I 3) . (37.5)
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On the other hand the essential matrix with b /= 0

E = S(b)RT = [s1 | s2 | s3]RT (37.6)

has vector
e = (R ⊗ I 3)vec(S(b)) . (37.7)

Therefore we have, independent on the choice of b

Ae =
[
(xi
′T ⊗ xi

′T)(RT ⊗ I 3)
]

(R ⊗ I 3)vec(S(b)) (37.8)

= [xi
′T ⊗ xi

′T]vec(S(b)) (37.9)

= [xi
′TS(b)x′i] (37.10)

= [|x′i | b | x′i|] (37.11)

= [0] . (37.12)

Thus, whatever value b has, the epipolar constraint is ful�lled, if we have a pure rotation.
This is important, since algorithms for determining E and derive (b,R) enforce b to have
length 1.

The rank of A in (37.5) is 6 for a general con�guration of points xi, since the rank of
Ar is 6

rkA = rkAr = rk[u2
i | uivi | uiwi | viui | v2

i | viwi | wiui | wivi | w2
i ] (37.13)

= rk[u2
i | v2

i | w2
ilooooomooooon

αT

| uivi | uiwi | viwilooooooooomooooooooon
βT

| uivi | uiwi | viwilooooooooomooooooooon
βT

] (37.14)

= rk[αT
i | β

T
ilooomooon

rk=6

| βT
i ] (37.15)

= 6 (37.16)

Any vector e = vec(E) ∈ null(A) in is of the form

e = (R ⊗ I 3)vec(S(b))) (37.17)

with the correct rotation matrix and an arbitrary b, explaining the loss in rank from 8 to
6 for noise-less data. Thus, the partitioning of E, taking into account the visibility of the
points, leads to the correct rotation matrix.

For noisy data we will obtain an approximation for the correct rotation.

37.4 Optimal solution for the rotation for zero basis

The above-mentioned solution is not optimal in any sense, as the normalization of the
image point vectors may be arbitrary.

The optimal solution, see Förstner and Wrobel (2016, Sect. 13.3.5.1), for the relative
orientation with non-zero basis uses the representation

E = S(b)RT (37.18)

and the constraint
gi(x

′
i,x
′′
i ,b,R) = xi

′TS(b)RTx′′i (37.19)

valid for the true values. The Jacobians are

aT
i = [(1xi

′′T × xi
′T)Jr(b

′) | li′′
T × xi

′′T]
.
= [aT

ip | aT
ip] (37.20)

and
bT
i = [li

′TJr(x
′
i)
′T | li′′

T
Jr(x

′′
i )] (37.21)
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with
l′i = Ex′′i l′′i = ETx′i

1x
′′
i = RTx′′i (37.22)

all expressions evaluated at the approximated values. The covariance matrix of the obser-
vations is

D

([
x′i
x′′i

])
= Σyiyi (37.23)

The normal equation matrix reads

N =

[
Nbb Nbp
Npb Npp

]
=

[ °
i wiaiba

T
ib

°
i wiaiba

T
ip°

i wiaipa
T
ib

°
i wiaipa

T
ip

]
(37.24)

with
wi = bT

i Σyiyibi . (37.25)

The right hand sides are

cgi(x
′
i,x
′′
i ,b

a,Ra) = −x′aT
i S(ba)RaTx′′ai + bT

i vi (37.26)

In case the basis is zero, the vectors aib = 1x
′′
i × x′i are zero. Therefore, we cannot

determine the direction of the basis. However, the correct rotation parameters for the
rotation matrix R(ν) in the ν-th iteration

R(ν+1) = R(∆p)R(ν) (37.27)

result from
Npp∆p = hp (37.28)

with
Npp =

¸
i

wi(l
′′
i × x′′i )(li

′′T × xi
′′T) hp =

¸
i

wi(l
′′
i × x′′i )cgi (37.29)

and theoretical covariance matrix (Cramer-Rao bound)

Σrr = N−1
pp . (37.30)
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38 Rule of Thumb for Precision of Points

from Multiview Triangulation

For planning bundle adjustment con�gurations, the expected accuracy of triangulated
points is an essential ingredient. We derive rules of thumb for the accuracy of multi-view
triangulating by providing simple expressions for the depth and lateral accuracy of 3D
points, for images arranged in a line, in a planar region and in a spherical region, covering
the case of omnidirectional cameras.

38.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
38.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
38.3 Formal statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
38.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
38.5 Special con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

38.5.1 Projection centers are on a straight line . . . . . . . . . . . . . . . . 462
38.5.2 Projection centers are on a regular grid . . . . . . . . . . . . . . . . 463
38.5.3 Projection centers on a spherical cap . . . . . . . . . . . . . . . . . . 464

38.1 Preface

The note (2013) provides explicit expressions (rules of thumb) for the depth accuracy
obtained from multi-view triangulation for three cases: (1) the projection centers lie in
a line, (2) the projection centers lie in square, and (3) the projection centers are equally
spaced on a spherical cap. The note is the basis for Förstner and Wrobel (2016, Sect.
15.7.1).

38.2 Problem

Given T images of a 3D point determine the precision of its position.
The standard deviation depends on

1. on whether the projection centers are in a row, in a rectangular grid, or on a spherical
cap

2. the coordinate precision σx′ or the directional precision σα,

3. the principal distance c,

4. the baseline B or the diameter D of the set of projection centers, on the spherical
cap δ measured in radiants, and

5. the common height Z above the unknown point or the radius Z of the spherical cap.

If the T projection centers are in a row we have for large T

σ
(1D)
xW =

`
12

T 3/2

Z2

B

σx′

c
=

c
12

T

Z2

D

σx′

c
. (38.1)
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Figure 38.1: Ideal con�guration for triangulation. Alternatively, the projection centers are
on a sphere with radius Z regularly spaced in a spherical cap with diameter δ.

If the T projection centers are in a rectangular grid we have for large T

σ
(2D)
xW =

`
6

T

Z2

B

σx′

c
=

c
12

T

Z2

D

σx′

c
, (38.2)

If the T projection centers are evenly distributed on a spherical cap with diameter δ we
have

σ
(cap)
xW =

`
3`
T

Z

2− cos δ2 − cos2 δ
2

σα . (38.3)

38.3 Formal statement

Without loss of generality the scene coordinate system sits close to the unknown scene
point X ([U, V,W ]). It is observed in T cameras, which for simplicity are assumed to be
identical and are nadir views with R = I 3. Their common principal distance is c. Their
projection centers Zt are at Zt, t = 1, ..., T . The projection matrices therefore are

Pt = Diag([c, c, 1])[I 3| −Zt] . (38.4)

We observe the T image points

x′t = c

[
xt
yt

]
= c

1

U − Zt

[
V −Xt

W − Yt

]
. (38.5)

The task is to estimate the unknown parameters X.

38.4 Linearization

Using Xa = 0, the linearized model reads as

∆x′t = c

 − 1
Zt

0 Xt
Z2
t

0 − 1
Zt

Yt
Z2
t

 ∆U
∆V
∆W

 . (38.6)

With weights wt for each point we obtain the normal equation matrix

N = c2


°
t
wt
Z2
t

0 −
°
t
wtXt
Z3
t

0
°
t
wt
Z2
t

−
°
t
wtYt
Z3
t

−
°
t
wtXt
Z3
t

−
°
t
wtXt
Z3
t

°
t
wt(X

2
t+Y 2

t )

Z4
t

 (38.7)
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If we assume the projection centers have the same Z-coordinate we obtain

N =
c2

Z4

 °
t wtZ

2 0 −
°
t wtXtZ

0
°
t wtZ

2
t −

°
t wtYtZ

−
°
t wtXtZ −

°
t wtXtZ

°
t wt(X

2
t + Y 2

t )

 (38.8)

If we now assume the X- and Y -coordinates are centred with

X̄ =

°
t wtXt°
t wt

Ȳ =

°
t wtYt°
t wt

(38.9)

and the weights are constant

w =
1

σ2
x′

(38.10)

the normal equation matrix is diagonal

N =
c2

Z4σx′2

 TZ2 0 0
TZ2 0

0 0
°
t(X

2
t + Y 2

t )

 . (38.11)

If we use the average distance of the projection center from its centroid

S =

c°
t(X

2
t + Y 2

t )

T
(38.12)

of the projection centers it reads as

N =
c2

Z4σx′2

 TZ2 0 0
TZ2 0

0 0 S2T

 . (38.13)

Thus the variances of the 3D point are

σ pU = σ pV =
Z`
T

σx′

c
and σxW =

Z2

S
`
T

σx′

c
=
Z

S
σ pU . (38.14)

38.5 Special con�gurations

38.5.1 Projection centers are on a straight line

If the T projection centers are on a straight line with basis B in X-direction, their Xt-
coordinates are

Xt =

(
t− T + 1

2

)
B t = 1, ..., T with −X1 = XT =

T − 1

2
B . (38.15)

Then we have
S2 =

1

12
(T 2 − 1)B2 . (38.16)

Thus we obtain the standard deviation

σxW =

`
12a

T (T 2 − 1)

Z2

B

σx′

c
. (38.17)

For large T we can use the approximation

σ
(1D)
xW =

`
12

T 3/2

Z2

B

σx′

c
. (38.18)
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If we use as reference the diameter D of the projection centers

D = (T − 1)B (38.19)

the average distance is

S2 =
1

12

T + 1

T − 1
D2 . (38.20)

and the standard deviation is

σxW =

d
12(T − 1)

T (T + 1)

Z2

D

σx′

c
. (38.21)

which for large T simpli�es to

σ
(1D)
xW =

c
12

T

Z2

D

σx′

c
. (38.22)

38.5.2 Projection centers are on a regular grid

If the T = MN projection centers are on a regular grid with basis BX in X- and BY in
Y direction, their coordinates are

Xm =

(
m− M + 1

2

)
BX m = 1, ...,M and Yn =

(
n− N + 1

2

)
BY n = 1, ..., N .

(38.23)
Then we have

S2 = S2
X + S2

Y =
1

12
((M2 − 1)B2

X + (N2 − 1)B2
Y ) . (38.24)

We now assume the grid is quadratic with BX = BY and T = N2. Then we obtain

S2 = S2
X + S2

Y =
1

6
(N2 − 1)B2 =

1

6
(T − 1)B2 . (38.25)

Then the standard deviation is

σxW =

`
6a

T (T − 1)

Z2

B

σx′

c
. (38.26)

For large T we can use the approximation

σ
(2D)
xW =

`
6

T

Z2

B

σx′

c
. (38.27)

Using the diameter
D =

`
2(N − 1)B (38.28)

we have the average distance squared

S2 =
1

12

T − 1`
T − 1

D2 (38.29)

which yields the standard deviation

σ
(2D)
xW =

d
12(
`
T − 1)

T − 1

Z2

D

σx′

c
(38.30)

which for large T simpli�es to

σ
(2D)
xW =

c
12

T

Z2

D

σx′

c
, (38.31)

which is identical to the standard deviation if the projection centers are on a straight line.
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38.5.3 Projection centers on a spherical cap

If the T projection centers are evenly distributed on a spherical cap with radius Z and
angular diameter δ we use a slightly di�erent model. We assume the uncertainty of the
rays to be uniform in all directions with standard deviation σα, which corresponds to σx′/c
if the observed point is close to the principal point. Then the uncertainty of the ray at
the observed image point is σq = Zσα. The direction of the ray is

d =

 cosλ sinφ
sinλ sinφ

cosφ

 . (38.32)

The normal equation matrix is (see PCV-A Sect. 9.5.3.2)

N =
¸
t

wt(I 3 − dtdT
t ) . (38.33)

We again assume wt = 1/σ2
q .

We now replace the sum by an integral

N = wt
¸
t

(I 3 − dtdT
t ) ≈ T 1

σ2
q

³
λ,φ∈C(I 3 − dtdT

t ) cosφ dλdφ³
λ,φ∈C cosφdλdφ

. (38.34)

For symmetry reason the normal equation matrix is diagonal:

N11 = N22 =
1

6σ2
q

(
4 + cos2 δ

2
+ cos

δ

2

)
T and N33 =

1

3σ2
q

(
2− cos2 δ

2
− cos

δ

2

)
T ,

(38.35)
the second expression proving (38.3).

Observe for d = 2π due to cos δ2 = −1 we obtain the fully isotropic con�guration

N11 = N22 = N33 =
2

3σ2
q

. (38.36)

Thus the standard deviation for the ZW -coordinate is

σ
(cap)
xW =

`
3`
T

Z

2− cos δ2 − cos2 δ
2

σα . (38.37)

For small δ we obtain the approximation

σ
(cap)
xW =

`
8`
T

Z

δ
σα . (38.38)

Taking into account that then δ = D/Z and σα = σx′/c we obtain

σ
(cap)
xW =

`
8`
T

Z2

D

σx′

c
. (38.39)

The di�erence of the constants (
`

12 versus
`

8) result from the di�erent roundness of the
two �gures (square versus circle).
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39 Multi-View Triangulation with Di-

rections

We provide simple solution to the optimal triangulation of a scene point from multiple
views assuming isotropic uncertainty of the directions. As a special case we provide a
simple expression for the distance of the triangulated point in case of homogeneous direc-
tional uncertainty and small basis, expressed as a function of the e�ective base line, the
viewing angle and the resolution of an omnidirectional camera and the matching accuracy
in pixels.

39.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
39.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
39.3 The approximate Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
39.4 The Solution with Di�erent Uncertainties of the Distances . . . . . . . . . . 467
39.5 The Solution for Directional Observations with Di�erent Uncertainty . . . . 468
39.6 Assuming Correlations between the Directions due to Least Squares Matching468

39.6.1 The 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
39.6.2 The 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

39.7 Uncertainty of binocular triangulation with omnidirectional cameras . . . . 470

39.1 Preface

This note from 2007, and extended 2023, provides a simple solution to the optimal tri-
angulation of a scene point from multiple views. It also provides a simple expression for
the distance of the triangulated point in case of homogeneous directional uncertainty and
small basis, expressed as a function of the e�ective base line, the viewing angle and the
resolution of an omnidirectional camera and the matching accuracy in pixels.

39.2 The Problem

Given are K projection matrices Pk, k = 1, ...,K and corresponding image points xk, k =
1, ...,K. Triangulate a good 3D-point.k The idea is the following: The projection matrices
together with the image point determine N projection rays, see Fig. 39.1. The optimal
pointX is the one closest to all these rays, where the notion distance needs to be speci�ed
and leads to di�erent solutions.

We extend the approximate solution in three ways:

1. We handle the case where the distances are weighted individually.

2. We handle the case of isotropic and homogeneous uncertainty of the directions.

3. We handle the case of homogeneous mutual correlations between the directions.

In all cases we provide a rigorous solution.
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Figure 39.1: Optimal multi-view triangulation for directions. The problem is nonlinear
in general, since the e�ect of directional uncertainties onto the 3D point depends on the
unknown distances of the point to the given projection centers

39.3 The approximate Solution

The �rst solution just minimizes the sum of the squares of the distances of the rays to the
3D point.

The projection centers are
Zk = −H−1

n∞hk (39.1)

with
Pk = [Hn∞|hk] (39.2)

The projection lines have normalized direction

dk = N
(
H−1
n∞xk

)
(39.3)

The 3D projection lines have Plücker coordinates

Lk =

[
Lh
L0

]
k

=

[
dk

Zk × dk

]
(39.4)

The squared distances of the unknown point X to the lines are

d2
XLk

= |L0i + S(Lhi)X|2 (39.5)

= (Zk × dk + S(dk)X)T(Zk × dk + S(dk)X) (39.6)

= |Zk × dk|2 + 2(Zk × dk)TS(dk)X +XTS(dk)TS(dk)X (39.7)

The sum of the squared distances therefore is

Ω =
¸
k

d2
XLk

(39.8)

=
¸
k

|Zk × dk|2 + 2
¸
k

(Zk × dk)TS(dk)X +XT
¸
k

S(dk)TS(dk)X (39.9)

The necessary condition for the minimum is

1

2

∂Ω

∂X
=
¸
k

S(dk)T(Zk × dk) +
¸
k

S(dk)TS(dk)X = 0 (39.10)

Thus, the optimal point is given by

xX =

(¸
k

S(dk)TS(dk)

)−1¸
k

S(dk)TS(dk)Zk (39.11)
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or

xX =

(¸
k

W k

)−1¸
k

W kZk (39.12)

with
W k = I 3 − dkd

T
k (39.13)

in case dk is normalized. Obviously, this is a weighted mean of the projection centers
Zk where the weight matrix is 0 in the direction of dk and 1 otherwise. Thus, W k is
representing a cylindrical covariance matrix, with in�nite uncertainty in the direction of
the projection lines and standard deviation 1 perpendicular to the viewing direction.

The estimated variance of the distances of the �tted points to the projection lines can
be obtained from

pσ2
d =

Ω

2I − 3
with Ω =

¸
k

d2(X ,Lk) =
¸
k

(
dT
k (xX −Zk)

|xX −Zk|
)2

. (39.14)

The theoretical covariance matrix of the estimated points is

ΣxXxX = σ2
d (
°
kW k)

−1 (39.15)

with some prior assumption about the standard deviation σd of the distances.

39.4 The Solution with Di�erent Uncertainties of the

Distances

Instead of (39.8) we optimize

Ω =
¸
k

d2
XLk

σ2
dk

, (39.16)

where the standard deviations of the distances are σdk . We obtain the same solution
(39.12) however instead of the weight-matrices in (39.13) we use

W k =
1

σ2
dk

(
I 3 − dkd

T
k

)
, (39.17)

see PCV Eq. (10.174).
If the solution (39.12) is written with the normal equation matrix and the right-hand

sides
N =

¸
k

W k and n =
¸
k

W kZk (39.18)

(using the weights eq : W −WLS, assuming σ0 = 1) we have the theoretical covariance
matrix

ΣxXxX = σ0N
−1 . (39.19)

Similarly, we obtain an estimate for the variance factor

pσ2
0 =

Ω

2I − 3
with Ω =

¸
k

(
dT
k (xX −Zk)

|xX −Zk|
)2

. (39.20)
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39.5 The Solution for Directional Observations with Dif-

ferent Uncertainty

In case directions δk are observed, the uncertainty of the distances dk of the unknown
point to the given rays depend on the distances sk of the point x to the projection centers
Zk:

σdk = skσδk with sk = |X −Zk| (39.21)

We cannot optimize (39.16) since the distances sk depend on the unknown point.
However, see Fig. 39.2, we can iteratively update X by using (39.21) after an initializa-

tion with sk = 1 in the �rst iteration. For not too large directional errors, say below 0.01
[rad] or 1 ◦, only a second iteration is necessary. This procedure can replace Algorithm 21

Figure 39.2: Optimal triangulation with isotropic directional uncertainties.

in PCV, in case it is clear that the 3D point is at �nity and the rays do not diverge, or if
some su�ciently good approximate value for X is known.

39.6 Assuming Correlations between the Directions due

to Least Squares Matching

39.6.1 The 2D Model

We assume the position of the keypoint in one image is determined by some keypoint de-
tector and the coordinate di�erences, i.e., parallaxes, to the other images are determined
by least squares matching, like the Kanade-Lucas-Tracker. The reason simply is: the coor-
dinates x1 of the detection usually is less accurate, say with standard deviation σx whereas
the determination of the parallaxes pk = xk −x0, k = 2, ...,K is highly accurate, say σp0 .
Assuming a homogeneous con�guration and enforcing the mean coordinate, derived from
the parallaxes is 0 the uncertainty of the �nal coordinates xk can be derived from

x =


x1

...
xk
...
xK

 =


E(x1)
...

E(xk)
...

E(xK)

+


∆x0

...
∆x0

...
∆x0

+


∆p1

...
∆pk
...

∆pK

 (39.22)

with the covariance matrices for the detection ∆x0 and the parallaxes ∆p = [∆p
k
]:

D(∆x0) = Σx0x0
and D(∆p) = (IK − JK/K)⊗ Σpp with J = 1K1T

K (39.23)

see Förstner (1998). In the isotropic case we have

Σx0x0
= σ2

x0
I 2 and Σpp = σ2

pI 2 . (39.24)
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This yields the following covariance matrix for the K points

Σxx =
(
σ2
x0
JK + σ2

p (IK − JK/K)
)
⊗ I 2 (39.25)

We have the extreme case where the parallaxes are perfect: σp = 0:

Σxx = σ2
x0

11T ⊗ I 2 (39.26)

Then all points are 100% correlated.

39.6.2 The 3D Model

We now want to extend the model to observed directions, namely assuming they are
correlated. This extension is non-trivial, why we provide an approximate solution.

The reason is that the basic model (39.22) implicitely assumes the projection centers
are coplanar, the viewing directions are parallel, the scene is fronto-parallel, and the image
coordinates refer to a perspective model. Then a surface patch is mapped to identical image
patches, allowing to use the result of Förstner (1998). As soon as the surface element is
observed from di�erent directions, this model does not hold anymore. This not only holds
for tilted cameras but also for spherical cameras, where the addition in (39.22) cannot be
easily replaced.

We therefore exploit the result of Förstner (1998) by modelling the situation is two
steps:

1. In the �rst step, we assume the surface patch is seen along its normal, however,
allowing the distance of the projection centers may vary. Then the setup of a simul-
taneous homogeneous least squares matching is possible. The resulting accuracies
refer to the image coordinates (∆pk) refer to the scene, and, using the distances sk to
the projection centers can be transformed into individual directional uncertainties,
which, due to the isotropy assumption, lead to isotropic directional uncertainties.

2. In the second step, we assume the directional accuracy approximately transfers to
directions not being parallel to the normal. This is a valuable approximation if
the deviation from the normal is not too large, since the deviation increases with
1/ cos(αk), where αk is the angle between the observed direction and the normal of
the surface patch. Neglecting this factor simulates the situation where the scene is
assumed to consist of small spheres, whose relative direction is determined by least
squares matching, which is an unlikely but not invalid assumption.

39.6.2.1 Observed Directions parallel to the Normal of a Surface Patch

The result of the previous subsection can directly be used for expressing the lateral uncer-
tainty of the spatial deviations across the direction. Using (39.21) we �nd the directional
uncertainty from

σδk =
σdk
sk

(39.27)

where the standard deviations σdk correspond to the σxk in the left bracket of (39.25).
Hence we assume the directional errors d = [dk] ]are isotropic with

Σdd = σ2
x0
JK + σ2

p (IK − JK/K) (39.28)

Since we need the factors
wdk= =

1

σ2
dk

(39.29)

in the weight matrices, which now are not independent we use the weight matrix

W dd = Σ−1
dd = [wkk′ ] =

1

σ2
p

IK −
Kσ2

x0
− σ2

p

K2σ2
pσ

2
x0

JK (39.30)
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Since the individual weight matrix (39.17) for one direction can be written as

W k = S(dk) (wdk I 3)ST(dk) (39.31)

we obtain the full weight matrix as

W = [W kk′ ] = Diag(S(dk)) [wkk′ I 3]DiagT(S(dk)) (39.32)

or more explicit
W kk′ = wkk′S(dk)S(dk′) (39.33)

Therefore, the solution for the 3D point reads asxX = N−1n with N = [Nij ] =
¸
k,k′

W kk′ and n = [nj ] =
¸
k,k′

W kk′Zk′ . (39.34)

39.7 Uncertainty of binocular triangulation with omni-

directional cameras

Given is the con�guration

• Distance D

• Basis B

• Angular range α

• E�ective image diameter/width W

• Matching accuracy σδ referring to the direction

Figure 39.3: Con�guration

Then we have for small δ

• The parallactic angle

γ =
b

D
or Dγ = b and dD γ +D dγ = 0 and

σγ
γ

=
σD
D

(39.35)

thus

σD =
D

γ
σγ =

D2

b
σγ (39.36)

• The pixel size corresponding to direction elements ∆δ in [rad] is

∆δ =
α

W
(39.37)

assuming a pixel distance corresponds to the same directional di�erence, which is an
approximation.

• the uncertainty of the measured parallactic angle, as di�erence of two directions

σγ =
`

2 σδ (39.38)

470



Hence, we �nally have the distance accuracy

σD =
`

2
D

γ
σδ (39.39)

Since we usually describe the matching accuracy, i.e., the accuracy σp of the parallax in
pixels, we need to take the resolution into account. Then we have

σδ =
α

W

σp`
2

(39.40)

Then we obtain for the distance

σD =
D

γ

α

W
σp =

D2

b

α

W
σp (39.41)

If we refer to the inverse depth

s =
1

D
with sD = 1 and ds D + s dD = 0 and

σs
s

=
σD
D

(39.42)

we obtain

σs =
s

D
σD =

s

D

D2

b

α

W
σp =

1

b

α

W
σp (39.43)

from which we may derive the matching accuracy

σp = b
W

α
σs (39.44)

if we know the camera, i.e., the viewing angle α, how its image is used (possibly reduced
in resolution), i.e., the diameter of the image in pixels, and how large the e�ective baseline
b is.
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40 Rational Rotation Matrices

When providing exercises with rotation matrices we may want the elements only contain
rational numbers. This can be achieved by using a generalized version of Pythagoras'
theorem for quintuples and apply it to the generation of integer quaternions.

40.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
40.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
40.3 Generating Pythagorean quintuplets . . . . . . . . . . . . . . . . . . . . . . 474

40.1 Preface

The note (2021) shows how to generate rotation matrices with rational numbers. This
might be useful when generating exercises for students. It was motivated by developing
explicit expressions for squares and square roots of quaternions, which correspond to
rotations with double and half the angle of a given rotation matrix.

40.2 The problem

When providing exercises with rotation matrices we may want the elements only contain
rational numbers, which can be realized using rotations de�ned by a unit quaternion
containing only rational numbers:

q =


q0

q1

q2

q3

 with |q| = 1 and qi ∈ Q . (40.1)

This is equivalent to use Pythagorean quintuplets p = (p0, p1, p2, p3, p4)

p2
0 + p1

2 + p2
2 + p3

2 = p2
4 (40.2)

since then
qi =

pi
p4

(40.3)

yield a rational unit quaternion q = (q, q) and the corresponding rotation matrix is given
by rational elements

R = I 3 + 2(qS(q) + S2(q)) with S(q) =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 , (40.4)

Usually, the tuples are given in non-decreasing order. As an example, we have the
following quintuples

p1(1, 1, 1, 1, 2) , p2(4, 5, 12, 16, 21) p3(3, 5, 11, 13, 18) . (40.5)

473



leading to the rotation matrices

R1 =

 0 0 1
1 0 0
0 1 0

 , R2 =
1

212

 −359 −8 256
248 −121 344
64 424 103

 , R3 =
1

92

 −64 8 49
47 −16 64
16 79 8

 .
(40.6)

The �rst quintuple p1 is the one with the smallest elements, the second p2 contains distinct
elements, and the last one p3 contains primes as the �rst four elements.

We have the following simple observations:

• Not all �ve elements can be odd.

• Multiplication with an arbitrary integer does not change the property.

• There exist sequences (a1, a2, ..., an, ...) of numbers such that for arbitary n we have

n−1¸
i=1

a2
i = a2

n (40.7)

e.g.,
(3, 4, 12, 84, 132, 123254, ...) , (40.8)

see https://math.stackexchange.com/questions/1632281/how-to-�nd-pythagorean-triples-
and-n-tuples

The problem is to construct such quintuplets. It has been addressed in several ways:

• A list of such quintuples can be found in http://www.techborder.com/education/

math/IntMath/Volume_B/Chapter_6/PythagQuints.txt. The list contains two lists,
one with maximal elements up to 33, one with maximal elements between 2107 ans
2143. No information is given, on how these quintuplets have been generated.

• Katkar (2019) discussed extensions Pythagoras' theorem, and gives rules how to gen-
erate Pythagorean n-tuples (n > 3.http://publications.azimpremjifoundation.
org/2127/1/2_Extensions%20of%20the%20theorem%20of%20Pythagoras.pdf

• In blog https://groups.google.com/g/sci.math/c/Ujn6cin7mt0 a method is pro-
posed to generate quintuples

• Koecher and Remmert (1991, Chapt. 7) give an explicit algorithm how to generate
rational unit quaternions and indicate, this can be used to generate Pythagorean
quintuples.

40.3 Generating Pythagorean quintuplets

We start with the construction of rational unit quaternions given by Koecher and Remmert
(1991, Chapt. 7). They write:

Every rational quaternion q = (α,β) ∈ S3 \ 1, α, βν ∈ Q has the form

α =
1− |q|2

1 + |q|2
, β =

2q

1 + |q|2
with q :=

β

1 + α
∈ Q3 , (40.9)

Since, for arbitrary q we have:

|q| = α2 + |q|2 =
1− 2|q|2 + |q|4

1 + 2|q|2 + |q|4
+

4|q|2

1 + 2|q|2 + |q|4
= 1 . (40.10)

Starting from four arbitrary values (a, b) ∈ Q4 we can generate the quaternion

q =

(
1− |q|2

1 + |q|2
,

2q

1 + |q|2

)
with q =

b

1 + a
. (40.11)
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Remark: For a scalar b, thus a scalar q = tan θ
2
we have

q =

(
1− tan2 θ

2

1 + tan2 θ
2

,
2 tan θ

2

1 + tan2 θ
2

)
= (cos θ, sin θ) . (40.12)

�
Therefore, assuming an arbitrary 4-tuple (a, b) ∈ ZZ4 \ −1 we can generate a unit

quaternion as ratio by expanding (40.11)

q =

1− |b|2

(1 + a)2

1 +
|b|2

(1 + a)2

,
2
b

1 + a

1 +
|b|2

(1 + a)2

 =

(
(1 + a)2 − |b|2

(1 + a)2 + |b|2
,

2(1 + a)b

(1 + a)2 − |b|2

)
(40.13)

q =
x

y
(40.14)

with integral numerator

x = num(q) =
(
(1 + a)2 − |b|2 , 2(1 + a)b

)
(40.15)

and integral denominator

y = denum(q) = (1 + a)2 + |b|2 (40.16)

Observe, we have

((1 + a)2 − |b|2)2 + 4(1 + a)2|b|2 = ((1 + a)2 + |b|2)2 (40.17)

Hence we obtain the quintuplet

p =
(
u2 − |v|2, 2uv, u2 + |v|2

)
with (u,v) ∈ ZZ4 . (40.18)

The denominator of the resulting rotation matrix can be shown to be (u2 + |v|2)2 at
maximum.

Remark: This can easily be proven using Euler's four-square theorem. It results from the
norm of the square of a quaternion:

|q2|2 = |q|2 · |q|2 = |q|4 (40.19)

which holds, since for any two quaternions x and y we have |xy| = |x| · |y|. If we choose

q = (u,v) (40.20)

we obtain (40.18). �
Remark: Eq. (40.18) works in all dimensions d ≥ 1 for v ∈ ZZn. For d = 1 we obtain the

classical formula for a Pythagorean triplet (x, y, z)

(u2 − v2, 2uv, u2 + v2) with u, v ∈ IN and u > v . (40.21)

�
Example 40.3.30: Rotation from quatrupel. We randomly generate a quadruple

a = (u,v) ∈ ZZ4, derive the Pythagorean quintuple p, the rational quaternion q, and �nally
the rational rotation matrix. As an example, we obtain the sequence

a =


1
2
2
−1

 , p(a) =


−4
4
0
−2
6

 , q(p) =
1

3


−2
2
0
−1

 , R(q) =
1

25

 15 0 −20
16 15 12
12 −20 9

 ,
(40.22)

thus a rotation matrix with rational elements. �
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41 On the Cayley Transform

We address the Cayley transform relevant for representing rotations and present an excerpt
of his paper (1946)

41.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
41.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
41.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

41.3.1 Cayley's derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
41.3.2 Relation to classical representations . . . . . . . . . . . . . . . . . . 479

41.4 Proof of pair of Cayley transformations . . . . . . . . . . . . . . . . . . . . 480

41.1 Preface

The note (2020) addresses the Cayley transform, and contains an excerpt of the paper by
Cayley (1846).

41.2 Summary

The Cayley transformation λ(A) of a matrix A not having eigenvalue −1 is given by

B = λ(A) := (I − A)(I + A)−1 (41.1)

= (I + A)−1(I − A) . (41.2)

Its inverse is

A = λ−1(A) := (I − B)(I + B)−1 (41.3)

= (I + B)−1(I − B) = λ(B) . (41.4)

Hence it is an involutory transformation as A = λ(λ(A)). Generally, the factors can be
exchanged.

There exists an alternative de�nition. The forward transformation for matrices not
having eigenvalue +1 is

B = c(A) := (I + A)(I − A)−1 (41.5)

= (I − A)−1(I + A) . (41.6)

The inverse transformation is

A = c−1(B) := (B + I )−1(B − I ) (41.7)

= (B − I )(B + I )−1 . (41.8)

Here, the inverse transformation is not identical to the forward transformation.
The forward transformations lead to mutually inverse matrices

c(A) = [λ(A)]
−1

, (41.9)
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see the multiplication of (41.1) and (41.5). Similarly, the two inverse transformations are
related by

c(B) = −λ(B) , (41.10)

see (41.3) and (41.8).
The relevance of the Cayley transformation results from its ability to de�ne rotations.

If the matrix A is skew, then B is a rotation matrix. E.g. with the skew matrix

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (41.11)

we have

Rλ(x) = (I − S(x))(I + S(x))−1 (41.12)

and

Rc(x) = (I + S(x))(I − S(x))−1 . (41.13)

The two rotations are mutually inverse. With the above de�nition of the skew symmetric
matrix the rotation matrix Rc(x) is a positive rotation around the axis x, whereas the
rotation matrix Rλ(x) is a negative rotation around the axis x. This is why the second
version Rc(x) of the de�nition is used frequently for representing rotations.

In the original publication Cayley (1846, p. 121) gives the example with

A′ =

 1 ν −µ
−ν 1 λ
µ −λ 1

 (41.14)

hence with

u′ = −

 λ
µ
ν

 . (41.15)

This is equivalent to using A = −S(u) with

u =

 λ
µ
ν

 . (41.16)

He says: the vector [λ, µ, ν] can be interpreted as a rotation around axis u with angle θ if

θ = 2 arctan |u| (41.17)

or  λ
µ
ν

 = tan

(
1

2
θ

)
u

|u|
, (41.18)

which is consistent with

R(r, θ) = Rc(u) = Rλ(−u) with r =
u

|u|
. (41.19)
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41.3 Comparison

41.3.1 Cayley's derivation

Starting from the de�nition1 of a matrix λ

λrs = −λsr , for r /= s (41.20)(C1)

and

λrr = 1 (41.21)(C2)

With some skew matrix S this can be written as

λ := I + S with λT := I − S = 2I − (I + S) =: 21− λ . (41.22)

The transformation of two points P = [Ps] := p and Q = [Qr] := q are de�ned by

P = λx and Q = λTx (41.23)(C3)

or

p = (I + S)x and q = (I − S)x . (41.24)

The inverse relation is

Kx = ΛP and Kx = ΛTQ , (41.25)(C4)

We use the adjoint matrix (A∗ = |A|A−1)

Λ = λ∗ := (I + S)∗ (41.26)

of λ and have

|λ|x = λ∗P and |λ|x = λ∗TQ . (41.27)

This is equivalent to

|I + S | x = (I + S)∗ p and |I + S | x = (I − S)∗T q . (41.28)

Therefore we have

λΛ = KI or (I + S)(I + S)∗ = |I + S |I . (41.29)(C5)

From (41.25) we see

ΛP = ΛTQ or (I + S)∗ p = (I − S)∗T q . (41.30)(C6)

Premultiplication with λT yields

λTΛP = λTΛTQ (41.31)(C7)

(I + S)T(I + S)∗ p = (I − S)(I − S)∗T q . (41.32)or

Using (41.29) this is identical to

λTΛTQ = KQ or (I − S)(I − S)∗T q = |I + S | q . (41.33)(C8)

With (41.20), (41.21), and (41.22) we have

λTΛ = 2Λ− λΛ (41.34)(C9)

(I − S)(I + S)∗ = 2(I + S)∗ − (I + S)(I + S)∗ . (41.35)or

1We refer to Cayley's equations with (C#).
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which with (41.29) is

λTΛ = 2Λ−K1 or (I − S)(I + S)∗ = 2(I + S)∗ −KI (41.36)(C9)

The transformation of P yields

λTΛP = 2ΛP −KP (41.37)(C9)

(I − S)(I + S)∗p = 2(I + S)∗p−Kp . (41.38)or

Using (41.29), (41.30) and (41.37) in (41.31) we obtain

KQ = 2ΛP −KP or Kq = 2(I + S)∗p− p (41.39)(C12)

and also

KP = 2ΛQ−KQ or Kp = 2(I + S)∗q − q (41.40)(C13)

Now we set

α :

{
Kαrs = 2Λrs , for r /= s
Kαrr = 2Λrr −K

(41.41)(C14)

KA = 2(I + S)∗ −KI . (41.42)or

and therefore simplify (41.39) and (41.40) leading to

Q = αP and P = αTQ or q = Ap and p = ATq . (41.43)(C15)

Therefore we have

ααT = 1 or AAT = I (41.44)

Therefore the matrix α := A is a rotation matrix, rotating p to q.

41.3.2 Relation to classical representations

The matrix A in (41.41) can be written as

A = (2(I + S)∗/|I + S | − I ) (41.45)

= 2(I + S)−1 − I (41.46)

= 2(I + S)−1 − (I + S)−1(I + S) (41.47)

= (I + S)−1(2I − (I + S)) (41.48)

= (I + S)−1(I − S) = (I − S)(I + S)−1 (41.49)

Deriving S from A uses (41.49). We obtain

S =

[
1

2
(A+ I )

]−1

− I (41.50)

= 2(A+ I )−1 − I (41.51)

= 2(A+ I )−1 − (A+ I )−1(A+ I ) (41.52)

= (A+ I )−1(2I − (A+ I )) (41.53)

= (A+ I )−1(I − A) = (I − A)(A+ I )−1 (41.54)

Hence, Cayley's setup yields the involutory transformation.
Observe, the last two derivations hold for arbitrary matrices A and S , as long as the

inverses exist.
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41.4 Proof of pair of Cayley transformations

We want to prove A = λ(λ(A)). We use (41.46) and (41.49)

λ(A) = (I − A)(I + A)−1 = 2(I + A)−1 − I (41.55)

Then we obtain

λ(λ(A)) = λ

2(I + A)−1 − Iloooooooomoooooooon
λ(A)

 (41.56)

= 2

I + (2(I + A)−1 − Iloooooooomoooooooon
λ(A)

)


−1

− I (41.57)

= 2
(
(2(I + A)−1

)−1 − I (41.58)

= 2

(
1

2
(I + A)

)
− I (41.59)

= A (41.60)
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Part VIII

Miscellaneous Notes
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42 Necessary Width of a Corridor to

Transport a Piano around a Corner

We analyse under which conditions a piano can be moved around a corner connecting
two mutually orthogonal corridors having di�erent widths. In case the corridors have a
width between the two sides of the piano, the second corridor needs to be wider if the �rst
corridor is narrower.

[cdy]
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42.5.2 The geometric solution for the rectangle . . . . . . . . . . . . . . . . 485

42.1 Preface

The note (2011) is motivated by a discussion with a friend who moved to a new �at and
had a piano, asking me, how wide the two corridors at a corner need to be in order to be
able to move the piano around the corner.

42.2 Problem

Gíven is a piece of furniture, imagine a piano, of depth a and width b which needs to be
moved through a corridor of width a ≤ u ≤ b and then turned at a 90◦corner into a second
corridor. The question is, how wide the second corridor needs to be.

Figure 42.1: Situation: We seek to know the minimum width x of the second corridor,
such that the rectangular piece of furniture can be moved around the corner.

42.3 Setup

We determine the width x as a function of the angle α.
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We start with the position s of the left part of the piano:

u = a cosα+ s tanα , (42.1)

from which we can follow
s =

u− a cosα

tanα
. (42.2)

Now we determine the total length s+ x of the piano in horizontal direction

s+ x = a sinα+ b cosα . (42.3)

From this we may determine the current width x of the second corridor as a function of α

x(α) = a sinα+ b cosα− u− a cosα

tanα
. (42.4)

For three examples this function is shown in the Fig. 42.2

Figure 42.2: Width x in cm (red) as function of the angle α for b = 200 cm and a = 50
cm for values u = (150, 100, 80, 60) cm. Yellow: The �rst derivative, whose zero yields the
maximum for x

u cm α0
◦ xmin Figur

150 58.5 71.2 left
100 43.0 112.3 mid-left
80 35.6 136.8 mid right
60 24.7 170.9 right

Table 42.1: Maximal values for the width x for the cases in Fig. 42.2

42.4 Smallest width of the second corridor

The second corridor needs to have a minimum width. It results from the maximum of the
function x(α)

x′ =
dx(α)

dα
= 0 (42.5)

This derivative is

x′ =
b sin (α)− b sin (α) (cos (α))

2 − u+ t cos (α)

−1 + (cos (α))
2 (42.6)

We only need to take the numerator. Hence, we need to solve the equation

0 = b sin (α)− b sin (α) (cos (α))
2 − u+ a cos (α) (42.7)

for α. This usually yields a value in the range 0 bis 90 ◦. The minimal value for the width
of the second corridor then is

xmin = x(α0) . (42.8)

Four values are given in the table. We �nd the intuitive result: The wider the �rst
corridor, the narrower the second corridor can be.
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42.5 Solution with envelope curve

We follow an idea of J. Meidow. If we move the piano around a corner, the longer side not
touching the wall moves: The envelope of all these straight lines provides the boundary of
the region over which the piano is moved, see Fig. 42.3

Figure 42.3: Moving a piano around a corner connecting two corridors of di�erent width,
�gure generated with Conderella

42.5.1 Moving a ladder � the astroid

42.5.1.1 The envelope solution

In case the piano would be a ladder having length b, we could move it along the corner.
The envelope then is known to be an asteroid, see https://mathworld.wolfram.com/

Astroid.html: Starting from the line through [0, by(t)] and [bx(t), 0] with x2(t) + y2(t) =
b2, and x = t, thus the line through [0,

`
b2 − t2] and [bt, 0] which is

l :
x

bt
+

y`
b2 − t2

− 1 = 0 (42.9)

or

f(t, x, y) = y +

`
b2 − t2
t

(x− t) (42.10)

with its partial derivative to t

ft(t, x, y) =
t3 − b2x
t2
`
b2 − t2

(42.11)

we need to eliminate t from

f(t, x, y) = and ft(t, x, y) = 0 . (42.12)

Hence

x =
t3

b2
and y = −

`
b2 − t2
t

(t3/b2 − t) =
(b2 − t2)3/2

b2
(42.13)

Since
t2 = b4/3x2/3 (42.14)

we have

y =
(b2 − b4/3x2/3)3/2

b2
=

(b4/3(b2/3 − x2/3))3/2

b2
= (b2/3 − x2/3)3/2 (42.15)

or
x2/3 + y2/3 = b2/3 . (42.16)
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Figure 42.4: Moving ladder

42.5.1.2 A geometric solution

An alternative derivation just follows geometric insight, see Fig 42.4. If the ladder is
slightly moving, it rotates around the point c([t,

`
1− t2]), since the left endpoint moves

vertically and the right endpoint moved horizontally. Hence, the point on the ladder which
stays at constant distance from this point is the footpoint f of c on the line l . The line
has homogeneous coordinates

l =

 `b2 − t2t

t
`
b2 − t2

 (42.17)

The foot point of the centre

c =

 t`
b2 − t2

1

 (42.18)

is given by

f = S(l)S(c)G3l with S(b) =
∂a× b

∂b
and G = Diag([1, 1, 0]) , (42.19)

see Förstner and Wrobel (2016, eq. (7.18)). This yields the foot point

f =

[
x
y

]
f

=

[
t3/b2

(1− t2)3/2/b2

]
(42.20)

as in (42.13).

42.5.2 The geometric solution for the rectangle

We now assume the piano has depth a and length b. Then the line is shifted parallel by
a, i.e., shifted by

s = b

[ `
1− t2
t

]
(42.21)

since the normal vector in (42.17) is already normalized.
Thus we need to apply the shift

T =

 1 0 −a
`

1− t2
0 1 −at
0 0 1

 (42.22)

Hence we obtain the shifted line

lp = TOl with TO = |T|T−1 =

 1 0 0
0 1 0

−a
`

1− t2 −at 1

 (42.23)
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yielding

lp =

 1 0 0
0 1 0

−a
`
b2 − t2 −at 1

 `b2 − t2t

t
`
b2 − t2

 (42.24)

=

 `
b2 − t2
t

−a(b2 − t2)− at2 + t
`
b2 − t2

 =

 `
b2 − t2
t

−ab2 + t
`
b2 − t2

 (42.25)

Similarly we obtain from fp = S(lp)S(c)G3lp

fp =

[
t3/b2 + a

`
b2 − t2/b(

b2 − t2
)3/2

/b2 + a t/b

]
. (42.26)

For a = 0 this specializes to (42.20).
Substituting t = b cosα into (42.26) con�rms the numbers in Tab. 42.1, observing that

u = y.
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43 Line from Four Observed Lines Pass-

ing through Equidistant Points

We provide a constructive solution to the following pose estimation problem: A car is
driving on an unknown straight path with an unknown, but constant velocity. It is ob-
served from another moving vehicle which knows it's own position (full pose: position and
direction) and observes the bearing (direction) to the other car at constant time intervals.
The task is to determine the location of the path and velocity of the other car. A geometric
solution by Kuikueg is realized in Cinderella.

[cdy]

43.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
43.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

43.1 Preface

Discussing variations of determining the pose of moving objects 2005 I came accross the
problem to reconstruct the path of a vehicle moving on a straight line with constant
velocity when at constant time intervals observing the azimuth, via bearings from four
varying but known positions. The solution can be found geometrically and allows an
intuitive visualization.

Much later I learned that there exists the 4-bearings method to solve this problem, see
the blog https://www.mathscinotes.com/2015/04/computing-a-ships-course-from-
four-bearings/. I also found a much easier geometric solution, described in https:

//ricojansen.nl/downloads/the_four_bearings_method_v2,Kuikueg.pdf. This doc-
ument also describes geometric methods for the case of bearings from a static point where
only three bearings are necessary.

43.2 An Example

Given are four lines li, i = 1, 2, 3, 4, the viewing lines of the moving vehicle to the vehicle.
Find line m such that distances of intersection points xi = li ∧m are the same.

An example shows the sensitivity of the estimated path. The Fig. 43.1 shows an exam-
ple. The poses (U, V,W,X) and the directions (a, b, c, d) of a moving vehicle are given, the
four points (M,N,O, P ) of an unknown vehicle, driving on a straight path with constant
velocity. The �gure shows two situations which only di�er in the direction of b from V :
Already a small change of the direction may cause a large change in the inferred path
of the car. The �gures are generated with the geometry package Cinderella (https:
//www.cinderella.de/tiki-index.php) based on the geometric solution provided in
https://ricojansen.nl/downloads/the_four_bearings_method_v2,Kuikueg.pdf.
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Figure 43.1: Four consecutive points (M,N,O, P ) on an unknown line with equal distances
are observed from known positions (U, V,W,X) with known rays (a, b, c, d). Slightly changed
direction b leads to quite di�erent path of vehicle.

488



44 Peeling a Mandarin or the Spherical

Archimedean Spiral

We discuss the question which form a planarized mandarin peel has, in case it is peeled with
a constant width, thus along a spherical Archimedean spiral. We formalize the problem
and develop a scheme to visualize a planarized Archimedean spiral.

44.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
44.2 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
44.3 The Archimedean spiral in the plane . . . . . . . . . . . . . . . . . . . . . . 489
44.4 The Archimedean spiral on the unit sphere . . . . . . . . . . . . . . . . . . 491

44.4.1 Starting at the north pole . . . . . . . . . . . . . . . . . . . . . . . . 491
44.4.2 Starting at the equator . . . . . . . . . . . . . . . . . . . . . . . . . 492

44.5 Projection on the tangent frame . . . . . . . . . . . . . . . . . . . . . . . . 493
44.6 Discrete integration in the plane . . . . . . . . . . . . . . . . . . . . . . . . 494

44.6.1 Planarization of the spiral . . . . . . . . . . . . . . . . . . . . . . . . 494
44.6.2 Planarization of the surface region by quadrangles . . . . . . . . . . 495

44.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

44.1 Preface

44.2 The task

We describe the approximate �attening of a sphere using an Archimedean spiral, see Fig.
44.1

44.3 The Archimedean spiral in the plane

The archimedian spiral in the plane is de�ned in polar coordinates as

r = bt (44.1)

where the parameter b describes the velocity of the change in distance to the origin. In
cartesian coordinates we obtain the parametric form

x = r cos t = bt cos t , (44.2)

y = r sin t = bt sin t . (44.3)

Fig. 44.2 shows four branches of length 2π of a spiral with b = 0.5/(2π) and radial rays,
partitioning the area between neighbouring branches in triangles and quadrangles.

The arclength results from the di�erentials

ẋ :=
∂x

∂t
= b(cos t− t sin t) (44.4)

ẏ :=
∂y

∂t
= b(sin t+ t cos t) (44.5)
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Figure 44.1: Peeling a mandarin leading to a double spiral when planarized (above) and
its mathematical simulation
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Figure 44.2: Archimedean spiral with b = 0.5/(2π), having four branches. The area
between the branches is partitioned into triangles (close to the centre) and quadrangles

hence the length element is

ds =
a
ẋ2 + ẏ2dt = b

a
1 + t2 dt . (44.6)

For deriving the curvature, we need the second derivatives:

ẍ :=
∂ẋ

∂t
= −b (2 sin (t) + t cos (t)) (44.7)

ÿ :=
∂ẏ

∂t
= +b (2 cos (t)− t sin (t)) . (44.8)

The curvature then is given by

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
=

1

b

(t2 + 2)

(t2 + 1)
3/2

, (44.9)

which obviously decreases with increasing t, namely κ ≈ 1/(bt) for large t.

44.4 The Archimedean spiral on the unit sphere

44.4.1 Starting at the north pole

The (Archimedean) spiral on the sphere may start at the north pole, surround the sphere
several times and arrive at the south pole. Using geographical coordinates (λ, φ) we have
with the parameter b indicating the velocity of the change of the latitude and assuming
the spiral leaves the north pole with increasing λ:

φ1 = π/2− bλ with λ ≥ 0 . (44.10)

The spiral arrives at the south pole φ1 = −π/2 for

λS1 =
π

b
, (44.11)

and therefore passes the equator at

λE1 =
π

2b
. (44.12)

Transforming the geographic into Cartesian coordinates we arrive at using t = λ

x(t) =

 cos t sin(b t)
sin t sin(b t)

cos(b t)

 . (44.13)

491



The �rst derivative w.r.t. is

ẋ(t) =

 b cos (b t) cos (t)− sin (b t) sin (t)
sin (b t) cos (t) + b cos (b t) sin (t)

−b sin (b t)

 (44.14)

κ′a =
cos (b t)

(
2 b2 + sin (b t)

2
)

(
b2 + sin (b t)

2
)3/2

(44.15)

or for small t we obtain

κ′a ≈
t2 + 2

b (t2 + 1)
3/2

(44.16)

which is consistent with the curvature of the planar spiral.

44.4.2 Starting at the equator

In order to simplify the relations we use the angular variables (t, r) := (λ, φ) and start the
spiral at the equator at t = 0 and let it converge to the north pole, leading to

r = b t with t ∈ [−π/(2b),+π/(2b)] , (44.17)

which shows the similarity to the Archimedean spiral in the plane. This spiral reaches the
north pole r = π/2 at

tN =
π

2 b
, (44.18)

why we limit the range in (44.17).

Figure 44.3: Archimedean spiral on the sphere with k branches per hemisphere and b =
1/(4 ∗ k)

The representation in Cartesian coordinates is

x =

 cos(bt) cos t
cos(bt) sin t

sin(bt)

 . (44.19)

Its derivatives are

ẋ =

 −b sin(bt) cos t− cos(bt) sin t
−b sin(bt) sin t+ cos(bt) cos t

+b cos(bt)

 . (44.20)

the local velocity is

v(t) = ẋ(t) =

∣∣∣∣∂x∂t
∣∣∣∣ =
a
b2 + cos2(bt) (44.21)
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The second derivatives are

ẍ =

 2 b sin(b t) sin(t)− cos(b t) cos(t)− b2 cos(b t) cos(t)
− cos(b t) sin(t)− 2 b sin(b t) cos(t)− b2 cos(b t) sin(t)

−b2 sin(b t)

 (44.22)

The total curvature is

κ =
|ẋ× ẍ|
|ẋ|3

(44.23)

=
b6 − b4 cos (b t)

2
+ 4 b4 − b2 cos (b t)

4
+ 4 b2 cos (b t)

2
+ cos (b t)

4

(b2 + cos2(bt))3/2
(44.24)

=
b4(b2 + 4) + b2cos (b t)

2
(−b2 + 4) + cos (b t)

4
(−b2 + 1)

(b2 + cos2(bt))3/2
(44.25)

However, we need the curvature of the curve projected onto the tangent plane, see next
paragraph.

The torsion is not zero, but

τ(t) =
|[x, ẋ, ẍ]|
|ẋ× ẍ|

=
sin (b t)

(
2 b2 + cos (b t)

2
)

b6 + b4 sin (b t)
2

+ 3 b4 − b2 sin (b t)
4 − 2 b2 sin (b t)

2
+ 3 b2 + sin (b t)

4 − 2 sin (b t)
2

+ 1
(44.26)

For t = π/(2b) the maximum is reached with

τmax =
2

b2(b2 + 4)
. (44.27)

44.5 Projection on the tangent frame

We now project the curve onto the tangent frame, with x-coordinate parallel to ẋ, z-
coordinate x, and y-coordinate x× ẋ

Hence

tx(t) = [ẋ/|ẋ| | x× ẋ/|ẋ| | x]Tx (44.28)

=

 ẋTx/|ẋ|
(x× ẋ/|ẋ|)T

xTx

 , (44.29)

where all vectors in the 3× 3-matrix are unit vectors.
The �rst derivative in that frame is

tẋ = [N(ẋ), x× N(ẋ)|, x]Tẋ =

 |ẋ|0
0

 . (44.30)

con�rming (44.21). The second derivatives in that frame are

tẍ = [N(ẋ), x× N(ẋ), x]Tẍ =

 ẋTẍ/|ẋ|
|x ẋ ẍ|/|ẋ|
xTẍ/|ẋ|

 . (44.31)

If we only use the �rst two coordinates we obtain the curvature in the tangent plane

κ′(t) =
tẋ1

tẍ2 − tẍ1
tẋ2

(tẋ2
1 + tẋ2

2)3/2
(44.32)

=
|[x ẋ ẍ]|
|ẋ|3

(44.33)

≤ κ(t) (44.34)
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thus

κ′(t) =
sin(b t)

(
2b2 + cos2(bt)

)
(b2 + cos2(bt))

3/2
. (44.35)

Hence, the curvature approximately decreases with the cosine of the distance π/2− bt to
the north pole.

44.6 Discrete integration in the plane

We discuss two planarizations: (1) planarization of the spiral, i.e., of the curve on the
sphere, and (2) planarization of the area between the branches of the spiral, each covering
an azimuth of 360◦.

44.6.1 Planarization of the spiral

Let the path local velocity v(t) = ds(t)/dt and the curvature κ′(t) be given, the task is
to �nd the planar curve y(t) = (x(t), y(t)) having the same velocity and curvature as the
3D Archimedean spiral. We start the path xi with two points and then augment the path
stepwise by one point. We �x a step size ∆t, e.g., to guarantee to arrive at the north pole
after N steps, then

∆t =
π

2bN
. (44.36)

44.6.1.1 The �rst two points

The �rst point is assumed to be at the origin

y0 = 0 . (44.37)

The second point has a distance
∆st := v(t)∆t (44.38)

and direction [x2(∆t), x3(∆t)] hence, when using the approximations cos(t) ≈ 1 and sin t ≈
t:

y1 =
∆s0`
1 + b2

[
1
b

]
. (44.39)

44.6.1.2 Augmenting the chain

Given two points yt−1 and yt

yt−1 =

[
yt−1

yt−1

]
yt =

[
xt
yt

]
(44.40)

we want to determine a third point yt+1 which has a distance ∆st and an o�set from the
prolongation depending on the curvature κt: The parabola, which passes through x = −d
and x = 0

y =
1

2
ax(x+ d) (44.41)

has curvature κ = a at x = −d. Hence, the point (d, ad2) lies on the parabola and has dis-
tance d

a
1 + (ad)2 to the origin, which for small products ad� 1 is a good approximation

for d.
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In the tangential coordinate at the tangential system t the three points therefore have
the coordinates

txt−1 = |∆st−1|
[

1
0

]
(44.42)

txt =

[
0
0

]
(44.43)

txt+1 = |∆st|N
([

+∆st
κ′t ∆s2

t

])
, (44.44)

which guarantees the curvature is close to κ′t if the length elements |∆st−1| and |∆st| di�er
not too much. The 2D motion results from

y = R ty + t with R =

[
a −b
b a

]
(44.45)

with
a =

xt − xt−1

∆st−1
b =

yt − yt−1

∆st−1
, t = yt (44.46)

Hence we obtain

yt+1 =

[
xt
yt

]
+

1

∆st−1

[
xt − xt−1 −(yt − yt−1)
yt − yt−1 xt − xt−1

]
∆st N

([
+∆st
κ′t ∆s2

t

])
. (44.47)

or �nally

yt+1 =

[
xt
yt

]
+

∆st
∆st−1

[
xt − xt−1 −(yt − yt−1)
yt − yt−1 xt − xt−1

]
N

([
+∆st

1
2κ
′
t ∆s2

t

])
. (44.48)

with

∆s(t) =
a
b2 + cos2(bt) ∆t (44.49)

κ′(t) =
sin(b t)

(
2b2 + cos2(bt)

)
(b2 + cos2(bt))

3/2
(44.50)

44.6.2 Planarization of the surface region by quadrangles

The four points

[h]Q (t) = [x1(t),x2(t),x3(t),x4(t)] (44.51)

:= [x(t),x(t+ ∆t),x(t+ ∆t+ 2π),x(t+ 2π)]

with t ≤ 2π

(
1

4b
− 1

)
−∆t

build a quadrangle, see Fig. 44.4 with the having the same azimuths t and t + ∆t, lying
in neighbouring branches of the spiral. Therefore, they are nearly coplanar. Hence, we
may map these quadrangles to the plane and concatenate them. This holds as long as the
latitude bt of the upper branch is not larger than π/2, thus

b(t+ ∆t+ 2π) ≤ π

2
or t ≤ π

2b
− 2π = 2π

(
1

4b
− 1

)
−∆t (44.52)

For larger values t we only use triangles

T (t) =
[
x1(t),x2(t),x3(t)] := [x(t),x(t+ ∆t),x

( π
2b

)]
, (44.53)

which connect neighbouring points on the spiral with the north pole.
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Figure 44.4: Quadrangle between two branches of the spiral and triangle close to the north
pole x3

44.6.2.1 The �rst two points

We assume the spiral starts at the equator at t = 0.
We assume each quadrangle is surrounded by the four points xk(t), k = 1, 2, 3, 4 in

mathematically positive orientation.
The �rst two points are connecting the start and the end of the �rst branch, hence

x(t), t = {0, 2π}. The �rst point of the �rst quadrangle is the image of x1(0) := x(0) =
[1, 0, 0]T and assumed to be

u1(0) =

[
0
0

]
. (44.54)

The last point of that quadrangle is assumed to lie on the y axes having a distance of
|x(2π)− x(0)| along the meridian:

u4(0) =

[
0

|x(2π)− x(0)|

]
. (44.55)

44.6.2.2 Augmenting the chain

We now assume we have given the coordinates {u1(t),u4(t)} and want to derive the
coordinates {u2(t),u3(t)}.

For this, we move the quadrangle Q (t) into the tangent plane, such that the �rst
two points have xy-coordinates {u1(t),u4(t)} in the tangent system St and such that the
midpoint of the other two points xm(t) = (x3(t) + x4(t))/2) lies in that plane. The third
coordinates of the moved points {tx3(t), tx4(t)} will be small, since the torsion of the
spiral is small, and set to 0, leading to the xy-coordinates {u2(t),u3(t)}.

If we attach a (uv)-system in the plane of the triangle, with the y-axis unit vector tv
parallel to x14 := x4−x1, and the x-axis unit vector tu being orthogonal to tv, such that
the local txm coordinate is positive, then the local coordinates of the point xk, k = 2, 3
can be expressed as

tuk =

[
tu

T

tv
T

]
x1k with tv = N(x14) and tu = N(v × (xm × v)) and (44.56)

Then the points in the plane have the coordinates

uk = u1 + [N(tx
⊥
14) | N(tx14)] tuk with

[
x
y

]⊥
=

[
y
−x

]
and k = 2, 3 . (44.57)

The aggregation then uses the 2D points (u2(t),u3(t)) as starting point for the new
quadrangle

u1(t+ ∆t) := u2(t) and u4(t+ ∆t) := u3(t) . (44.58)

For triangles, we use the same procedure, setting x4 := x3.
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Figure 44.5: Quadrangle between two branches of the negative branch of the spiral and
triangle close to the south pole x1

The same procedure can be used for the lower left (negative) part of the spiral, see
Fig. 44.5 The quadrangels then are

[h]Q−(t) = [x1(t),x2(t),x3(t),x4(t)] (44.59)

= [x(−t−∆t),x(−t),x(−t+ 2π),x(−t−∆t+ 2π)]

with t ≥ − π
2b
−∆t .

For smaller t we again use triangles joining the south pole with two points on the spiral:

T−(t) = [x1(t),x3(t),x4(t)] :=

[
x

(
−π
2b

)
,x(−t+ 2π),x(−t−∆t+ 2π)

]
, (44.60)

Thus again we use the procedure for quadrangles, now, setting x2 := x1.

44.7 Examples

We close with some examples.

Figure 44.6: Flattened spherical archimedian spirals with b = 2, b = 4, b = 5 and b = 12
turns
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